68NW9209H08C

SYSTEM V/68 Release 3

Programmer’s Guide
Volume 2

@ MOTOROLA IN

R

Motorola welcomes your commen

. Manual Title

Part Number

Your Name

Your Title

Company
Address

General Informatlon:

Do you read this manual in or¢
O Install the product U Us:

O Reference information

In general, how do you locate

O Index 0O Table of Conte:

Completeness: O Excellent

What topic would you like mo

IIl||l”llIIlllllllIIIII|”l||l[Ill”l[lll'lll[lll”

Iv/6-282S8 ZV ‘edwa]

Aep\ 0|gBIQ YINOS 0062

2

S |
2 |
O
o) 5 o
= z |5
eQ 214
© ol @
qmzc
o v [T @
T 2
gga‘nz
° o |0 M
5 < |2 w
2
gog:w
Q 9 |2 m
O x |0
m |- m
o3 R P
ghmg)nl_
e) m -
<
D -y §§
Oz o =
s z r
<Z>I° x
S x
5]
S S
§ 5
»
>

S3LV1S d3LlINN

2HL NI
a3anvw 4l
AHVYSS3IO3N
3IDV.LSOd ON

Presentation: DO Excellent OVery Good 0OGood DOFair O Poor

What features of the manual are most useful (tables, figures, appendixes, index, etc.)?

Is the information easy to understand? OYes O No If you checked no, please explain:

Is the information easy to find? UYes [No If you checked no, please explain:

Technical Accuracy: DOExcellent [OVery Good UOGood OFair OPoor

If you have found technical or typographical errors, please list them here.

Page Number Description of Error

SYSTEM V/68 RELEASE 3

PROGRAMMER’S GUIDE

Part Number 68NW9209H08C

Volume 2

January 1989

SYSTEM V/68™ and VERSAdos™ are trademarks of Motorola Inc. UNIX® is a
registered trademark of AT&T.

SYSTEM V/68 Release 3 is based on the AT&T UNIX System V, Release 3.0. The
software described herein is furnished under a licensed agreement and may be
used only in accordance with the terms of the agreement.

Copyright © 1986, 1987, 1988 Motorola Inc. All rights reserved. No part of this
manual may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any language or computer language, in any form or by any
means, without the prior written permission of Motorola Inc.

Portions of this document are reprinted from
copyrighted documents by permission of AT&T, 1986.

PREFACE

The Programmer’s Guide (Part Number 68NW9209H08C) provides information
about programming in a SYSTEM V/68 environment. This basic document covers
Motorola’s Release 3 Basic Operating System through Version 5. Information
beyond this version will be provided in supplemental documents.

The following changes have been made to this version of the document:

e Chapter 8 (Shared Libraries) of the /D1 and /D2 versions has been removed.
The software does not support shared libraries.

e The original document has been divided into two volumes.

e The original Chapters 1 through 10, 19 and 20 (renumbered 1 through 11),
Appendices A, B, and C, and the Glossary are contained in Volume 1.

¢ The original Chapters 11 through 18 (renumbered 12 through 19), and the
Index are in Volume 2.

While reasonable efforts have been made to assure the accuracy of this document,
Motorola assumes no liability resulting from any omissions in this document or
from the use of the information obtained therein. Motorola reserves the right to
revise this document and to make changes from time to time in its content
without being obligated to notify any person of such revision or changes.

CONTENTS

COMMON OBJECT FILE FORMAT (COFF) ...cccvviviriiiecnriseninrnronerivernenns 12-1
The Common Object File Format (COFF)cocccviiiiiiiiiiniiiniinnneen, 121
Definitions and Conventionscccceeciiiiiiiiiirieieriisniocnionssns 12-3
SECHIOMS eintiririeenirerrnireeeierereeaseessensansonsensernsensansssssnnsonsonss 12-3
Physical and Virtual Addressesccccevvviniiiiiiciininninnienennen, 12-3
Target Machinecccooovimiiiiiiiiiiiiiiiiii e 124

File Header ...ovcveriiiiiiiiiieeiieierteiaeieteeneenscnetonsensonsonnsonsensnns 124
Magic Numbersccciviiiiiiiiiiiiiiiiiiiniciicccie e 12-5
FIags .ooniieiii e 12-5

File Header Declarationccceveieiiieeneneiinineienienenecenencnranes 12-6
Optional Header Informationcccuuvviviviiiivnniiniiiiiniiininnnnn, 12-6
Standard Operating System a.out Headerc.coonenvennnnnen, 12-6
Optional Header Declarationccoeeiiiiiiiiiiiiiiiiinninnnnnenn, 12-8
Section Headersccocvviiiiiiiiiiiiiiiiiiieiieiiiiesieireinercenrensennns 12-3
Flags ovieniiiiiiiii e e 12-10
Section Header Declarationcceevvvviieiniininnerieninneiennreenns 12-11
.bss Section Headerccvvvvniinimiiiiiiiiiiieeirceiree e eeneeas 12-11
SECHOMNS t1iiiriiieiirrnernrienieneeeerrernrrescreconceseensencesnsensenssnssansansrances 12-12
Relocation INformationceeeveiiiineiieiiiernreieiiseessssreerersesessnes 12-12
Relocation Entry Declarationccccocuiiuviiiniiiiniiniciinceninee, 12-13
Line NUIMDEISovviiiiiiiiiiiiiiiieeieiiiiisiiseieeeeiiseeieisssessrsssssnsssonse 12-14
Line Number Declarationccvevevviiveniieieeninnrieinersieesinennns 12-15
Symbol Tableccccoiviuiiiiiiiiiii 12-15
Special Symbolsccuuiiiiiiiiiiiii 12-17
DoV Ty ol 3] 1 Yol L S TN 12-18
Symbols and Functionsccovvueneens e e 12-20
Symbol Table Entriesc..ccevuviiiiniiiiiiiiniiiiiniininiiiiieeneniens 12-21
Auxiliary Table Entriescceeviiiiiiiniiiiiniiiieiiiinicenene, 12-34
String Tablec..cocuiviiiiiniiiiiiiii e 12-43
Access ROULINES ...oviiieiiiiiiiiiiiiiiie i eeeeie e e reessneessnasnsnens 12-44
THE LINK EDITORcciiiiiiiiiiiiiiiiirireiieiiiieeeisseseseseesssiessessssnsneseencns 13-1
The Link Editorocvuviniiiiiiiieii et r e sae e eanans 13-1
Memory Configurationccccoovvviiiimiiiiiiiniiiiiin e 13-1

b =Tut 4 o o V- SO 13-2

Y o (=TT S 13-2
Bindingcooovvmmiiiiiiiiiii e 13-2
16) o)1= Tu 3 31 LT 13-2

Link Editor Command Languageccccceeviiiiiiiiiiiviiniiiiinininnna, 13-3

EXPressionsccvvviiiiiiiiiiiiii 13-3
Assignment Statementscccoeeiiiiiiiiiiiininniiii 13-4
Specifying a Memory Configurationouiiiiiiiiieinninnnnnnn. 13-5
Section Definition Directivesccoocvirniiiiiiiniiiiiieniiiciiinnine.n. 13-7
File Specificationsc.ccceeiiuiiiiiiiiiiiiiiiiiiiiia 13-8
Load a Section at a Specified Addressc.cevviiniiiiniiinninn, 139
Aligning an Output Sectionccccceuiviviiniriiiiiiiniiiniiin 13-10
Grouping Sections Togethercccoooiiiiiiiiiiiiiiiiiiiiiiiiiinn, 13-10
Creating Holes Within Output Sectionsccccovveiiininne. 13-12
Creating and Defining Symbols at Link-Edit Time 13-14
Allocating a Section Into Named Memory errereeeer e 13-15
Initialized Section Holes or .bss Sectionsc..ccoceviinennn.e. 13-16
Notes and Special Considerationsccccvviiiiieiiiniiiiiiiiiennenn., 13-17
Changing the Entry Pointccoveiiiiiiiiniiiiniiiiiiiiiciiiii e, 13-17
Use of Archive Librariesccoooiiiiiiiiiiiiiiiiiiiiiciniccinnnieene, 13-18
Dealing With Holes in Physical Memorycco.cccvvviiennieniinnnnnnns 13-20
Allocation Algorithmcoooeeiiiiiiiiiii 13-21
Incremental Link Editingcccoocuiiiniiiiiiiiiiiiiniicciincicnnnn, 13-21
DSECT, COPY, NOLOAD, INFO, and OVERLAY Sections 13-23
Output File Blockingccooviiiiiiiiiiiiiiiiiiiiccceee, 13-24
Nonrelocatable Input Filescoooouiiiiiiiiiiiiini 13-25
Syntax Diagram for Input Directivesccccoevviiiiiiiiinineniniennnnn, 13-25
INAKE L.ouuiieiiiiineneieriiiiiieneseasbtbbb et e e br e s e e e tb s e e e e s baa e e e s nnanaaans 14-1
INtTOAUCHON cuxeessansuansmmaessmonsassnssnsensonsmusssrsunsssisvasssesivvsaisissidessies 14-1
BasiC FEAtUres .oviusismumsvesssmsimisvissnsonisvomssrosiuuiksissonsessseevsoavsaine 14-2
Description Files and Substitutionsccccovviviiiiiiciiiiiiiiniann.., 14-6
COMMENES siuwaumomunmmsisss v es s s e i 14-6
Continuation LiNes :wiwsaavairiiiiimismiiivasievossilisssssiiieses 14-6
Macro Definitions sisusiveviivmisssisisivivesssmiiiss soimssssesesnsssrtsion 14-7
General FOrm susuugisisamaisssaisiisasis s oiie s masissains 14-7
Dependency Information T T LTI Ty Tr 14-7
Executable Commandscovvuiiiiiiiiiiiiaiiiiieiiiniiee e eeains 14-8
Extensions of $*, $@, and $<cooivviiiiiiiiiiiiiiie e 14-8
Output Translationscoiviiiiiiiiiiiniiiiiinnicceii e e, 14-9
Recursive Makefilescccovviiiiiiiiiiiiiiiiiiiiiiiiiiiree . 14-9
Suffixes and Transformation Rulescccoeeieriiniiiinniiiinnnnns 14-10
Implicit Rules .ocuoss sssveisuriniosesmicommpessmnsosssaisibsssvsassvissa s 14-10
Archive Libraries .cucsssssmuaniisicisasisiisissaiisiss Sivvissvesssiiiess 14-12
Source Code Control System Filenames: the Tildec.......... 14-14

vi

The NUIL SULFIX ...ceniieiriiniieiniiieererrieisrerneeneatensrnraesnsasansansassnsns 14-15

1370 10 1 30 351 -SSR PP 14-16
SCCS MakKefileSoeiiviiiuiuinininiiiiiiiiieiiiiiiiierisieneirereraranensonaens 14-16
Dynamic Dependency Parametersccccoviiiiiiiiiininnininn. 14-16
Command USAGEceevuerrriruiriernniniiniiinieiiieenisesiseseiessnenssennees 14-17
The make Commandccevveuriiniiiiiiiiieiineniieneie e 14-18
Environment Variablescoocvviiiiiiiiiiiiiiiinniiiiiiinneen, 14-19
Suggestions and Warningsccceeeuvvierniinianiiiniiiniie, 14-20
Internal RUIESc.iiviiiiiiiiiiiiiiiii i e e eas 14-21
SOURCE CODE CONTROL SYSTEM (SCCS) ...ccuuerrrrrnniiineinieiicenninncenene 15-1
INtroductioncceveiininiiieieiiiii e 15-1
SCCS For BeGINNErscoicuiviieeiiunenemeemiiniiiniciiesiainesiernenseassennns 15-1
TerminologYccevvinieiiiiiiietieii e 15-1
Creating an SCCS File via adminc.cccoviiiiiiiiiiiiniiinnninnn 15-2
Retrieving a File via getoooviiiiiiiiiinii 15-2
Recording Changes via deltacooviiiiiiiiiiiiniiiniinnnn, 15-3
Additional Information about getccoeieiiiiiiiiiiiininni, 154
The help Commandcoeeiuiiiniiiiiiiiiiiieiincere e, 15-5
Delta Numberingcccccoiviiiiiiiiiiiiiiiiiiiine e 15-6
SCCS Command Conventionsccccveeeenreniiiiiineniuireniieeiieeen 15-8
x.files and z.filesccociiiiiiiiiiiiii 15-8
Error MeSSaEScuvvuienmniiinieiiiiiiiiiniiiiiiireciirnisisesessnirestnencens 159
SCCS CommANdS .o.cevvuiriiniiiienieiiiniiiiiiiiii ettt saeasaes 15-9
The get Commandcooeeveniiiiiieiiiiiiiiiiniiiisiinre s aaen 15-10
ID Keywordsccoiviiiiiiiiiiiiniiiiiiiiiiiieirieieneseciesieessioene 15-11
Retrieval of Different Versionscocvvviiviiiiiiiiiiiniiiniinnne 15-12
Retrieval With Intent to Make a Deltaccoccvveiviiiiieninnennen. 15-13
Undoing a get ecoovvvriiiiiiiiiiiiiiniiiininrccniece e 15-14
Additional get Optionscccevvviiiieiiiiniiiniiiiniii e 15-14
Concurrent Edits of Different SIDcccoovriiiiriiiiiinciininianne. 15-15
Concurrent Edits of Same SIDccovvvviiiiiiiiiiiniiininiinnine. 15-18
Keyletters That Affect Outputcoovveiiiiiiiiniiiiiiiiiiiinnn, 15-18
The delta Commandccoviiviiiiiiiiiiiii e eaans 15-20
The admin Commandccoouiiiieiiiiiii e eaans 15-23
Creation of SCCS Filesccccovviiiiiiiniiiiiiiniiiii s sancaaen 15-23
Inserting Commentary for the Initial Deltaccoovvininnnn. 15-24
Initialization and Modification of SCCS File Parameters 15-24
The prs Commandc.ccoiuiiiiiiiiiniiiii e 15-26
The sact Command wussivsnsisicmivessvimssiiisivansiassivie it 15-27
The help Command ;.iisiveiiiiinitimssiistavesisiivesssisdeesssivigi s 15-27

The rmdel Command ciucsssessasiesisssissasssssavssiisass ssssaisssvivavssmvasss 15-28
The cdc Command i.osiiisimauivissvssisiisimisssaeiats g 15-29
The what Command :uiemminmumssinnmiiiaismnasrasiss s 15-30
The scesdiff Command sisisisismssriassiisssssssiisainaisssiniisi s 15-30
The comb Commandcceiiimiiiiiiiiiieiiiiicii e 15-31
The val Command s.sississspsitiimimmesimiainm i irmins s smmrnsrnemns 15-32
The ve Commandccooeriiiiniiiiiniiiiiii e e srae e 15-32
SCCS FIleS ..vvvvvnirininriiriiieiiiiinerriiis s saii s riiie e ssaieeesansneessanns 15-32
Protection wessrosemmsssmisemrsessmspansoscvnes s sdiosors ssmissomesis o avs s 15-33
Formattingccooiviviiiiiiii e 15-34
Auditing ...coooveiiiiiiniiii e 15-35
sdb—THE SYMBOLIC DEBUGGERcccvoiiiiiiiiiiiiiiiiniincrrieerinnenanns 16-1
Introductioncooviiiiiiii e l6-1
USING SAD ..vvivvneiiiiiiiiiiiii e 16-1
Printing a Stack Tracecc.oocviiriiiiiiiiiiiiiiii e, 16-2
Examining Variablescccooiviiiiiiniiiiiiiicniiee e 16-3
Source File Display and Manipulationc.ccoooviviinninnvinneen. 16-5
Displaying the Source Filec.ccooviiiiiiininiiiiiiiiieeiiiee e, 16-6
Changing the Current Source File or Function 16-6
Changing the Current Line in the Source File 16-6

A Controlled Environment for Program Testingcc...cc.ccee...... 16-7
Setting and Deleting Breakpointscccceeeeevviiinninrenrinnnennn. 16-8
Running the Programcc.ocoiviiiiiiiiiiiiiiiieinieneiiiee e, 16-9
Calling FUNCHONSccovvmiiiiiiiiiiiiiineciii e ee e 16-10
Machine Language Debuggingccceveeiiviiinieiiiinirnineninnnn, 16-10
Displaying Machine Language Statementsc.cccvuvnennenn, 16-10
Manipulating RegiStersi.scisssmisssriasissaremissarvisansimsiiiiin 16-11
Other Commands e sassssmmssensisiasissasasssassivissisasisssiis 16-11
An sdb SesSiON veissssnirsssnpssiusasisissasisisssimsmasasissssvvessiidvsssivn 16-11
BNt cosssanssiasnssims it s T s s s SRR RN o e p o s s s s 171
INtrodUCtionNovviiniiiiiiiiiiii e 17-1
USage ..oovieiiiiiiiiiiiii 17-1
lint Message TYPESeeurviiiiieiiiiiiiiiiiieeereeeeetiiieeeenirn e 17-3
Unused Variables and Functionscccoeeevviiieiivirniininnnneenn.. 17-3
Set/Used INformationccevviiiieeniieciruinieriineeriiieienieerennnnans 174
Flow of Controlcoevvviiiiiiiiiiiiiiiiicn e 17-4
Function Valuesc..ccoiiiiiiiiiiiiiiiiiiiiiiiicre e, 17-5
Type Checkingccoooevviiiiiiiiiiniiieiiinnnn, Henasassssaransosasaneassas 17-6

viii

Type Castscovvunvieiiiiiiiiiiii e 17-7

Nonportable Character Usecccovviiimiiiiiiiiiiiiiieniiineeeenenee. 17-7
Assignments of longs to intsccoeeviiiiiiiiiiiiiiiin 17-8
Strange Constructionsccoiiiiieiiiiiniiiiiiiiii e 17-8
Old Syntaxoveviiniiiiiiiiiiiiii e 17-9
Pointer Alignmentccoiiiiiiniiiiiiiiiii e 17-10
Multiple Uses and Side Effectscooovviiiiiiiiiiiiiiieiciniennecn. 17-10
CLANGUAGE ..ottt e e s e e ees 18-1
INtroductionccoeiviniiiiiiiii e eea e 18-1
Lexical Conventionsc..civiuuiiiiiniiiiiiiiiniiiieneeiiiereeeeieenraenn 18-1
CommMENtScoovriniiiiiiiiiiiiiii e e 18-1
Identifiers (INAIMES)euvvueeniiniinieieiiieiriien e e eriernerireneenreernens 18-1
Keywordsccouviiiiiiiiiiiiiiii e 18-2
ConStantscceeuiiiiiiiiiiiiii e e 18-2
Integer Constantscooveeviniiiiiniiiiieiiiiiie e eeveae e, 18-2
Explicit Long Constantsccceuereeiiinieeiiiiieriniererenenaennen.. 18-2
Character Constantscceeiiiiiiiiiiiiiiiniiiieeeeieeeeevaeeeen, 18-2
Floating Constantscceeiiiieiiiiiiiiiieeiieeeerie i eerieeeeaaens 18-3
Enumeration Constantscccevviiiiiiieevriieniiiiienieniieennnn.. 18-3
String Literalscceoiiiiiimiiiiiiiiiiiiiiiiiie e 18-4
Syntax NOtationccovviieeiriieiiiieiiriiieiiieeeireriie e e eeeee e 18-4
Storage Class and TYpecccoevviiiiiiimiiieiiiiiiiiciireeeeeeeeeeeeneeanns 18-4
Storage Classuuuiiiiiiiiiiiiiiiiiiiiieeeccr e 18-4
TP e 18-5
Objects and Ivaluesccoovviiiiiiiiniiiiiiiiiir e 18-6
Operator CONVErSIONSccccumeuuiiiiieerininiieeeerinniiieaerecrasnneeennns 18-7
Characters and INtEZETSuevvirrineiiiiiieieriinreiiie e eeeenieens 18-7
Float and Doubleccoeeiiiiiiiiiieiiieiieeccn e 18-7
Floating and Integralccccoeiiiiiiiiiiiiiiiniiiiiieiiiie e 18-7
Pointers and Integersc.coiiiiiiieiiiiiiiiiiiiiceeeiieee e, 18-8
Unsigned ... 18-8
Arithmetic CONVersionScccceeviiriiiiiiiiiecieeeeeeeiiie e 18-8
VOId .o 18-9
Expressions and Operatorsccccevvvvirmrrrnrrvrrrrieeecerieeeneen, 18-9
Primary EXpressionsccccccccviiiiiiiiiiiiiniiiiiiiiie e, 18-10
Unary Operators et e ettt et eerattaaeeaetanbeottteennaaanneennas 18-12
Multiplicative Operatorsccceeeeererveeieeeeeveiiiiiiiiiiniennn. 18-13
Additive Operatorsccceeeeeeriiriiiiieiiiiiieecierei e 18-14
Shift Operatorseeiiiiiiiiiiiieiriiieiicieee e 18-15

Relational Operators

Equality Operatorsccceeeiinimiiiiiiiiiiiinieeee e
Bitwise AND Operatorcccvveiriiiiiiieiiiiniiiiieinieieie e,
Bitwise Exclusive OR Operatorcccoceviiuiieniiniiiniiniinniinieennses
Bitwise Inclusive OR Operatorcooeeiiiiiiiiiiiiniiiniiniinnn.,
Logical AND Operatorccoeviiiiiiiiiniiiieiiiiiniicieieenaes
Logical OR Operatorc.ceivuiiiiiiiiiiiiiiiieiiinnici e,
Conditional Operatorccoeiviiiiiiiiiiiiiniiiiniiin e,
Assignment Operatorsc.ccovevviiminneriiniiiiiniiiii
Comma OPeratorcevuveiiriiieeiiiiiiieieee i
Declarationscooceuieuiiiiiiiiiiiiii e
Storage Class Specifiersccouviieviiiiinviimiiniiiiin
Type Specifiersoovvnviiiiiiiiiii
Declaratorscceveeuieiiiiiiiiiniii e
Meaning of Declaratorsccceeueeiiiiiiiiiiiiiiiiiiia
Structure and Union Declarations
Enumeration Declarationscccccoviiiiiinininniinn
Initializationcocoviiiniiiiiiiiiiii e
Type Namesccoeviiiiiiiniiiiiiiiiiiiiiiise e
Implicit Declarationscccoevuiiiriiiiiiiiiiiiiniin e,
typedef .o
Statementsccoviiiiiiiiiii
Expression Statementccoooiiiiiiiiiiiiinii,
Compound Statement or Blockcccoovviiiiiiiiiiiiiiniiiiiininne...
Conditional Statementcc.ooiiiiiiiiiiiiiii
while Statement ...
do Statement ..o

goto Statementcooiiiiiiiiiii e,
Labeled Statementcccceviiiiiiiiiiiiiiiii e eeeiareaereasaneanes
NUll Statementvvnvnirinirieniiiiiiier ettt st eeeeeeesereenenenes

Scope Rulesc.oovveeiiiiiiiiiiiiiiii e
Lexical SCOPeccvuviiiiiiiiiiiiiiiii e
Scope of Externalsc.ccoviiiiiiiiiiiiiiiiiie e,

Compiler Control Lines
Token Replacement

File INCIUSION cuvieieiiiiiieiiiiiiieeetee v reteeeeanenessseerasonsnsonsansns 18-40

Conditional Compilationccooeeeeeiiiiiiiniiiiiiniin e, 18-40
Line Controlccocviviiiiiiiiniiiiiiiii e 18-42
Version Controlvceiimiiiiiinveniiiiieniiii e 1842
Types Revisitedccooeiiiriiiiiiiiii 18-42
Structures and UNIONSooeuiiiiiiniiiieniiniiieiiniieiiniieicrenieneanss 18-42
FUNctionsccccoeviiiieiniiiiiiiiiiiiieiee e 18-43
Arrays, Pointers, and Subscriptingcccoveiviiiiniriiniini, 18-44
Explicit Pointer CONVersionscccevveiimiiiiniiiniiiienininiennneene. 18-45
Constant EXPressionsc.ccieveveiviiiiiiieiiiioiiiirinieenieeeeneeaee. 18-45
Portability Considerationsccccoeieviiiiiiiiiiiiinnis 18-46
Syntax SUMMATYceereniiiriniiniriiiie et ense e raeees 18-47
EXPreSSiONnSvvevvieniiiiiiiiiiiniieii i e 1847
Declarationsccuiieiiiiiiiiiiiiieiiii e 18-49
StateMENtS ...c.iveviuieniieiiniisiiiie e e e 18-51
External Definitionsccccovviiviiiiiiiiiiiiiiiiiiiiiiiieen 18-52
PrePrOCESSOL .ovuiuvinerreurenitiiiiuriaeirnietitiiiiirieernaernarastosrasraeeass 18-53
SYSTEM ASSEMBLERcc..eeeeee. reeeressesiriairsstasrastesieraserrirarrnas 19-1
INtrodUCtionivvvuiiiiiiiiiii e 19-1
Warningscooeuieiii e 19-2
Comparison INstructionsccoovvmiiiiiiniiniinininnne 19-2
Overloading of Opcodesoeevuiiriiiiiiiiiiiiiiicc e, 19-2
Use of the Assemblercooooiiiiiiiiiiiii, 19-3
General Syntax Rulescoiiiviiiiiiiiiiiiiiiin e 19-3
Format of Assembly Language Linec..ccoeeviuiiinniinniinnninnn., 19-3
COMMENES ..evivnriniiiiiniiiiiiiiiiiii e e 19-4
Identifiersoveuviniiniiniieiiniiiii e 19-4
Register Identifierscc..oooviiiniiiiiinii 19-5
CONSLANES ...euuieniiiiiiiiiiiiiiiii e e e e 19-7
Numerical Constants.ccccooviiiiiiiiiiiiiiiiiiiiiiiceiie e, 19-7
Character Constants.cccoeviiiiiniiiiiiiiiiiiiiiiii e 19-7
Other Syntactic Detailscccevvuiiinriniriiierieieiieiieeeieiernenneen 19-8
Segments, Location Counters, And Labelsc.ccoeevviveinninnnnnnnn... 19-8
SeZMENLS ...ccenevriiiiiiiiiiiiiiiii e 19-8
Location Counters and Labelscceoovviiuiiiiiniiiiiiiiiiinnnnn, 19-9
TYPES oetirtiieei e e 19-9
EXPIessionsccccovieiiiiiiiiiiiiniiiiici e 19-10
Pseudo-Operationsccccivuivniiininiiiiniiii e 19-11
Data Initialization Operationsc.cccovvviiiiiiniiiiiiiiinniininienn. 19-11
Symbol Definition Operationscccoviiiiiiiiiiiiiiiiiiniininnee, 19-12

xi

Location Counter Control Operationsccccvciiniiiiniiiiiinninnnnn. 19-13

Symbolic Debugging Operationscccoovviiiiiiiiiiiiiiiinnne.. 19-13
fileand In ..o 19-13
Symbol Attribute Operations.cccocvviiiiiiiiiiiiiiiiiiiiinnen.. 19-14

Switch Table Operationccooceuiiiiniiiiiiiiiiiiiiniiicciiicnrereeanes 19-15

Span-Dependent Optimizationccc.cceeeiiiiiiiiiiiiiiiiiiiiinieennnee. 19-16
Address Mode Syntaxcccccceviiiiiiiiiiiiiiniiiiin e 19-17
Machine Instructionscccccoviiiiiiiiiiiiiiii e 19-21

Instructions For The MC68000/MC68010/MC68020/MC68030 19-21

Instructions For The MC68881ccooviiiiiiniiiiiiniiicciiniiennnees 19-34

Instructions For The MC68851cccooiiviiiiiiiiiiiiinniininccene, 19-43

INDEX it i s st v e v s e s s s s 5 pitie IN-1

xii

Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.

Figure 12-10.
Figure 12-11.
Figure 12-12.
Figure 12-13.
Figure 12-14.
Figure 12-15.
Figure 12-16.
Figure 12-17.
Figure 12-18.
Figure 12-19.
Figure 12-20.
Figure 12-21.
Figure 12-22.
Figure 12-23.
Figure 12-24.
Figure 12-25.
Figure 12-26.
Figure 12-27.
Figure 12-28.
Figure 12-29.
Figure 12-30.
Figure 12-31.
Figure 12-32.
Figure 12-33.
Figure 12-34.
Figure 12-35.
Figure 12-36.
Figure 12-37.
Figure 12-38.
Figure 12-39.

FIGURES

Object File Formatccoeireiimiimmimmiinniinininneneeenee 12-2
File Header CONENtSccvvveuiinvemiiiiinciriisiiieniiiisanniaeenes 124
File Header FIagsccevvvimnineiiiemieniiiiniiiniiiineaieenn, 12-5
File Header Declarationcceeeiiinnieriieiiiissiniiiniinnnnann. 12-5
Optional Header Contentscocevimiiniiiiiiiiinnnnneenneen. 12-7
Operating System Magic Numberscouuieiiiiiiieiinene 12-7
aouthdr Declarationc.oeveeemiiiiiiieiieienineiiiiieiieien 12-8
Section Header Contentsccoeeeveieeiiiriiiinieiiiinnieiiennn. 12-9
Section Header Flagscocovuieriminniciinniinniinin, 12-10
Section Header Declarationccceevveiiiniiienniiiinciinnnnanns 12-11
Relocation Section Contentscceeuvieieeiiiieeniinieninnenee. 12-12
Relocation Typesccceeeeuerineiiieniniuiiienininiieininiceninee.. 12-13
Relocation Entry Declarationccovviiiiiiiiiininiiiinnen. 12-13
Line Number Groupingcccccevrueecenmeeiiinieiniciiinnnin. 12-14
Line Number Entry Declarationcccooouiiiiiiiiiinnnnnnn, 12-15
COFF Symbol Tableccceeiuiiiiiieiiniiiniiniiiiiiinien, 12-16
Special Symbols in the Symbol Tablec.ccovuunnneinnini. 12-17
Special Symbols (.bb and .eb)ccoeiiiiiiiiiiiii. 12-18
Nested BIOCKSceuivvriniiiiiiiiiririiniinieeeinn e 12-19
Example of the Symbol Tableccc.ooeevniiiiiiniiiiinnnnn. 12-20
Symbols for FUNCHONSccceviiiieiinriiiiiiiniiinniiiiii, 12-20
Symbol Table Entry Formatc.ccocenieeiiiiiiiiniiininnn... 12-21
Name Fieldccooovveiiririiiniiiieresieeine et 1222
Storage Classeseveereremiuiiiieerimneiiiseeesrerisisseeeiane 12-23
Storage Class by Special Symbolsoeouieieiiiiiiinninins 12-24
Restricted Storage Classesc..ccoveiiiiiiiiiiiniiniiieniiiee, 12-25
Storage Class and Valueccoouiveennieiiiiiiiiinninn, 12-26
Section NUmberccoevveiiiinieiiiiiiiiiiicnessee 12-27
Section Number and Storage Classceevveriiniineniennnne 12-28
Fundamental TYpescccuuirmimiiiiieiniiiiniiiiieniecinniinees 12-30
Derived TYPes ...ccuovvvvuvenmiriiiiiiiiiiieeeiiiiieniinireene e, 12-31
Type Entries by Storage Classcccocceeeriiiiiiiinniinnnnnn. 12-32
Symbol Table Entry Declarationc.coovimeeeriinininnnnnn, 12-34
Auxiliary Symbol Table Entriescccoeeriieeiiiiiianiinnnnnnins 12-35
Format for Auxiliary Table Entries for Sections 12-36
Tag Names Table Entriescccccoviveiniiiieniiiiiniininn. 12-37
Table Entries for End of Structuresccceevvieinnininees 12-37
Table Entries for FUNctionsccoeeeiiiiiiiiiiniiinninnnennne. 12-38
Table Entries for Arraysccevuieiieiiiniinnncneeniiinecnicnnne 12-39

Figure 12-40.
Figure 12-41.
Figure 12-42.
Figure 1243.
Figure 12-43.
Figure 12-44.

Figure 13-1.
Figure 13-2.
Figure 13-2.
Figure 13-2.
Figure 13-2.

Figure 14-1.
Figure 14-2.
Figure 14-2.
Figure 14-2.
Figure 14-2.
Figure 14-2.

Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 154.

Figure 16-1.
Figure 16-1.

Figure 18-1.
Figure 18-2.

xiv

End of Block and Function Entriescoceerieinennnnnn. 12-39

Format for Beginning of Block and Function 12-40

Entries for Structures, Unions, and Enumerations 1240

Auxiliary Symbol Table Entry (Sheet 1 of 2) 1242

Auxiliary Symbol Table Entry (Sheet 2 of 2) 12-43

String Tablec.ccoviiiiiiiiiniii 12-44
Operator Symbolsccoeieiiiiiiiiiiiiii e 134
Syntax Diagram for Input Directives (Sheet 1 of 4) 13-26
Syntax Diagram for Input Directives (Sheet 2 of 4) 13-27
Syntax Diagram for Input Directives (Sheet 3 of 4) 13-28
Syntax Diagram for Input Directives (Sheet 4 of 4) 13-29
Summary of Default Transformation Path 14-11
make Internal Rules (Sheet 1 0f5)ooeeviviiiiiiiiiininennnnnn. 14-21
make Internal Rules (Sheet 2 0f 5)ccoevivviveiiiiniiiininnn.. 14-22
make Internal Rules (Sheet 30f 5)ccoviveiviiiiiiiiaiienenen 14-23
make Internal Rules (Sheet 4 0f 5)coevvviiiiiinininiininnnens 14-24
make Internal Rules (Sheet 5 0f5)cecevviinveniiiiinineninnnn.. 14-25
Evolution of an SCCS Filecccoviiviiiiiiiniiiiiiiiiiiiiniinnn, 15-6
Tree Structure with Branch Deltascoociiiniinnnnn 15-7
Extended Branching Conceptcccoceviviiiiiiiiiiiiiininnnnn, 15-7
Determination of New SID (sheet 1 of 2)cccevviniiiincnnnn.n. 15-16
Determination of New SID (sheet 2 of 2)ccovvvvveennninnen.n. 15-17
Example of sdb Usage (Sheet 1 0f 2)cocvvviiiiniinnninnnnee. 16-12
Example of sdb Usage (Sheet 2 of 2)cccovveininninnnnnnnen. 16-13
Escape Sequences for Nongraphic Characters 18-3
M68000 Family-Based Computer Hardware Characteristics ... 18-5

CHAPTER 12
COMMON OBJECT FILE FORMAT (COFF)

The Common Object File Format (COFF)

This section describes the Common Object File Format (COFF), the format of the
output file produced by the assembler, as, and the link editor, Id.

Some key features of COFF are:

e applications can add system-dependent information to the object file without
causing access utilities to become obsolete

e space is provided for symbolic information used by debuggers and other
applications

e programmers can modify the way the object file is constructed by providing
directives at compile time

. The object file supports user-defined sections and contains extensive information
for symbolic software testing. An object file contains:

e a file header

¢ optional header information

e a table of section headers
e data corresponding to the section headers
e relocation information

e line numbers

¢ a symbol table

e a string table

Figure 12-1 shows the overall structure.

12-1

COMMON OBJECT FILE FORMAT (COFF)

FILE HEADER

Optional Information

Section 1 Header

Section n Header

Raw Data for Section 1

Raw Data for Section n

Relocation Info for Sect. 1

Relocation Info for Sect. n

Line Numbers for Sect. 1

Line Numbers for Sect. n

SYMBOL TABLE

STRING TABLE

Figure 12-1. Object File Format

The last four sections (relocation, line numbers, symbol table, and the string table)
may be missing if the program is linked with the =8 option of the Id command or
if the line number information, symbol table, and string table are removed by the
strip command. The line number information does not appear unless the
program is compiled with the —g option of the ¢¢ command. Also, if there are no
unresolved external references after linking, the relocation information is no
longer needed and is absent. The string table is also absent if the source file does
not contain any symbols with names longer than eight characters.

An object file that contains no errors or unresolved references is considered
executable.

COMMON OBJECT FILE FORMAT (COFF)

Definitions and Conventions

Before proceeding further, you should become familiar with the following terms
and conventions.

Sections

A section is the smallest portion of an object file that is relocated and treated as
one separate and distinct entity. In the most common case, there are three
sections named .text, .data, and .bss. Additional sections accommodate
comments, multiple text or data segments, shared data segments, or user-
specified sections. However, the operating system loads only .text, .data, and
.bss into memory when the file is executed.

NOTE

It is a mistake to assume that every COFF file will
have a specific number of sections, or to assume
characteristics of sections such as their order, their
location in the object file, or the address at which
they are to be loaded. This information is
available only after the object file has been
created. Programs manipulating COFF files
should obtain it from file and section headers in
the file.

Physical and Virtual Addresses

The physical address of a section or symbol is the offset of that section or symbol
from address zero of the address space. The term physical address as used in
COFF does not correspond to general usage. The physical address of an object is
not necessarily the address at which the object is placed when the process is
executed. For example, on a system with paging, the address is located with
respect to address zero of virtual memory and the system performs another
address translation. The section header contains two address fields, a physical
address, and a virtual address; but in all versions of COFF, the physical address is
equivalent to the virtual address.

12-3

COMMON OBJECT FILE FORMAT (COFF)

Target Machine

Compilers and link editors produce executable object files that are intended to be
run on a particular computer. In the case of cross-compilers, the compilation and
link editing are done on one computer with the intent of creating an object file
that can be executed on another computer. The term target machine refers to the
computer on which the object file is destined to run. Usually, the target machine
is the same computer on which the object file is being created.

File Header

The file header contains the 20 bytes of information shown in Figure 12-2. The
last two bytes are flags that are used by Id and object file utilities.

Bytes Declaration Name Description

0-1 [unsigned short | f magic | Magic number

2-3 | unsigned short | f nscns | Number of sections

4-7 | long int f_timdat | Time and date stamp
indicating when the file was

created, expressed as the .

number of elapsed seconds

since 00:00:00 GMT, January 1,

1970

8-11 long int f_symptr | File pointer containing the
starting address of the symbol
table

12-15 | long int f_nsyms | Number of entries in the

 symbol table

16-17 | unsigned short | f_opthdr | Number of bytes in the
optional header

18-19 | unsigned short | f_flags Flags (see Figure 12-3)

Figure 12-2. File Header Contents .

124

Magic Numbers

COMMON OBJECT FILE FORMAT (COFF)

The magic number specifies the target machine on which the object file is

executable.

Flags

The last two bytes of the file header are flags that describe the type of the object
file. Currently defined flags are found in the header file filehdr.h, and are shown

in Figure 12-3.

Mnemonic Flag Meaning

F_RELFLG 00001 | Relocation information stripped from the
file

F_EXEC 00002 | File is executable (i.e., no unresolved
external references)

F_LNNO 00004 | Line numbers stripped from the file

F_LSYMS 00010 | Local symbols stripped from the file

F_MINMAL | 00020 | Not used by SYSTEM V/68

F_UPDATE | 00040 | Not used by SYSTEM V/68

F_SWABD 00100 | Not used by SYSTEM V/68

F_AR16WR | 00200 | File has the byte ordering used by the
PDP-11/70 processor

F_AR32WR | 00400 | File has the byte ordering used by the
VAX-11/780 (i.e., 32 bits per word, least
significant byte first)

F_AR32W 01000 | File has the byte ordering used by the
M68K computers (i.e., 32 bits per word,
most significant byte first)

F_PATCH 02000 | Not used by SYSTEM V/68

Figure 12-3. File Header Flags

12-5

COMMON OBJECT FILE FORMAT (COFF)

File Header Declaration

The C structure declaration for the file header is given in Figure 124. This
declaration may be found in the header file filehdr.h.

struct filehdr

¢ unsigned short f_magic; /* magic number */
unsigned short f_nscns; /* number of section */
long £_timdat; /* time and date stamp */
long f_symptr; /% file ptr to symbol table */
long f_nsyms; /* number entries in the symbol table */
unsigned short f_opthdr; /* size of optional header */
unsigned short f_flags; /* flage */
};

#define FILHDR struct filehdr
#define FILHSZ sizeof (FILHDR)

Figure 12-4. File Header Declaration

Optional Header Information

The template for optional information varies among different systems that use
COFF. Applications place all system-dependent information into this record.
This allows different operating systems access to information that only that
operating system uses without forcing all COFF files to save space for that
information. General utility programs (for example, the symbol table access
library functions, the disassembler, etc.) are made to work properly on any
common object file. This is done by seeking past this record using the size of
optional header information in the file header field f_opthdr.

Standard Operating System a.out Header

By default, files produced by the link editor for the operating system always have
a standard operating system a.out header in the optional header field. The
operating system a.out header is 28 bytes. The fields of the optional header are
described in Figure 12-5.

12-6

COMMON OBJECT FILE FORMAT (COFF)

Bytes | Declaration Name Description
. 0-1 | short magic Magic number
2-3 | short vstamp Version stamp
4-7 | long int tsize Size of text in bytes
8-11 | long int dsize Size of initialized data in bytes

12-15 | long int bsize Size of uninitialized data in bytes
16-19 | long int entry Entry point
20-23 | long int text_start | Base address of text
24-27 | long int data_start | Base address of data

Figure 12-5. Optional Header Contents

. Whereas, the magic number in the file header specifies the machine on which the
object file runs, the magic number in the optional header supplies information
telling the operating system on that machine how that file should be executed.

The magic numbers recognized by the operating system are given in Figure 12-6.

Value Meaning

0407 | The text segment is not write-protected or sharable; the data segment |
is contiguous with the text segment.

0410 | The data segment starts at the next segment following the
text segment and the text segment is write protected.

0413 | Text and data segments are aligned within a.out
so it can be directly paged.

. Figure 12-6. Operating System Magic Numbers

COMMON OBJECT FILE FORMAT (COFF)

Optional Header Declaration

The C language structure declaration currently used for the operating system
a.out file header is given in Figure 12-7. This declaration may be found in the

header file aouthdr.h. .
typedef struct aouthdr
¢ short magic; /* magic number */

short vetamp; /* version stamp */

long teize; /* text size in bytes, padded */

/* to full word boundary =/

long dsize; - /* ipitialized data size */

long bsize; /* uninitialized data size */

long entry; /* entry point */

long text_start; /* base of text for thise file */

long data_start /* base of data for this file */
} AOUTHDR; .

Figure 12-7. aouthdr Declaration

Section Headers

Every object file has a table of section headers to specify the layout of data within
the file. The section header table consists of one entry for every section in the
file. The information in the section header is described in Figure 12-8.

12-8

COMMON OBJECT FILE FORMAT (COFF)

Bytes | Declaration Name Description
0-7 | char 8_hame 8-character null padded section name
8-11 | long int s_paddr | Physical address of section

12-15 | long int 8_vaddr Virtual address of section

16-19 | long int s_size Section size in bytes

20-23 | long int s_scnptr | File pointer to raw data

24-27 | long int s_relptr File pointer to relocation entries

28-31 | long int s_Innoptr | File pointer to line number entries

32-33 | unsigned s_nreloc Number of relocation entries
short

34-35 | unsigned s_ninno Number of line number entries
short

36-39 | longint s_flags Flags (see Figure 12-9)

Figure 12-8. Section Header Contents

The size of a section is padded to a multiple of 4 bytes. File pointers are byte
offsets that can be used to locate the start of data, relocation, or line number
entries for the section. They can be readily used with the operating system
function fseek(35).

12-9

COMMON OBJECT FILE FORMAT (COFF)

Flags

The lower 2 bytes of the flag field indicate a section type. The flags are described

in Figure 12-9.

Mnemonic Flag Meaning

STYP_REG 0x00 | Regular section (allocated, relocated, loaded)

STYP_DSECT 0x01 | Dummy section (not allocated, relocated, not
loaded)

STYP_NOLOAD | 0x02 | Noload section (allocated, relocated, not
loaded)

STYP_GROUP 0x04 | Grouped section (formed from input sections)

STYP_PAD 0x08 | Padding section (not allocated, not relocated,
loaded)

STYP_COPY 0x10 | Copy section (for a decision function used in
updating fields; not allocated, not relocated,
loaded, relocation and line number entries
processed normally)

STYP_TEXT 0x20 | Section contains executable text

STYP_DATA 0x40 | Section contains initialized data

STYP_BSS 0x80 | Section contains only uninitialized data

STYP_INFO 0x200 | Comment section (not allocated, not relocated,
not loaded)

STYP_OVER 0x400 | Overlay section (relocated, not allocated, not
loaded)

STYP_LIB 0x800 | For .lib section (treated like STYP_INFO)

12-10

Figure 12-9. Section Header Flags

COMMON OBJECT FILE FORMAT (COFF)

Section Header Declaration

The C structure declaration for the section headers is described in Figure 12-10.
This declaration may be found in the header file scnhdr.h.

struct scanhdr

{
char s_name [8]; /* section name */
long s_paddr; /* physical address */
long s_vaddr; /% virtual address */
long 8_size; /* section size */
long s_scnptr; /% f£ile ptr to section raw data »/
long s_relptr; /* f£ile ptr to relocation =/
long s_lnnoptr; /* file ptr to line number */
unsigned short s_nreloc; /* number of relocation entries »/
unsigned short se_nlnno; /* number of line number entries */
long s_flags; /* flage */

};

#define SCNHDR struct scnhdr
#define SCNHSZ sizeof (SCNHDR)

Figure 12-10. Section Header Declaration

.bss Section Header

The one deviation from the normal rule in the section header table is the entry for
uninitialized data in a .bss section. A .bss section has a size and symbols that
refer to it, and symbnls that are defined in it. At the same time, a .bss section
has no relocation entries, no line number entries, and no data. Therefore, a .bss
section has an entry in the section header table but occupies no space elsewhere
in the file. In this case, the number of relocation and line number entries, as well
as all file pointers in a .bss section header, are 0. The same is true of the
STYP_NOLOAD and STYP_DSECT sections.

12-11

COMMON OBJECT FILE FORMAT (COFF)

Sections

Figure 12-1 shows that section headers are followed by the appropriate number of
bytes of text or data. The raw data for each section begins on a four-byte
boundary in the file.

Link editor SECTIONS directives (see Chapter 13) allow users to, among other
things:

¢ describe how input sections are to be combined
e direct the placement of output sections
e rename output sections

If no SECTIONS directives are given, each input section appears in an output
section of the same name. For example, if several object files, each with a .text
section, are linked together the output object file contains a single .text section
made up of the combined input .text sections.

Relocation Information

Object files have one relocation entry for each relocatable reference in the text or
data. The relocation information consists of entries with the format described in
Figure 12-11.

Bytes Declaration Name Description
0-3 long int r_vaddr (Virtual)
address
of reference
4-7 long int r_symndx | Symbol
table
index
8-9 unsigned short | r_type Relocation
type

Figure 12-11. Relocation Section Contents

The first four bytes of the entry are the virtual address of the text or data to which
this entry applies. The next field is the index, counted from 0, of the symbol table

entry that is being referenced. The type field indicates the type of relocation to be
applied.

12-12

COMMON OBJECT FILE FORMAT (COFF)

As the link editor reads each input section and performs relocation, the relocation
entries are read. They direct how references found within the input section are
treated. The currently recognized relocation types are given in Figure 12-12.

Mnemonic Flag Meaning

R_ABS 0 Reference is absolute; no relocation is
necessary. The entry will be ignored.
R_RELBYTE 017 | Direct 8-bit reference to the symbol’s
virtual address.

R_RELWORD | 020 | Direct 16-bit reference to the symbol’s
virtual address.

R_RELLONG 021 | Direct 32-bit reference to the symbol’s
virtual address.

R_PCRBYTE 022 | A "PC-relative” 8-bit reference to the
symbol’s virtual address.
R_PCRWORD | 023 | A '"PC-relative” 16-bit reference to the
symbol’s virtual address.
R_PCRLONG 024 A '"PC-relative” 32-bit reference to the
symbol’s virtual address.

Figure 12-12. Relocation Types

Relocation Entry Declaration

The structure declaration for relocation entries is given in Figure 12-13. This
declaration may be found in the header file reloc.h.

12-13

COMMON OBJECT FILE FORMAT (COFF)

struct reloc

¢ long r_vaddr; /* virtual address of reference */
long r_symndx; /* index into symbol table =/
unsigned short r_type: /% relocation type */

};

#define RELOC struct reloc

#define RELSBZ 10

Figure 12-13. Relocation Entry Declaration

Line Numbers

When invoked with the —g option, the c¢, and {77 commands cause an entry in
the object file for every source line where a breakpoint can be inserted. You can
then reference line numbers when using a software debugger like sdb. All line
numbers in a section are grouped by function as shown in Figure 12-14.

symbol index 0
physical address | line number
physical address | line number

E symbol index 0
physical address | line number

physical address | line number

Figure 12-14. Line Number Grouping

The first entry in a function grouping has line number 0 and has, in place of the
physical address, an index into the symbol table for the entry containing the
function name. Subsequent entries have actual line numbers and addresses of the

12-14

COMMON OBJECT FILE FORMAT (COFF)

text corresponding to the line numbers. The line number entries are relative to
the beginning of the function, and appear in increasing order of address.

Line Number Declaration

The structure declaration currently used for line number entries is given in Figure
12-15.

struct lineno

{
union
{
long 1_symndx; /* symtbl index of func name */
long 1_paddr; /#* paddr of line number =*/
} 1_addr;
unsigned sbhort 1l _1lnno; /* line number =/
};
#define LINENO struct lineno
#define LINESZ 8

Figure 12-15. Line Number Entry Declaration

Symbol Table

Because of symbolic debugging requirements, the order of symbols in the symbol
table is very important. Symbols appear in the sequence shown in Figure 12-16.

COMMON OBJECT FILE FORMAT (COFF)

filename 1
function 1
local symbols
for function 1
function 2

local symbols
for function 2

statics

filename 2
function 1

local symbols
for function 1

statics

defined global @&
symbols

undefined global
symbols

Figure 12-16. COFF Symbol Table

The word statics in Figure 12-16 means symbols defined with the C language
storage class static outside any function. The symbol table consists of at least one
fixed-length entry per symbol with some symbols followed by auxiliary entries of
the same size. The entry for each symbol is a structure that holds the value, the
type, and other information.

12-16

COMMON OBJECT FILE FORMAT (COFF)

Special Symbols

The symbol table contains some special symbols that are generated by as. It
contains other tools as well. These symbols are given in Figure 12-17.

Symbol Meaning
file filename

fext address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block
.eb address of end of inner block
.bf address of start of function

ef address of end of function

target pointer to the structure or union returned by a function

xfake dummy tag name for structure, union, or enumeration
.e0s end of members of structure, union, or enumeration
etext next available address after the end of the

output section .text

edata next available address after the end of the
output section .data

end next available address after the end of the
output section .bss

Figure 12-17. Special Symbols in the Symbol Table

Six of these special symbols occur in pairs. The .bb and .eb symbols indicate the
boundaries of inner blocks; a .bf and .ef pair brackets each function. An .xfake
and .e08 pair names and defines the limit of structures, unions, and enumerations
that were not named. The .e0s symbol also appears after named structures,
unions, and enumerations.

COMMON OBJECT FILE FORMAT (COFF)

When a structure, union, or enumeration has no tag name, the compiler invents a
name to be used in the symbol table. The name chosen for the symbol table is
xfake, where x is an integer. If there are three unnamed structures, unions, or
enumerations in the source, their tag names are .0fake, .1fake, and .2fake. Each
of the special symbols has different information stored in the symbol table entry
as well as the auxiliary entries.

Inner Blocks

The C language defines a block as a compound statement that begins and ends
with braces: { and }. An inner block is a block that occurs within a function
(which is also a block).

For each inner block that has local symbols defined, a special symbol, .bb, is put
in the symbol table immediately before the first local symbol of that block. Also a
special symbol, .eb, is put in the symbol table immediately after the last local
symbol of that block. The sequence is shown in Figure 12-18.

.bb

local symbols
for that block

.eb

Figure 12-18. Special Symbols (.bb and .eb)

Because inner blocks can be nested by several levels, the .bb-.eb pairs and
associated symbols may also be nested. See Figure 12-19.

12-18

COMMON OBJECT FILE FORMAT (COFF)

{ /* block 1 »/
int i;
char c;
{ /* block 2 */
long a;
{ /* block 3 %/
int x;
} /* block 3 =/
> /* block 2 =/
{ /* block 4 »/
long 1i;
> /* block 4 */
} /* block 1 */

Figure 12-19. Nested blocks

The symbol table would look like Figure 12-20.

COMMON OBJECT FILE FORMAT (COFF)

.bb for block 1

C

.bb for block 2
a

.bb for block 3
X

.eb for block 3

.eb for block 2

.bb for block 4
i

.eb for block 4

.eb for block 1

Figure 12-20. Example of the Symbol Table

Symbols and Functions .

For each function, a special symbol .bf is put between the function name and the
first local symbol of the function in the symbol table. Also, a special symbol .ef is
put immediately after the last local symbol of the function in the symbol table.
The sequence is shown in Figure 12-21.

function name
bf

local symbol
ef

Figure 12-21. Symbols for Functions

12-20

COMMON OBJECT FILE FORMAT (COFF)

Symbol Table Entries

All symbols, regardless of storage class and type, have the same format for their
entries in the symbol table. The symbol table entries each contain 18 bytes of
information. The meaning of each of the fields in the symbol table entry is
described in Figure 12-22. Note that indices for symbol table entries begin at 0
and count upward. Each auxiliary entry also counts as one symbol.

Bytes Declaration Name Description
0-7 | (see text below) | _n These 8 bytes contain either a
symbol name or an index to a
symbol
8-11 | long int n_value Symbol value; storage class
dependent
12-13 short n_schum Section number of symbol
14-15 | unsigned short | n_type Basic and derived type
specification
16 | char n_sclass Storage class of symbol
17 | char n_numaux | Number of auxiliary entries

Figure 12-22. Symbol Table Entry Format

Symbol Names

The first eight bytes in the symbol table entry are a union of a character array and
two longs. If the symbol name is eight characters or less, the (null-padded)
symbol name is stored there. If the symbol name is longer than eight characters,
then the entire symbol name is stored in the string table. In this case, the eight
bytes contain two long integers, the first is zero, and the second is the offset
(relative to the beginning of the string table) of the name in the string table. Since
there can be no symbols with a null name, the zeroes on the first four bytes serve
to distinguish a symbol table entry with an offset from one with a name in the
first eight bytes as shown in Figure 12-23.

12-21

COMMON OBJECT FILE FORMAT (COFF)

Bytes | Declaration Name Description
0-7 char n_name | 8-character null-padded symbol
name
0-3 long n_zeroes | Zero in this field indicates the
name is in the string table
4-7 long n_offset | Offset of the name in the

string table

Special symbols generated
under "Special Symbols."

Storage Classes

The storage class field has one of the values described in Figure 12-24. These .

#define’s may be found in t

12-22

Figure 12-23. Name Field

by the C Compilation System are discussed

he header file storclass.h.

above

COMMON OBJECT FILE FORMAT (COFF)

Mnemonic Value Storage Class
C_EFCN -1 | physical end of a function
C_NULL 0 -

C_AUTO 1 automatic variable

C_EXT 2 external symbol

C_STAT 3 static

C_REG 4 register variable

C_EXTDEF 5 external definition

C_LABEL 6 label

C_ULABEL 7 undefined label

C_MOS 8 member of structure

C_ARG 9 function argument

C_STRTAG 10 structure tag

C_MOU 11 member of union

C_UNTAG 12 union tag

C_TPDEF 13 type definition

C_USTATIC 14 uninitialized static

C_ENTAG 15 enumeration tag

C_MOE 16 member of enumeration

C_REGPARM 17 register parameter

C_FIELD 18 bit field

C_BLOCK 100 beginning and end of block

C_FCN 101 beginning and end of function

C_EOS 102 end of structure

C_FILE 103 filename

C_LINE 104 used only by utility programs

C_ALIAS 105 duplicated tag

C_HIDDEN 106 like static, used to avoid
conflicts

Figure 12-24. Storage Classes

COMMON OBJECT FILE FORMAT (COFF)

All these storage classes except for C_ALIAS and C_HIDDEN are generated by
the cc or as commands. The compress utility, cprs, generates the C_ALIAS
mnemonic. This utility (described in the User’s Reference Manual) removes
duplicated structure, union, and enumeration definitions and puts alias entries in
their places. The storage class C_HIDDEN is not used by any operating system
tools.

Some of these storage classes are used only internally by the C Compilation
Systems. These storage classes are C_EFCN, C_EXTDEF, C_ULABEL,
C_USTATIC, and C_LINE.

Storage Classes for Special Symbols

Some special symbols are restricted to certain storage classes. They are given in
Figure 12-25.

Special Symbol Storage Class
file C_FILE

.bb C_BLOCK

.eb C_BLOCK

bf C_FCN

of C_FCN

target C_AUTO

.xfake C_STRTAG, C_UNTAG, C_ENTAG
.e08 C_EOS

text C_STAT

.data C_STAT

.bss C_STAT

Figure 12-25. Storage Class by Special Symbols

12-24

COMMON OBJECT FILE FORMAT (COFF)

Also some storage classes are used only for certain special symbols. They are
summarized in Figure 12-26.

Storage Class | Special Symbol
C_BLOCK .bb, .eb

C_FCN .bf, .ef

C_EOS .e0s

C_FILE file

Figure 12-26. Restricted Storage Classes

Symbol Value Field

The meaning of the value of a symbol depends on its storage class. This
relationship is summarized in Figure 12-27.

12-25

COMMON OBJECT FILE FORMAT (COFF)

Storage Class | Meaning of Value
C_AUTO stack offset in bytes
C_EXT relocatable address
C_STAT relocatable address
C_REG register number
C_LABEL relocatable address
C_MOS offset in bytes
C_ARG stack offset in bytes
C_STRTAG 0

C_MOU 0

C_UNTAG 0

C_TPDEF 0

C_ENTAG 0

C_MOE enumeration value
C_REGPARM | register number
C_FIELD bit displacement
C_BLOCK relocatable address
C_FCN relocatable address
C_EOS size

C_FILE (see text below)
C_ALIAS tag index
C_HIDDEN relocatable address

Figure 12-27. Storage Class and Value

COMMON OBJECT FILE FORMAT (COFF)

If a symbol has storage class C_FILE, the value of that symbol equals the symbol
table entry index of the next .file symbol. That is, the .file entries form a one-way
linked list in the symbol table. If there are no more .file entries in the symbol
table, the value of the symbol is the index of the first global symbol.

Relocatable symbols have a value equal to the virtual address of that symbol.
When the section is relocated by the link editor, the value of these symbols
changes.

Section Number Field
Section numbers are listed in Figure 12-28.
Mnemonic | Section Number Meaning
N_DEBUG -2 Special symbolic debugging
symbol
N_ABS -1 Absolute symbol
N_UNDEF 0 Undefined external symbol
N_SCNUM 1-077777 Section number where symbol
is defined

Figure 12-28. Section Number

A special section number (-2) marks symbolic debugging symbols, including
structure/union/enumeration tag names, typedefs, and the name of the file. A
section number of -1 indicates that the symbol has a value but is not relocatable.
Examples of absolute-valued symbols include automatic and register variables,
function arguments, and .08 symbols.

With one exception, a section number of 0 indicates a relocatable external symbol
that is not defined in the current file. The one exception is a multiply defined
external symbol (i.e., FORTRAN common or an uninitialized variable defined
external to a function in C). In the symbol table of each file where the symbol is
defined, the section number of the symbol is 0 and the value of the symbol is a
positive number giving the size of the symbol. When the files are combined to
form an executable object file, the link editor combines all the input symbols of
the same name into one symbol with the section number of the .bss section. The
maximum size of all the input symbols with the same name is used to allocate

12-27

COMMON OBJECT FILE FORMAT (COFF)

space for the symbol and the value becomes the address of the symbol. This is
the only case where a symbol has a section number of 0 and a non-zero value.

Section Numbers and Storage Classes

Symbols having certain storage classes are also restricted to certain section

numbers. They are summarized in Figure 12-29.

Storage Class Section Number
C_AUTO N_ABS

C_EXT N_ABS, N_UNDEF, N_SCNUM
C_STAT N_SCNUM

C_REG N_ABS

C_LABEL N_UNDEF, N_SCNUM
C_MOS N_ABS

C_ARG N_ABS

C_STRTAG N_DEBUG

C_MOU N_ABS

C_UNTAG N_DEBUG

C_TPDEF N_DEBUG

C_ENTAG N_DEBUG

C_MOE N_ABS

C_REGPARM | N_ABS

C_FIELD N_ABS

C_BLOCK N_SCNUM

C_FCN N_SCNUM

C_EOS N_ABS

C_FILE N_DEBUG

C_ALIAS N_DEBUG

Figure 12-29. Section Number and Storage Class

12-28

COMMON OBJECT FILE FORMAT (COFF)

Type Entry

The type field in the symbol table entry contains information about the basic and
derived type for the symbol. This information is generated by the C Compilation
System only if the —g option is used. Each symbol has exactly one basic or
fundamental type but can have more,than one derived type. The format of the
16-bit type entry is:

dé6 | d5 | d4 | d3 | d2 | d1 | typ

Bits 0 through 3, called typ, indicate one of the fundamental types given in Figure
12-30.

12-29

COMMON OBJECT FILE FORMAT (COFF)

Bits 4 through 15 are arranged as six 2-bit fields marked d1 through d6. These d
fields represent levels of the derived types given in Figure 12-31.

12-30

Mnemonic Value Type
T_NULL 0 type not assigned
T_VOID 1 void

T_CHAR 2 character
T_SHORT 3 short integer
T_INT 4 integer

T_LONG 5 long integer
T_FLOAT 6 floating point
T_DOUBLE 7 double word
T_STRUCT 8 structure
T_UNION 9 union

T_ENUM 10 enumeration
T_MOE 11 member of enumeration
T_UCHAR 12 unsigned character
T_USHORT 13 unsigned short
T_UINT 14 unsigned integer
T_ULONG 15 unsigned long

Figure 12-30. Fundamental Types

COMMON OBJECT FILE FORMAT (COFF)

Mnemonic | Value Type
DT_NON 0 no derived type
DT_PTR 1 pointer
DT_FCN 2 function
DT_ARY 3 array

Figure 12-31. Derived Types

The following examples demonstrate the interpretation of the symbol table entry
representing type.

char *func();

Here func is the name of a function that returns a pointer to a character. The
fundamental type of func is 2 (character), the d1 field is 2 (function), and the d2
field is 1 (pointer). Therefore, the type word in the symbol table for func contains
the hexadecimal number 0x62, which is interpreted to mean a function that
returns a pointer to a character.

short *tabptr[10] [25] [3];

Here tabptr is a three-dimensional array of pointers to short integers. The
fundamental type of tabptr is 3 (short integer); the d1, d2, and d3 fields each
contains a 3 (array), and the d4 field is 1 (pointer). Therefore, the type entry in
the symbol table contains the hexadecimal number Ox7f3 indicating a three-
dimensional array of pointers to short integers.

12-31

COMMON OBJECT FILE FORMAT (COFEF)

Type Entries and Storage Classes

Figure 12-32 shows the type entries that are legal for each storage class.

d Entry
Storage typ Entry
Class Function? | Array? | Pointer? Basic Type

C_AUTO no yes yes Any except T_MOE

C_EXT yes yes yes Any except T_MOE

C_STAT yes yes yes Any except T_MOE

C_REG no no yes Any except T_MOE

C_LABEL no no no T_NULL

C_MOS no yes yes Any except T_MOE

C_ARG yes no ves Any except T_MOE

C_STRTAG no no no T_STRUCT

C_MOU no yes yes Any except T_MOE

C_UNTAG no no no T_UNION

C_TPDEF no yes yes Any except T_MOE

C_ENTAG no no no T_ENUM

C_MOE no no no T_MOE

C_REGPARM | no no yes Any except T_MOE

C_FIELD no no no T_ENUM,
T_UCHAR,
T_USHORT,
T_UNIT,
T_ULONG

C_BLOCK no no no T_NULL

C_FCN no no no T_NULL

C_EOS no no no T_NULL

C_FILE no no no T_NULL

C_ALIAS no no no T_STRUCT,
T_UNION,
T_ENUM

12-32

Figure 12-32. Type Entries by Storage Class

COMMON OBJECT FILE FORMAT (COFF)

Conditions for the d entries apply to d1 through d6, except that it is impossible to
have two consecutive derived types of function.

Although function arguments can be declared as arrays, they are changed to
pointers by default. Therefore, no function argument can have array as its first
derived type.

Structure for Symbol Table Entries

The C language structure declaration for the symbol table entry is given in Figure
12-33. This declaration may be found in the header file syms.h.

12-33

COMMON OBJECT FILE FORMAT (COFF)

struct syment

{
union
{
char _n_name [SYMNMLEN] ; /* symbol namex/
struct
{
long —_D_Zeroes; /* symbol name %/
long ~n_offaet; /* location in string table */
} _n_n;
char »_n_nptr[2]; /* allows overlaying »/
} _n;
unsigned long n_value; /* value of symbol »/
short n_scnum; /* section number */
unsigned short n_type; /* type and derived »/
char n_sclaes; /* storage class */
char n_numaux; /* number of aux entries #*/
" o
#define n_name _n._n_name
#define n_zeroes _A..Dh _n._n_zeroes
#define =n_offset n..n_n._n_offset
#define =n_nptr —n..n_nptrl1]

#define SYMNMLEN 8
#define BYMEBZ i8

~

* gize of a symbol table entry */

Figure 12-33. Symbol Table Entry Declaration

Auxiliary Table Entries

An auxiliary table entry of a symbol contains the same number of bytes as the
symbol table entry. However, unlike symbol table entries, the format of an

auxiliary table entry of a symbol depends on its type and storage class. They are
summarized in Figure 12-34. .

12-34

COMMON OBJECT FILE FORMAT (COFF)

Name Storage Type Entry Auxiliary
Class d1 typ Entry Format
file C_FILE DT_NON | T_NULL filename
.text,.data, C_STAT DT_NON | T_NULL section
.bss
tagname C_STRTAG | DT_NON | T_STRUCT, | tag name
C_UNTAG T_UNION,
C_ENTAG T_ENUM
.e08 C_EOS DT_NON | T_NULL end of
structure
fename C_EXT DT_FCN | (Note 1) function
C_STAT
arrname (Note 2) DT_ARY {Note 1) array
.bb,.eb C_BLOCK | DT_NON | T_NULL beginning and
end of block
.bf,.ef C_FCN DT_NON | T_NULL beginning and
end of function
name related to | (Note 2) DT_PTR, | T_STRUCT, | name related to
structure, DT_NON | T_UNION, | structure,
union, T_ENUM union,
enumeration enumeration

Notes to Figure 12-34:
1. Any except T_MOE.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

Figure 12-34. Auxiliary Symbol Table Entries

In Figure 12-34, tagname means any symbol name including the special symbol
.xfake, and fcname and arrname represent any symbol name for a function or an
array respectively. Any symbol that satisfies more than one condition in Figure
12-34 should have a union format in its auxiliary entry.

12-35

COMMON OBJECT FILE FORMAT (COFF)

NOTE

It is a mistake to assume how many auxiliary
entries are associated with any given symbol table
entry. This information is available, and should be
obtained from the n_numaux field in the symbol
table.

Filenames

Each of the auxiliary table entries for a filename contains a 14-character filename
in bytes 0 through 13. The remaining bytes are 0.

Sections

The auxiliary table entries for sections have the format as shown in Figure 12-35.

Bytes Declaration Name Description

0-3 long int x_scnlen | section length

4-5 unsigned short | x_nreloc | number of relocation entries
6-7 unsigned short | x_nlinno | number of line numbers
8-17 - - unused (filled with zeroes)

Figure 12-35. Format for Auxiliary Table Entries for Sections

12-36

Tag Names

COMMON OBJECT FILE FORMAT (COFF)

The auxiliary table entries for tag names have the format shown in Figure 12-36.

Bytes Declaration Name Description

0-5 - - unused (filled with zeroes)

67 unsigned short | x_size size of structure, union, and
enumeration

8-11 - - unused (filled with zeroes)

12-15 | long int x_endndx | index of next entry beyond this
structure, union, or
enumeration

16-17 | - - unused (filled with zeroes)

Figure 12-36. Tag Names Table Entries

End of Structures

The auxiliary table entries for the end of structures have the format shown in
Figure 12-37.

Bytes Declaration Name Description

0-3 long int x_tagndx | tag index

4-5 - - unused (filled
with zeroes)

6-7 unsigned short | x_size size of structure,
union, or
enumeration

8-17 - - unused (filled
with zeroes)

Figure 12-37. Table Entries for End of Structures

12-37

COMMON OBJECT FILE FORMAT (COFF)

Functions

The auxiliary table entries for functions have the format shown in Figure 12-38.

Bytes Declaration Name Description

0-3 long int x_tagndx | tag index

4-7 long int x_fsize size of function (in bytes)

8-11 long int x_Innoptr | file pointer to line number

12-15 long int x_endndx | index of next entry beyond this point

16-17 | unsigned short | x_tvndx index of the function’s address
in the transfer vector table (not
used by the operating system)

Figure 12-38. Table Entries for Functions

Arrays

The auxiliary table entries for arrays have the format shown in Figure 12-39. .
Defining arrays having more than four dimensions produces a warning message.

12-38

COMMON OBJECT FILE FORMAT (COFF)

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 unsigned short | x_Inno line number of declaration
6-7 unsigned short | x_size size of array

8-9 unsigned short | x_dimen[0] | first dimension

10-11 | unsigned short | x_dimen[1] | second dimension

12-13 unsigned short | x_dimen[2] | third dimension

14-15 unsigned short | x_dimen[3] | fourth dimension

16-17 | - - unused (filled with zeroes)

Figure 12-39. Table Entries for Arrays

End of Blocks and Functions

The auxiliary table entries for the end of blocks and functions have the format
shown in Figure 12-40.

Bytes Declaration Name Description
0-3 = - unused (filled with zeroes)
4-5 unsigned short | x_Inno | C-source line number
6-17 - = unused (filled with zeroes)

Figure 12-40. End of Block and Function Entries

12-39

COMMON OBJECT FILE FORMAT (COFF)

Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and functions have the
format shown in Figure 12-41.

Bytes Declaration Name Description

0-3 - - unused (filled with zeroes)

4-5 unsigned short | x_inno C-source line number

6-11 - - unused (filled with zeroes)

12-15 [long int x_endndx | index of next entry past this block
16-17 | - - unused (filled with zeroes)

Figure 12-41. Format for Beginning of Block and Function

Names Related to Structures, Unions, and Enumerations

The auxiliary table entries for structure, union, and enumeration symbols have the
format shown in Figure 12-42.

Bytes Declaration Name Description

0-3 long int x_tagndx | tag index

4-5 - - unused (filled with zeroes)

6-7 unsigned short | x_size size of the structure, union, or enumeration
8-17 - - unused (filled with zeroes)

Figure 12-42. Entries for Structures, Unions, and Enumerations

12-40

COMMON OBJECT FILE FORMAT (COFF)

Aggregates defined by typedef may or may not have auxiliary table entries. For
example,

typedef struct people STUDENT;

struct people
{

char name [20];
long id;
};

typedef struct people EMPLOYEE;

The symbol EMPLOYEE has an auxiliary table entry in the symbol table but
symbol STUDENT will not because it is a forward reference to a structure.

12-41

COMMON OBJECT FILE FORMAT (COFF)

Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol table entry is given
in Figure 12-43. This declaration may be found in the header file syms.h. .

union auxent

{
struct
{
long x_tagndx;
union
{
struct
{
unsigned short x_lnno;
unsigned short x_size;
} x_lnez;
long x_feize;
} x_misc;
union
{

struct .

{
long X_lnnoptr;
long x_endndx;
> x_fen;
struct
{

unsigned short x_dimen [DIMNUM] ;
} x_ary;
} x_fcnary;
unsigned short Xx_tvndx;
} x_sym;

Figure 12-43. Auxiliary Symbol Table Entry (Sheet 1 of 2) .

12-42

COMMON OBJECT FILE FORMAT (COFF)

struct
{
char x_fname [FILNMLEN] ;
} x_file;
struct
{
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;
} x_sca;
struct
{
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran([2];

} x_tv;
>
#define FILNMLEN 14
#define DIMNUM 4
#define AUXENT union auxent
#define AUXESZ 18

Figure 12-43. Auxiliary Symbol Table Entry (Sheet 2 of 2)

String Table

Symbol table names longer than eight characters are stored contiguously in the
string table with each symbol name delimited by a null byte. The first four bytes
of the string table are the size of the string table in bytes; offsets into the string
table, therefore, are greater than or equal to 4. For example, given a file
containing two symbols (with names longer then eight characters, long_name_1
and another_one) the string table has the format as shown in Figure 12-44.

1243

COMMON OBJECT FILE FORMAT (COFF)

Ill lol lnl lgl

el I\OI

Figure 12-44. String Table

The index of long_name_1 in the string table is 4 and the index of another_one is
16.

Access Routines

Operating system releases contain a set of access routines that are used for
reading the various parts of a common object file. Although the calling program
must know the detailed structure of the parts of the object file it processes, the
routines effectively insulate the calling program from the knowledge of the overall
structure of the object file.

The access routines can be divided into four categories:
1. functions that open or close an object file
2. functions that read header or symbol table information

3. functions that position an object file at the start of a particular section of the
object file

4. afunction that returns the symbol table index for a particular symbol

These routines can be found in the library libld.a and are listed in Section 3 of the
Programmer’s Reference Manual. A summary of what is available can be found in
the Programmer’s Reference Manual under ldfcn(4).

12-44

CHAPTER 13
THE LINK EDITOR

The Link Editor

In Chapter 2 there was a discussion of link editor command line options (some of
which may also be provided on the ¢¢(1) command line). This chapter contains
information on the Link Editor Command Language.

The command language enables you to:
e specify the memory configuration of the target machine
e combine the sections of an object file in arrangements other than the default
¢ bind sections to specific addresses or within specific portions of memory
e define or redefine global symbols

Under most normal circumstances there is no compelling need to have such tight
control over object files and their location in memory. When you do need to be
precise in controlling the link editor output, you do it via the command language.

Link editor command language directives are passed in a file named on the 1d(1)
command line. Any file named on the command line that is not identifiable as an
object module or an archive library is assumed to contain directives. The
following paragraphs define terms and describe conditions with which you need
to be familiar before you begin to use the command language.

Memory Configuration

The virtual memory of the target machine is, for purposes of allocation,
partitioned into configured and unconfigured memory. The default condition is to
treat all memory as configured. It is common with microprocessor applications,
however, to have different types of memory at different addresses. For example,
an application might have 3K of PROM (Programmable Read-Only Memory)
beginning at address 0, and 8K of ROM (Read-Only Memory) starting at 20K.
Addresses in the range 3K to 20K-1 are then not configured. Unconfigured
memory is treated as reserved or unusable by Id(1). Nothing can ever be linked
into unconfigured memory. Thus, specifying a certain memory range to be
unconfigured is one way of marking the addresses (in that range) illegal or
nonexistent with respect to the linking process. Memory configurations other
than the default must be explicitly specified by you (the user).

13-1

THE LINK EDITOR

Unless otherwise specified, all discussion in this document of memory, addresses,
etc. are with respect to the configured sections of the address space.

Sections

A section of an object file is the smallest unit of relocation and must be a
contiguous block of memory. A section is identified by a starting address and a
size. Information describing all the sections in a file is stored in section headers
at the start of the file. Sections from input files are combined to form output
sections that contain executable text, data, or a mixture of both. Although there
may be holes or gaps between input sections and between output sections,
storage is allocated contiguously within each output section and may not overlap
a hole in memory.

Addresses

The physical address of a section or symbol is the relative offset from address zero
of the address space. The physical address of an object is not necessarily the
location at which it is placed when the process is executed. For example, on a
system with paging, the address is with respect to address zero of the virtual
space, and the system performs another address translation.

Binding

It is often necessary to have a section begin at a specific, predefined address in
the address space. The process of specifying this starting address is called
binding, and the section in question is said to be bound to or bound at the
required address. While binding is most commonly relevant to output sections, it

is also possible to bind special absolute global symbols with an assignment
statement in the Id(1) command language.

Object File

Object files are produced both by the assembler (typically as a result of calling the
compiler) and by Id(1). 1d(1) accepts relocatable object files as input and produces
an output object file that may or may not be relocatable. Under certain special
circumstances, the input object files given to Id(1) can also be absolute files.

13-2

THE LINK EDITOR

Files produced from the compilation system may contain sections called .text and
.data. The .text section contains the instruction text (executable instructions),
.data contains initialized data variables. For example, if a C program contains the
global (i.e., not inside a function) declaration:

int 1 = 100;
and the assignment:
i =0;

then compiled code from the C assignment is stored in .text, and the variable i is
located in .data.

Link Editor Command Language

Expressions

Expressions may contain global symbols, constants, and most of the basic C
language operators. (See Figure 13-2, "Syntax Diagram for Input Directives.")
Constants are, as in C, recognized as decimal numbers unless preceded with 0 for
octal or Ox for hexadecimal. All numbers are treated as long integers. Symbol
names may contain uppercase or lowercase letters, digits, and the underscore, _.
Symbols within an expression have the value of the address of the symbol only.
Id(1) does not do symbol table lookup to find the contents of a symbol, the
dimensionality of an array, structure elements declared in a C program, etc.

Id(1) uses a lex-generated input scanner to identify symbols, numbers, operators,
etc. The current scanner design makes the following names reserved and
unavailable as symbol names or section names:

ADDR BLOCK GROUP NEXT RANGE SPARE
ALIGN COMMON INFO NOLOAD REGIONS PHY
ASSIGN COPY LENGTH ORIGIN SECTIONS TV
BIND DSECT MEMORY OVERLAY SIZEOF

addr block length origin sizeof

align group next phy spare

assign | o range

bind len org s

THE LINK EDITOR

The operators that are supported, in order of precedence from high to low, are
shown in Figure 13-1.

symbol

{ ! = - (UNARY Minus)
* [%

+ — (BINARY Minus)
>> <<

Figure 13-1. Operator Symbols

The above operators have the same meaning as in the C language. Operators on
the same line have the same precedence.

Assignment Statements

External symbols may be defined and assigned addresses via the assignment
statement. The syntax of the assignment statement is:

symbol = expression;
or:
symbol op= expression;

where op is one of the operators +, —, *, or / . Assignment statements must be
terminated by a semicolon.

All assignment statements (except the one case described in the following
paragraph) are evaluated after allocation has been performed. This occurs after all
input-file-defined symbols are appropriately relocated but before the relocation of
the text and data itself. Therefore, if an assignment statement expression contains
any symbol name, the address used for that symbol in the evaluation of the
expression reflects the symbol address in the output object file. References within
text and data (to symbols given a value through an assignment statement) access
this latest assigned value. Assignment statements are processed in the same
order in which they are input to 1d(1).

13-4

THE LINK EDITOR

Assignment statements are normally placed outside the scope of section-definition
directives (see "Section Definition Directives” under "Link Editor Command
Language”). However, there exists a special symbol, called dot, ., that can occur
only within a section-definition directive. This symbol refers to the current
address of Id(1)’s location counter. Thus, assignment expressions involving . are
evaluated during the allocation phase of Id(1). Assigning a value to the . symbol
within a section-definition directive can increment (but not decrement) 1d(1)'s
location counter and can create holes within the section, as described in "Section
Definition Directives.” Assigning the value of the . symbol to a conventional
symbol permits the final allocated address (of a particular point within the link
edit run) to be saved.

align is provided as a shorthand notation to allow alignment of a symbol to an n-
byte boundary within an output section, where n is a power of 2. For example,
the expression:

align(n)
is equivalent to:
(. +n-1) & (n - 1)

SIZEOF and ADDR are pseudo-functions that, given the name of a section, return
the size or address of the section respectively. They may be used in symbol
definitions outside section directives.

Link editor expressions may have either an absolute or a relocatable value. When
Id(1) creates a symbol through an assignment statement, the symbol’s value takes
on that type of expression. That type depends on the following rules:

e An expression with a single relocatable symbol (and zero or more constants
or absolute symbols) is relocatable.

e The difference of two relocatable symbols from the same section is absolute.

o All other expressions are combinations of the above.

Specifying a Memory Configuration
MEMORY directives are used to specify:
1. The total size of the virtual space of the target machine.

2. The configured and unconfigured areas of the virtual space.

If no directives are supplied, ld(1) assumes that all memory is configured. The
size of the default memory is dependent on the target machine.

13-5

THE LINK EDITOR

Using MEMORY directives, an arbitrary name of up to eight characters is assigned
to a virtual address range. Output sections can then be forced to be bound to
virtual addresses within specifically named memory areas. Memory names may
contain uppercase or lowercase letters, digits, and the special characters $, ., or _.
Names of memory ranges are used by Id(1) only and are not carried in the output
file symbol table or headers.

When MEMORY directives are used, all virtual memory not described in a
MEMORY directive is considered to be unconfigured. Unconfigured memory is
not used in Id(1)’s allocation process; hence nothing except DSECT sections can be
link edited or bound to an address within unconfigured memory.

As an option on the MEMORY directive, attributes may be associated with a
named memory area. In future releases this may be used to provide error
checking. Currently, error checking of this type is not implemented.

The attributes currently accepted are
1. R:readable memory
2. W : writable memory
3. X: executable, i.e., instructions may reside in this memory
4. [I:initializable, i.e., stack areas are typically not initialized
Other attributes may be added in the future if necessary. If no attributes are

specified on a MEMORY directive or if no MEMORY directives are supplied,
memory areas assume the attributes of R, W, X, and L.

The syntax of the MEMORY directive is:

MEMORY

{
namel (attr) :origin = n1l, length = n2
name2 (attr) :origin = n3, length = n4
etc.

}

The keyword origin (or org or 0) must precede the origin of a memory range, and
length (or len or I) must precede the length as shown in the above prototype.
The origin operand refers to the virtual address of the memory range. origin and
length are entered as long integer constants in either decimal, octal, or
hexadecimal (standard C syntax). origin and length specifications, as well as
individual MEMORY directives, may be separated by white space or a comma.

13-6

THE LINK EDITOR

By specifying MEMORY directives, ld(1) can be told that memory is configured in
some way other than the default. For example, if it is necessary to prevent
anything from being linked to the first 0x10000 words of memory, a MEMORY
directive can accomplish this:

MEMORY
{

valid : org = 0x10000, len = OxFEO0O00
}

Section Definition Directives

The purpose of the SECTIONS directive is to describe how input sections are to
be combined, to direct where to place output sections (both in relation to each
other and to the entire virtual memory space), and to permit the renaming of
output sections.

In the default case where no SECTIONS directives are given, all input sections of
the same name appear in an output section of that name. If two object files are
linked, one containing sections sl and s2 and the other containing sections s3 and
s4, the output object file contains the four sections s1, s2, s3, and s4. The order
of these sections would depend on the order in which the link editor sees the
input files.

The basic syntax of the SECTIONS directive is:

SECTIONS
{
secnamel
{
file_specifications,
assignment_statements
}
secname?2
{
file_specifications,
assignment_statements
}
etc.
}

The various types of section definition directives are discussed in the remainder of
this section.

13-7

THE LINK EDITOR

File Specifications

Within a section definition, the files and sections of files to be included in the
output section are listed in the order in which they are to appear in the output
section. Sections from an input file are specified by:

filename (secname)
or:
filename (secnaml secnam2 . . .)

Sections of an input file are separated either by white space or commas as are the
file specifications themselves.

filename [COMMON]

may be used in the same way to refer to all the uninitialized, unallocated global
symbols in a file.

If a file name appears with no sections listed, then all sections from the file (but

not the uninitialized, unallocated globals) are linked into the current output
section. For example:

SECTIONS
{
outseci:
{
filei.o (secl)
file2.0
file3.0 (secl, sec2)
¥
}

According to this directive, the order in which the input sections appear in the
output section outsec1 would be

1. section sec1 from file file1.0

2. all sections from file2.0, in the order they appear in the file

3. section sec1 from file file3.0, and then section sec2 from file file3.0
It there are any additional input files that contain input sections also named
outseci, these sections are linked following the last section named in the
definition of outsec1. If there are any other input sections in file1.0 or file3.o,

they will be placed in output sections with the same names as the input sections
unless they are included in other file specifications.

13-8

THE LINK EDITOR

The code:
» (secname)

may be used to indicate all previously unallocated input sections of the given
name, regardless of what input file they are contained in.

Load a Section at a Specified Address

An output section is bonded to a specific virtual address by an 1d(1) option as
shown in the following SECTIONS directive example:

SECTIONS
{
outsec addr:
{
}
etc.

}

The addr is the bonding address expressed as a C constant. If outsec does not fit
at addr (perhaps because of holes in the memory configuration or because outsec
is too large to fit without overlapping some other output section), Id(1) issues an
appropriate error message. addr may also be the word BIND, followed by a
parenthesized expression. The expression may use the pseudo-functions SIZEOF,
ADDR or NEXT. NEXT accepts a constant and returns the first multiple of that
value that falls into configured unallocated memory; SIZEOF and ADDR accept
previously defined sections.

As long as output sections do not overlap and there is enough space, they can be
bound anywhere in configured memory. The SECTIONS directives defining
output sections need not be given to Id(1) in any particular order, unless SIZEOF
or ADDR is used.

Id(1) does not ensure that each section’s size consists of an even number of bytes
or that each section starts on an even byte boundary. The assembler ensures that
the size (in bytes) of a section is evenly divisible by 4. 1d(1) directives can be used
to force a section to start on an odd byte boundary although this is not
recommended. If a section starts on an odd byte boundary, the section’s contents
are either accessed incorrectly or are not executed properly. When a user
specifies an odd byte boundary, Id(1) issues a warning message.

13-9

THE LINK EDITOR

Aligning an Output Section

It is possible to request that an output section be bound to a virtual address that
falls on an n-byte boundary, where n is a power of 2. The ALIGN option of the
SECTIONS directive performs this function, so that the option: .

ALIGN(n)

is equivalent to specifying a bonding address of:
(. +n-1)& (@-1)

For example:

SECTIONS

{
outsec ALIGN (0x20000)
{
}
etec.

}

The output section outsec is not bound to any given address but is placed at .

some virtual address that is a multiple of 0x20000 (e.g., at address 0x0, 0x20000,
0x40000, 0x60000, etc.).

Grouping Sections Together
The default allocation algorithm for Id(1) does the following:

1. Links all input .init sections together, followed by .text sections, into one
output section. This output section is called .text and is bound to an
address of 0x2000 plus the size of all headers in the output file.

2. Links all input .data sections together into one output section. This output
section is called .data and, in paging systems, is bound to an address
aligned to a machine dependent constant plus a number dependent on the
size of headers and text.

3. Links all input .bss sections together with all uninitialized, unallocated .
global symbols, into one output section. This output section is called .bss
and is allocated to immediately follow the output section .data. Note that
the output section .bss is not given any particular address alignment.

Specifying any SECTIONS directives results in this default allocation not being
performed. Rather than relying on the Id(1) default algorithm, 'if you are

13-10

THE LINK EDITOR

manipulating COFF files, the one certain way of determining address and order

information is to take it from the file and section headers. The default allocation
of Id(1) is equivalent to supplying the following directive:

SECTIONS
{
. text sizeof_headers : { *(.init) =*(.text) }
GROUP BIND(NEXT(align_value) +
((SIZEOF (.text) + ADDR(.text)) % 0x2000))

.data : {3}
.bes {3}

}

where align_value is a machine dependent constant. The GROUP command
ensures that the two output sections, .data and .bss, are allocated (e.g., grouped)
together. Bonding or alignment information is supplied only for the group and
not for the output sections contained within the group. The sections making up
the group are allocated in the order listed in the directive.

If .text, .data, and .bss are to be placed in the same segment, the following
SECTIONS directive is used:

SECTIONS
{
GROUP
{
.text {1}
.data {132
.bes {1}
>
}

Note that there are still three output sections (.text, .data, and .bss), but now
they are allocated into consecutive virtual memory. ﬂ

13-11

THE LINK EDITOR

This entire group of output sections could be bound to a starting address or
aligned simply by adding a field to the GROUP directive. To bind to 0xC0000,
use:

GROUP 0xCO0000 : {
To align to 0x10000, use:
GROUP ALIGN (0x10000) : {

With this addition, first the output section .text is bound at 0xC0000 (or is aligned
to 0x10000); then the remaining members of the group are allocated in order of
their appearance into the next available memory locations.

When the GROUP directive is not used, each output section is treated as an
independent entity:

SECTIONS

{
.text : L}
.data ALIGN (0x20000) : {)
.bss +: {}

}

The .text section starts at virtual address 0x0 (if it is in configured memory) and
the .data section at a virtual address aligned to 0x20000. The .bss section follows
immediately after the .text section if there is enough space. If there is not, it
follows the .data section. The order in which output sections are defined to ld(1)
cannot be used to force a certain allocation order in the output file.

Creating Holes Within Output Sections

The special symbol dot, ., appears only within section definitions and assignment
statements. When it appears on the left side of an assignment statement, .
causes ld(1)’s location counter to be incremented or reset and a hole left in the
output section. Holes built into output sections this way take up physical space
in the output file and are initialized using a fill character (either the default fill
character (0x00) or a supplied fill character). See the definition of the —f option in
"Using the Link Editor" and the discussion of filling holes in "Initialized Section
Holes" or ".bss Sections” in this chapter.

13-12

THE LINK EDITOR

Consider the following section definition:

outsec:

{
. += 0x1000;
f1.0 (.text)
. += 0x100;
£2.0 (.text)
. = align (4);
£3.0 (.text)

}

The effect of this command is as follows:

1. A 0x1000 byte hole, filled with the default fill character, is left at the
beginning of the section. Input section f1.0 (.text) is linked after this hole.

2. The -text section of input file 12.0 begins at 0x100 bytes following the end of
1.0 (.text).

3. The .text section of £3.0 is linked to start at the next full word boundary
following the .text section of 2.0 with respect to the beginning of outsec.

For the purposes of allocating and aligning addresses within an output section,
Id(1) treats the output section as if it began at address zero. As a result, if, in the
above example, outsec ultimately is linked to start at an odd address, then the
part of outsec built from 3.0 (.text) also starts at an odd address—even though
3.0 (.text) is aligned to a full word boundary. This is prevented by specifying an
alignment factor for the entire output section.

outsec ALIGN(4) : {

Note that the assembler, as, always pads the sections it generates to a full word

length making explicit alignment specifications unnecessary. This also holds true
for the compiler.

Expressions that decrement . are illegal. For example, subtracting a value from
the location counter is not allowed since overwrites are not allowed. The most
common operators in expressions that assign a value to . are += and align.

13-13

THE LINK EDITOR

Creating and Defining Symbols at Link-Edit Time

The assignment instruction of Id(1) can be used to give symbols a value that is
link-edit dependent. Typically, there are three types of assignments:

1. Use of . to adjust Id(1)’s location counter during allocation.
2. Use of . to assign an allocation-dependent value to a symbol.

3. Assigning an allocation-independent value to a symbol.
Case 1) has already been discussed in the previous section.

Case 2? provides a means to assign addresses (known only after allocation) to
S.

symbols. For example:
SECTIONS
{
outscl: {...}
outsc2:
{
filel.o (81)
82_start = . ;
file2.0 (82)
s82_end = . - 1;

}

The symbol 82_start is defined to be the address of file2.0(s2), and $2_end is the
address of the last byte of file2.0(s2).

Consider the following example:

SECTIONS
{
outscl:
{
filel.o (.data)
mark = .;
. 4= 4;
file2.0 (.data)
}
}

13-14

THE LINK EDITOR

In this example, the symbol mark is created and is equal to the address of the first
byte beyond the end of file1.0’s .data section. Four bytes are reserved for a
future run-time initialization of the symbol mark. The type of the symbol is a
long integer (32 bits).

Assignment instructions involving . must appear within SECTIONS definitions
since they are evaluated during allocation. Assignment instructions that do not
involve . can appear within SECTIONS definitions but typically do not. Such
instructions are evaluated after allocation is complete. Reassignment of a defined
symbol to a different address is dangerous. For example, if a symbol within .data
is defined, initialized, and referenced within a set of object files being link-edited,
the symbol table entry for that symbol is changed to reflect the new, reassigned
physical address. However, the associated initialized data is not moved to the
new address, and there may be references to the old address. The Id(1) issues
warning messages for each defined symbol that is being redefined within an ifile.
However, assignments of absolute values to new symbols are safe because there
are no references or initialized data associated with the symbol.

Allocating a Section Into Named Memory

It is possible to specify that a section be linked (somewhere) within a specific
named memory (as previously specified on a MEMORY directive). (The >

notation is borrowed from the operating system concept of redirected output.)
For example:

MEMORY

{
memi : 0=0x000000 1=0x10000
mem2 (RW): 0=0x020000 1=0x40000
mem3 (RW): o0=0x070000 1=0x40000
memi : 0=0x120000 1=0x04000

}

SECTIONS

{
outesecl: { f1.0(.data) } > memi
outeec2: { £2.0(.data) } > mem3

}

13-15

THE LINK EDITOR

This directs Id(1) to place outsecl anywhere within the memory area named
mem1 (i.e., somewhere within the address range Ox0-OxFFFF or 0x120000-
0x123FFF). The outsec? is to be placed somewhere in the address range 0x70000-
OxAFFFF.

Initialized Section Holes or .bss Sections

When holes are created within a section (as in the example in "Creating Holes
within Output Sections"), Id(1) normally puts out bytes of zero as fill. By default,
.bss sections are not initialized at all; that is, no initialized data is generated for
any .bss section by the assembler nor supplied by the link editor, not even zeros.

Initialization options can be used in a SECTIONS directive to set such holes or
output .bss sections to an arbitrary 2-byte pattern. Such initialization options
apply only to .bss sections or holes. As an example, an application might want
an uninitialized data table to be initialized to a constant value without recompiling
the .0 file or a hole in the text area to be filled with a transfer to an error routine.

Either specific areas within an output section or the entire output section may be
specified as being initialized. However, since no text is generated for an
uninitialized .bss section, if part of such a section is initialized, then the entire
section is initialized. In other words, if a .bss section is to be combined with a
text or .data section (both of which are initialized) or if part of an output .bss
section is to be initialized, then one of the following will hold:

a. Explicit initialization options must be used to initialize all .bss
sections in the output section.

b. 1d(1) will use the default fill value to initialize all .bss sections in
the output section.

13-16

THE LINK EDITOR

Consider the following ld(1) ifile:

. SECTIONS
{

secl:

{
f1.0
. =+ 0x200;
f2.0 (.text)

} = OxDFFF

sBec2:

{
f1i.0 (.bss)
£2.0 (.bss) = 0x1234

}

sec3:

{
£3.0 (.bss)

} = OxFFFF

. sec4d: { f4.0 (.bss) }

}

In the example above, the 0x200 byte hole in section sec1 is filled with the value
OxDFFF. In section sec2, f1.0(.bss) is initialized to the default fill value of 0x00,
and 12.0(.bss) is initialized to 0x1234. All .bss sections within sec3 as well as all
holes are initialized to OxFFFF. Section secd is not initialized; that is, no data is
written to the object file for this section.

Notes and Special Considerations

Changing the Entry Point

The a.out optional header contains a field for the (primary) entry point of the file.
. This field is set using one of the following rules (listed in the order they are
applied):

a. The value of the symbol specified with the —e option, if present, is used.
b. The value of the symbol _start, if present, is used.

13-17

THE LINK EDITOR

c. The value of the symbol main, if present, is used.

d. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header field through the
—e option or by using an assignment instruction in an ifile of the form

_start = expression;

If I1d(1) is called through cc(1), a startup routine is automatically linked in. Then,
when the program is executed, the routine exit(1) is called after the main routine
finishes to close file descriptors and do other cleanup. The user must therefore be
careful when calling ld(1) directly or when changing the entry point. The user
must supply the startup routine or make sure that the program always calls exit
rather than falling through the end. Otherwise, the program will dump core.

Use of Archive Libraries

Each member of an archive library (e.g., libc.a) is a complete object file. Archive
libraries are created with the ar(l) command from object files generated by c¢ or
as. An archive library is always processed using selective inclusion: only those
members that resolve existing undefined-symbol references are taken from the
library for link editing. Libraries can be placed both inside and outside section
definitions. In both cases, a member of a library is included for linking whenever:

a. There exists a reference to a symbol defined in that member.
b. The reference is found by Id(1) before the scanning of the library.

When a library member is included by searching the library inside a SECTIONS
directive, all input sections from the library member are included in the output
section being defined. When a library member is included by searching the
library outside a SECTIONS directive, all input sections from the library member
are included into the output section with the same name. If necessary, new
output sections are defined to provide a place to put the input sections. Note,
however, that:

1. Specific members of a library cannot be referenced explicitly in an ifile.

2. The default rules for the placement of members and sections cannot be
overridden when they apply to archive library members.

The -l option is a shorthand notation for specifying an input file coming from a
predefined set of directories and having a predefined name. By convention, such
files are archive libraries. However, they need not be so. Furthermore, archive
libraries can be specified without using the =l option by simply giving the (full or
relative) file path.

13-18

THE LINK EDITOR

The ordering of archive libraries is important since for a member to be extracted
from the library it must satisfy a reference that is known to be unresolved at the
time the library is searched. Archive libraries can be specified more than once.
They are searched every time they are encountered. Archive files have a symbol
table at the beginning of the archive. ld(1) will cycle through this symbol table
until it has determined that it cannot resolve any more references from that
library.

Consider the following example:

1. The input files file1.0 and file2.0 each contain a reference to the external
function FCN.

Input file1.0 contains a reference to symbol ABC.
Input file2.0 contains a reference to symbol XYZ.
Library liba.a, member 0, contains a definition of XYZ.
Library libc.a, member 0, contains a definition of ABC.
Both libraries have a member 1 that defines FCN.

SN O

If the Id(1) command were entered as:
Id filel.o -la file2.0 -lc

then the FCN references are satisfied by liba.a, member 1, ABC is obtained from
libc.a, member 0, and XYZ remains undefined (because the library liba.a is
searched before file2.0 is specified). If the Id(1) command were entered as:

Id filel.o file2.0 -la =lc

then the FCN references is satisfied by liba.a, member 1, ABC is obtained from
libc.a, member 0, and XYZ is obtained from liba.a, member 0. If the ld(1)
command were entered as:

Id filel.o file2.0 -lc -la

then the FCN references is satisfied by libc.a, member 1, ABC is obtained from
libc.a, member 0, and XYZ is obtained from liba.a, member 0.

The —u option is used to force the linking of library members when the link edit
run does not contain an external reference to the members. For example, the
command:

Id —uroutt -la

creates an undefined symbol called rout1 in Id(1)’s global symbol table. If any
member of library liba.a defines this symbol, it (and perhaps other members as

13-19

THE LINK EDITOR

well) is extracted. Without the —u option, there would have been no unresolved
references or undefined symbols to cause Id(1) to search the archive library.

Dealing With Holes in Physical Memory

When memory configurations are defined such that unconfigured areas exist in
the virtual memory, each application or user must assume the responsibility of

forming output sections that will fit into memory. For example, assume that
memory is configured as follows:

MEMORY
{
meml : o = 0x00000 1l = 0x02000
mem2: o = 0x40000 1l = 0x06000
mem3 : o = 0x20000 1l = 0x10000
}
Let the files f1.0, f2.0, . . . fn.0 each contain three sections .text, .data, and .bss,

and suppose the combined .text section is 0x12000 bytes. There is no configured
area of memory in which this section can be placed. Appropriate directives must

be suplplied to break up the .text output section so ld(1) may do allocation. For
example:

SECTIONS
{
txtl:
{
f1.0 (.text)
£2.0 (.text)
£3.0 (.text)
}
txt2
{
£4.0 (.text)
£6.0 (.text)
£8.0 (.text)
}
etc.
}

13-20

THE LINK EDITOR

Allocation Algorithm

An output section is formed either as a result of a SECTIONS directive, by
combining input sections of the same name, or by combining .text and .init into
text. An output section can comprise zero or more input sections. After the
composition of an output section is determined, it must then be allocated into
configured virtual memory. Id(1) uses an algorithm that attempts to minimize
fragmentation of memory, and hence increases the possibility that a link edit run
will be able to allocate all output sections within the specified virtual memory
configuration. The algorithm proceeds as follows:

1. Any output sections for which explicit bonding addresses were specified are
allocated.

2. Any output sections to be included in a specific named memory are
allocated. In both this and the succeeding step, each output section is
placed into the first available space within the (named) memory with any
alignment taken into consideration.

3. Output sections not handled by one of the above steps are allocated.

If all memory is contiguous and configured (the default case), and no SECTIONS
directives are given, then output sections are allocated in the order they appear to
Id(1). Otherwise, output sections are allocated in the order they were defined or
made known to Id(1) into the first available space they fit.

Incremental Link Editing

As previously mentioned, the output of ld(1) can be used as an input file to
subsequent Id(1) runs providing that the relocation information is retained (=t
option). Large applications may find it desirable to partition their C programs
into subsystems, link each subsystem independently, and then link edit the entire
application.

13-21

THE LINK EDITOR

For example, Step 1:

Id =r —o outfile1 ifile1 infilel.o

/* 1filel =/

SECTIONS
{
ssl:
{
fi.0
f2.0
fn.o
}
}
Step 2:
Id -r —o outfile2 ifile2 infile2.0
/* 1file2 =/ .
SECTIONS
{
882:
{
gl.o
g2.0
gn.o
}
}
Step 3:
Id —a —o final.out outfile1 outfile2
By ju::liciously forming subsystems, applications may achieve a form of .

incremental link editing whereby it is necessary to relink only a portion of the
total link edit when a few files are recompiled.

13-22

THE LINK EDITOR

To apply this technique, there are two simple rules:

1.

Intermediate link edits should contain only SECTIONS declarations and be
concerned only with the formation of output sections from input files and
input sections. No binding of output sections should be done in these runs.

All allocation and memory directives, as well as any assignment statements,
are included only in the final Id(1) call.

DSECT, COPY, NOLOAD, INFO, and OVERLAY Sections

Sections may be given a type in a section definition as shown in the following

example:
SECTIONS

{
namel 0x200000 (DSECT) : { £ileli.0 }
name2 0x400000 (COPY) : { £ile2.0)}
name3 OxB800000 (NOLOAD) : { £ile3.0 }
name4d (INFO) : { £iled.0 }
name5 Ox900000 (OVERLAY) : { £ile5.0 }

o)

The DSECT option creates what is called a dummy section. A dummy section has
the following properties:

1.

It does not participate in the memory allocation for output sections. As a
result, it takes up no memory and does not show up in the memory map
generated by Id(1).

It may overlay other output sections and even unconfigured memory.
DSECTs may overlay other DSECTs.

The global symbols defined within the dummy section are relocated
normally. That is, they appear in the output file’s symbol table with the
same value they would have had if the DSECT were actually loaded at its
virtual address. DSECT-defined symbols may be referenced by other input
sections. Undefined external symbols found within a DSECT cause specified
archive libraries to be searched and any members which define such
symbols are link edited normally (i.e., not as a DSECT).

None of the section contents, relocation information, or line number
information associated with the section is written to the output file.

THE LINK EDITOR

In the above example, none of the sections from file1.0 are allocated, but all
symbols are relocated as though the sections were link edited at the specified
address. Other sections could refer to any of the global symbols and they are
resolved correctly.

A copy section created by the COPY option is similar to a dummy section. The
only difference between a copy section and a dummy section is that the contents
of a copy section and all associated information is written to the output file.

An INFO section is the same as a COPY section but its purpose is to carry
information about the object file whereas the COPY section may contain valid text
and data. INFO sections are usually used to contain file version identification
information.

A section with the type of NOLOAD differs in only one respect from a normal
output section: its text and/or data is not written to the output file. A NOLOAD
section is allocated virtual space, appears in the memory map, etc.

An OVERLAY section is relocated and written to the output file. It is different
from a normal section in that it is not allocated and may overlay other sections or
unconfigured memory.

Output File Blocking

The BLOCK option (applied to any output section or GROUP directive) is used to
direct Id(1) to align a section at a specified byte offset in the output file. It has no
effect on the address at which the section is allocated nor on any part of the link
edit process. It is used purely to adjust the physical position of the section in the
output file:

SECTIONS
{

.text BLOCK(Ox200) : { }

.data ALIGN(0x20000) BLOCK{(0x200) : { }
}

With this SECTIONS directive, Id(1) assures that each section, .text and .data, is
physically written at a file offset, which is a multiple of 0x200 (e.g., at an offset of
0, 0x200, 0x400, and so forth, in the file).

13-24

THE LINK EDITOR

Nonrelocatable Input Files

If a file produced by ld(1) is intended to be used in a subsequent Id(1) run, the
first Id(1) run should have the ~r option set. This preserves relocation information
and permits the sections of the file to be relocated by the subsequent run.

If an input file to Id(1) does not have relocation or symbol table information
(perhaps from the action of a strip(1) command, or from being link edited without
a -r option or with a -8 option), the link edit run continues using the
nonrelocatable input file.

For such a link edit to be successful (i.e., to actually and correctly link edit all
input files, relocate all symbols, resolve unresolved references, etc.), two
conditions on the nonrelocatable input files must be met:

1. Each input file must have no unresolved external references.

2. Each input file must be bound to the exact same virtual address as it was
bound to in the 1d(1) run that created it.

NOTE

If these two conditions are not met for all
nonrelocatable input files, no error messages are
issued. Because of this fact, extreme care must be
taken when supplying such input files to ld(1).

Syntax Diagram for Input Directives

Figure 13-2 summarizes the system requirements for input directives. Note that
two punctuation symbols, square brackets and curly braces, do double duty in
this diagram.

Where the symbols [] and {} are used, they are part of the syntax and must be
present when the directive is specified.

Where you see the symbols and (larger and in bold), it means the material
enclosed is optional.

Where you see the symbols { and } (larger and in bold), it means multiple
occurrences of the material enclosed are permitted.

13-25

THE LINK EDITOR

Directives Expanded Directives
<ifile> {<cmd>}
<cmd> <memory>
<sections>
<assignment>
<filename>
<flags>
<memory> MEMORY { <memory_spec>

<memory_spec> | <name> [<attributes>] :

<attributes> ({RIWIXII})
<origin_spec> <origin> = <long>
<lenth_spec> <length> = <long>
<origin> ORIGIN | o | org | origin
<length> LENGTH | 11 len | length

Figure 13-2. Syntax Diagram for Input Directives (Sheet 1 of 4)

13-26

Directives

THE LINK EDITOR

Expanded Directives

<sections>

<sec_or_group>
<group>

<section_list>

<section>

<group_options>
<sec_options>

<addr>
<alignoption>
<align>
<block_option>
<block>

<type_option>

<fill>
<mem_spec>

<statement>

SECTIONS { {<sec_or_group>} }

<section> | <group> | <library>
GROUP <group_options> : {

<section> { [,] <section> }

<name> <sec_options> :

[<addr>] [<align_option>] [<block_option>]
[<addr>] | [<align_option>]

<long> | <bind>(<expr>)
<align> (<expr>)

ALIGN | align

<block> (<long>)

BLOCK | block

(DSECT) | (NOLOAD) | (COPY)

= <long>

> <name>

> <attributes>

<filename>

<filename> (<name_list>) | [COMMON]
* (<name_list>) | [COMMON]
<assignment>

<library>

null

Figure 13-2. Syntax Diagram for Input Directives (Sheet 2 of 4)

13-27

THE LINK EDITOR

Directives

Expanded Directives

<name_list>

<library>
<bind>
<assignment>
<lside>
<assign_op>
<end>
<expr>

<binary_op>

<term>

<unary_op>
<phy>
<sizeof>

<section_name> [,] { <section_name> }

-l<name>

BIND | bind

<lIside> <assign_op> <expr> <end>
<name> | .
=|+=|-=}l*=|/=

iy

<expr> <binary_op> <expr>
<term>

*1 /1%

+ |-

>> | <<
==]I=|>I<I<=|>=
&

I

&&

I

<long>

<name>

<align> (<term>)

(<expr>)

<unary_op> <term>
<phy> (<Iside>)
<sizeof>(<sectionname>)
<next>(<long>)
<addr>(<sectionname>)
=

PHY | phy

SIZEOF | sizeof

Figure 13-2. Syntax Diagram for Input Directives (Sheet 3 of 4)

THE LINK EDITOR

Directives Expanded Directives
<next> NEXT | next
<addr> ADDR | addr
<flags> —e<wht_space><name>

—f<wht_space><long>
~h<wht_space><long>
—-l<name>

-m
—o<wht_space><filename>
-r

-5

-t
—u<wht_space><name>
-z

-H

-L<path_name>

-M

-N

-5

-V
—VS<wht_space><long>
—a

-X

<name> Any valid symbol name
<long> Any valid long integer constant
<wht_space> Blanks, tabs, and newlines
<filename> Any valid operating system

<sectionname> | Any valid section name,

<path_name> Any valid operating system

Figure 13-2. Syntax Diagram for Input Directives (Sheet 4 of 4)

13-29

CHAPTER 14
make

Introduction

The trend toward increased modularity of programs means that a project may
have to cope with a large assortment of individual files. There may also be a wide
range of generation procedures needed to turn the assortment of individual files
into the final executable product.

make(1) provides a method for maintaining up-to-date versions of programs that
consist of a number of files that may be generated in a variety of ways.

An individual programmer can easily forget such things as:
o file-to-file dependencies
o files that were modified and the impact that has on other files

e the exact sequence of operations needed to generate a new version of the
program

In a description file, make keeps track of the commands that create files and the

relationship between files. Whenever a change is made in any of the files that

make up a program, the make command creates the finished program by
recompiling only those portions directly or indirectly affected by the change.

The basic operation of make is to:
e find the target in the description file

e ensure that all the files on which the target depends, the files needed to
generate the target, exist and are up to date

e create the target file if any of the generators have been modified more recently
than the target

The description file that holds the information on interfile dependencies and
command sequences is conventionally called makefile, Makefile, or
s.[mM]aketile. If this naming convention is followed, the simple command make
is usually enough to regenerate the target regardless of the number files edited
since the last make. Usually, the description file is not difficult to write and
changes infrequently. Even if only a single file has been edited, typing the make
command rather than typing all the commands to regenerate the target ensures
the regeneration is done in the prescribed way.

14-1

make

Basic Features

The basic operation of make is to update a target file by ensuring that all the files
on which the target file depends exist and are up to date. The target file is
regenerated if it has not been modified since the dependents were modified. The
make program searches the graph of dependencies. The operation of make
depends on its ability to find the date and time that a file was last modified.

The make program operates using three sources of information:
e a user-supplied description file
e filenames and last-modified times from the file system
e built-in rules to bridge some of the gaps

To illustrate, consider a simple example in which a program named prog is made
by compiling and loading three C language files x.c, y.c, and z.c with the math
library. By convention, the output of the C language compilations will be found
in files named Xx.0, y.0, and z.0. Assume that the files x.c and y.c share some
declarations in a file named defs.h, but that z.c does not. That is, x.c and y.c
have the line:

#include "defs.h"
The following specification describes the relationships and operations:
prog : xXx.0 Yy.0 2.0
cc x.0 y.0 z.0 ~-lm =-o prog
xX.0 Yy.o @ defs.h
If this information were stored in a file named makefile, the command:

make

would perform the operations needed to regenerate prog after any changes had
been made to any of the four source files x.¢, y.c, z.c, or defs.h. In the example
above, the first line states that prog depends on three .0 files. Once these object
files are current, the second line describes how to load them to create prog. The
third line states that x.0 and y.o depend on the file defs.h. From the file system,
make discovers that there are three .c files corresponding to the needed .o files
and uses built-in rules on how to generate an object from a C source file (i.e.,
issue a ¢¢ —¢ command).

14-2

make

I make did not have the ability to determine automatically what needs to be
done, the following longer description file would be necessary:

prog : xX.0 Yy.0 Z.0

¢cc x.0 y.o zZ.0 =lm -o prog
x.0 : x.c defs.h

cc =-c x.cC

y.o : y.c defs.h
cc -¢ Yy.c
z.0o : Z.c
cc =c z.c

If none of the source or object files have changed since the last time prog was
made, and all the files are current, the command make announces this fact and
stops. If, however, the defs.h file has been edited, x.c and y.c (but not z.c) are
recompiled; and then prog is created from the new x.0 and y.o files, and the
existing z.0 file. If only the file y.c had changed, only it is recompiled; but it is
still necessary to reload prog. If no target name is given on the make command
line, the first target mentioned in the description is created; otherwise, the
specified targets are made. The command:

make x.0
would regenerate x.0 if x.¢ or defs.h had changed.

A method often useful to programmers is to include rules with mnemonic names
and commands that do not actually produce a file with that name. These entries
can take advantage of make’s ability to generate files and substitute macros (for
information about macros, see "Description Files and Substitutions" below.) Thus,
a "save" entry might be included to copy a certain set of files, or a “"clean” entry
might be used to throw away unneeded intermediate files.

If a file exists after such commands are executed, the file’s time of last
modification is used in further decisions. If the file does not exist after the
commands are executed, the current time is used in making further decisions.

You can maintain a zero-length file purely to keep track of the time at which
certain actions were performed. This technique is useful for maintaining remote
archives and listings.

14-3

make

A simple macro mechanism for substitution in dependency lines and command
strings is used by make. Macros can either be defined by command-line
arguments or included in the description file. In either case, a macro consists of a
name followed by an equals sign followed by what the macro stands for. A
macro is invoked by preceding the name by a dollar sign. Macro names longer
than one character must be parenthesized. The following are valid macro
invocations:

$ (CFLAGS)
$2

$ (xy)

$z

$(2

The last two are equivalent.

The $*, $@, $?, and $< are four special macros that change values during the
execution of the command. (These four macros are described later in this chapter
under "Description Files and Substitutions.”) The following fragment shows
assignment and use of some macros:

OBJECTS = x.0 y.0 Z.0
LIBES = ~1m
prog: $(0OBJECTS)
cc $(DBJECTS) $(LIBES) -o prog

The command:
make LIBES="-Il -Im"

loads the three objects with both the lex (-ll) and the math (=Im) libraries,
because macro definitions on the command line override definitions in the
description file. (In operating system commands, arguments with embedded
blanks must be quoted.)

14-4

make

As an example of the use of make, a description file that might be used to
maintain the make command itself is given. The code for make is spread over a

number of C language source files and has a yacc grammar. The description file
contains the following:

Description file for the make command

FILES = Makefile defs.h main.c doname.c misc.c
files.c dosys.c gram.y

OBJECTS = main.o doname.o misc.o files.o

dosys.o gram.o

LIBES= -11d

LINT = lint -p

CFLAGS = -0

LP = /usr/bin/lp

make: $(0OBJECTS)
$(CC) $(CFLAGS) $(OBJECTS) $(LIBES) -o make
Gsize make

$(OBJECTS8) : defs.h

cleanup:
-rm %*.0 gram.c
-du

install:
Osize make /usr/bin/make
cp make /usr/bin/make && rm make

lint : dosys.c doname.c files.c main.c misc.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c \
gram.c

print files that are out~of-date
with respect to "print® file.

print: $(FILES)
pr $? | $(LP)
touch print

The make program prints out each command before issuing it.

make

The following output results from typin§ the command make in a directory
containing only the source and description files:

¢¢ =0 -¢ main.c

cc -0 -c doname.c

¢c -0 =-c¢c misc.c

cc -0 -c files.c

cc -0 -c dosys.c

yacc gram.y

nv y.tab.c gram.c

c¢c¢c -0 -c gram.c

cc main.o doname.o misc.o files.o dosys.o
gram.o -1lld -o make

13188 + 3348 + 3044 = 19580

The string of digits results from the size make command. The printing of the
command line itself was suppressed by an at sign, @, in the description file.

Description Files and Substitutions

The following section will explain the customary elements of the description file.

Comments

The comment convention is that a sharp, #, and all characters on the same line
after a sharp are ignored. Blank lines and lines beginning with a sharp are totally
ignored.

Continuation Lines

If a noncomment line is too long, the line can be continued by using a backslash.
If the last character of a line is a backslash, then the backslash, the new line, and
all following blanks and tabs are replaced by a single blank.

14-6

make

Macro Definitions

A macro definition is an identifier followed by an equal sign. The identifier must
not be preceded by a colon or a tab. The name (string of letters and digits) to the
left of the equal sign (trailing blanks and tabs are stripped) is assigned the string
of characters following the equal sign (leading blanks and tabs are stripped). The
following are valid macro definitions:

2 = xyz
abc = -11 -1y -1m
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly
defined has the null string as its value. Remember, however, that some macros
are explicitly defined in make’s own rules. (See Figure 14-2 at the end of the

chapter.)

General Form
The general form of an entry in a description file is:

targeti [target2 ...] :[:] [dependenti ...] [; commands] [# ...]
[\t commands] [# ...]

Items inside brackets may be omitted and targets and dependents are strings of
letters, digits, periods, and slashes. Shell metacharacters such as * and ? are
expanded when the line is evaluated. Commands may appear either after a
semicolon on a dependency line or on lines beginning with a tab immediately
following a dependency line. A command is any string of characters not
including a sharp, #, except when the sharp is in quotes.

Dependency Information

A dependency line may have either a single or a double colon. A target name
may appear on more than one dependency line, but all those lines must be of the
same (single or double colon) type. For the more common single-colon case, a
command sequence may be associated with at most one dependency line. If the
target is out of date with any of the dependents on any of the lines and a
command sequence is specified (even a null one following a semicolon or tab), it
is executed; otherwise, a default rule may be invoked. In the double-colon case, a
command sequence may be associated with more than one dependency line. If
the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. The double colon

14-7

make

form is particularly useful in updating archive-type files, where the target is the
archive library itself. (An example is included in the "Archive Libraries" section
later in this chapter.)

Executable Commands

If a target must be created, the sequence of commands is executed. Normally,
each command line is printed and then passed to a separate invocation of the
shell after substituting for macros. The printing is suppressed in the silent mode
(-8 option of the make command) or if the command line in the description file
begins with an @ sign. make normally stops if any command signals an error by
returning a nonzero error code. Errors are ignored if the —i flag has been specified
on the make command line, if the fake target name .IGNORE appears in the
description file, or if the command string in the description file begins with a
hyphen. If a program is known to return a meaningless status, a hyphen in front
of the command that invokes it is appropriate. Because each command line is
passed to a separate invocation of the shell, care must be taken with certain
commands (e.g., ¢d and shell control commands) that have meaning only within
a single shell process. These results are forgotten before the next line is executed.

Before issuing any command, certain internally maintained macros are set. The
$@ macro is set to the full target name of the current target. The $@ macro is
evaluated only for explicitty named dependencies. The $? macro is set to the
string of names that were found to be younger than the target. The $? macro is
evaluated when explicit rules from the makefile are evaluated. If the command
was generated by an implicit rule, the $< macro is the name of the related file
that caused the action; and the $* macro is the prefix shared by the current and
the dependent filenames. If a file must be made but there are no explicit
commands or relevant built-in rules, the commands associated with the name
DEFAULT are used. If there is no such name, make prints a message and stops.

In addition, a description file may also use the following related macros: $(@D),
$(@F), $(+D), $(xF), $(<D), and $(<F) (see below).

Extensions of $+, $@, and $<

The internally generated macros $*, $@, and $< are useful generic terms for
current targets and out-of-date relatives. To this list has been added the following
related macros: $(@D), $(@F), $(+D), $(+F), $(<D), and $(<F). The D refers to
the directory part of the single character macro. The F refers to the filename part
of the single character ‘macro. These additions are useful when building

14-8

make

hierarchical makefiles. They allow access to directory names for purposes of
using the cd command of the shell. Thus, a command can be:

cd $(<D); $(MAKE) $(<F)

Output Translations
Macros in shell commands are translated when evaluated. The form is as follows:
$ (macro:stringi=string2)

The meaning of $(macro) is evaluated. For each appearance of stringl in the
evaluated macro, string2 is substituted. The meaning of finding stringl in
$(macro) is that the evaluated $(macro) is considered as a series of strings each
delimited by white space (blanks or tabs). Thus, the occurrence of string1 in
$(macro) means that a regular expression of the following form has been found:

.*<gtring1> [TAB|BLANK]

This particular form was chosen because make usually concerns itself with
suffixes. The usefulness of this type of translation occurs when maintaining
archive libraries. Now, all that is necessary is to accumulate the out-of-date
members and write a shell script, which can handle all the C language programs
(i.e., those files ending in .c). Thus, the following fragment optimizes the
executions of make for maintaining an archive library:

$(LIB): $(LIB)(a.0) $(LIB)(b.o) $(LIB) (c.0)
$(CC) -c $(CFLAGS) $(?:.0=.c)
$ (AR) $ (ARFLAGS) $(LIB) $7
rm $°?

A dependency of the preceding form is necessary for each of the different types of
source files (suffixes) that define the archive library. These translations are added
in an effort to make more general use of the wealth of information that make
generates.

Recursive Makefiles

Another feature of make concerns the environment and recursive invocations. If
the sequence $(MAKE) appears anywhere in a shell command line, the line is
executed even if the —n flag is set. Since the —n flag is exported across
invocations of make (through the MAKEFLAGS variable), the only thing that is
executed is the make command itself. This feature is useful when a hierarchy of
makefile(s) describes a set of software subsystems. For testing purposes, make
~h ... can be executed and everything that would have been done will be printed
including output from lower level invocations of make.

14-9

make

Suffixes and Transformation Rules

make uses an internal table of rules to learn how to transform a file with one
suffix into a file with another suffix, If the —r flag is used on the make command
line, the internal table is not used.

The list of suffixes is actually the dependency list for the name .SUFFIXES. make
searches for a file with any of the suffixes on the list. If it finds one, make
transforms it into a file with another suffix. The transformation rule names are
the concatenation of the before and after suffixes. The name of the rule to
transform a .r file to a .0 file is thus .r.o. If the rule is present and no explicit
command sequence has been given in the user’s description files, the command
sequence for the rule .r.o is used. If a command is generated by using one of
these suffixing rules, the macro $x is given the value of the stem (everything but
the suffix) of the name of the file to be made; and the macro $< is the full name
of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to right.
The first name formed that has both a file and a rule associated with it is used. If
new names are to be appended, the user can add an entry for .SUFFIXES in the
description file. The dependents are added to the usual list. A .SUFFIXES line
without any dependents deletes the current list. It is necessary to clear the
current list if the order of names is to be changed.

Implicit Rules

make uses a table of suffixes and a set of transformation rules to supply default
dependency information and implied commands. The default suffix list is as
follows:

.0 Object file

.c C source file

.~ SCCS C source file

1 FORTRAN source file

f~ SCCS FORTRAN source file
.8 Assembler source file

.8~ SCCS Assembler source file
.Yy yacc source grammar

.y~ SCCS yacc source grammar

14-10

make

A lex source grammar
J~ SCCS ex source grammar
.h Header file
.h- SCCS header file
.sh Shell file
.sh- SCCS shell file
Figure 14-1 summarizes the default transformation paths. If there are two paths

connecting a pair of suffixes, the longer one is used only if the intermediate file
exists or is named in the description.

0

Figure 14-1. Summary of Default Transformation Path

If the file x.0 is needed and an x.¢ is found in the description or directory, the x.0
file would be compiled. If there is also an x.I, that source file would be run
through lex before compiling the result. However, if there is no x.¢ but there is
an x.I, make would discard the intermediate C language file and use the direct
link as shown in Figure 14-1.

It is possible to change the names of some of the compilers used in the default or
the flag arguments with which they are invoked by knowing the macro names
used. The compiler names are the macros AS, CC, F77, YACC, and LEX. The
command:

make CC=newcc

will cause the newcc command to be used instead of the usual C language
compiler. The macros ASFLAGS, CFLAGS, F77FLAGS, YFLAGS, and LFLAGS

14-11

make

may be set to cause these commands to be issued with optional flags. Thus, the
command line:

make "CFLAGS=—g"

causes the ¢¢ command to include debugging information.

Archive Libraries

The make program has an interface to archive libraries. A user may name a
member of a library as follows:

projlib(object.o)
or
projlib((entrypt))

where the second method actually refers to an entry point of an object file within
the library. (make looks through the library, locates the entry point, and
translates it to the correct object filename.)

To use this procedure to maintain an archive library, the following type of
makefile is required:

projlib:: projlib(pfilel.o)
$(CC) -c -0 pfilel.c
$ (AR) $ (ARFLAGS) projlib pfilel.o
rm pfilel.o

projlib:: projlib(pfile2.0)
$(CC) -c -0 pfile2.c
$ (AR) $(ARFLAGS) projlib pfile2.o0
rm pfile2.0

... and so on for each object ...

This is tedious and error prone. Obviously, the command sequences for adding a
C language file to a library are the same for each invocation; the filename being
the only difference each time. (This is true in most cases.)

The make command also gives the user access to a rule for building libraries. The
handle for the rule is the .a suffix. Thus, a .c.a rule is the rule for compiling a C
language source file, adding it to the library, and removing the .0 cadaver.
Similarly, the .y.a, the .s.a, and the .l.a rules rebuild yace, assembler, and lex
files, respectively. The archive rules defined internally are .c.a, .c-.a, .f.a, .f-.a,
and .s~.a. (The tilde, ~, syntax will be described shortly.) The user may define
other needed rules in the description file.

14-12

make

The above two-member library is then maintained with the following shorter
makefile:

projlib: projlib(pfilel.o) projlib(pfile2.o)
Qecho projlib up-to-date.

The internal rules are already defined to complete the preceding library
maintenance. The .c.a rule is as follows:

M P S
$(CC) -c $(CFLAGS) $<
$ (AR) $ (ARFLAGS) $0 $*.o0
rm -f $*.0

Thus, the $@ macro is the .a target (projlib); the $< and $* macros are set to the
out-of-date C language file; and the filename minus the suffix, respectively
(pfilel.c and pfilel). The $< macro (in the preceding rule) could have been
changed to $*.c.

It might be useful to go into some detail about exactly what make does when it
sees the construction:

projlib: projlib(pfilel.o)
Q@echo projlib up-to-date

Assume the object in the library is out of date with respect to pfilel.c. Also,
there is no pfile1.o file.

1. make projlib.

2. Before makeing projlib, check each dependent of projlib.

3. projlib(pfile1.0) is a dependent of projlib and needs to be generated.
4

Before generating projlib(pfile1.0), check each dependent of
projlib(pfile1.0). (There are none.)

5. Use internal rules to try to create projlib(pfile1.0). (There is no explicit
rule.) Note that projlib(pfile1.0) has a parenthesis in the name to identify
the target suffix as .a. This is the key. There is no explicit .a at the end of
the projlib library name. The parenthesis implies the .a suffix. In this
sense, the .a is hard-wired into make.

6. Break the name projlib(pfile1.0) up into projlib and pfile1.0. Define two
macros, $@ (=projlib) and $* (=pfilel).

7. Look for a rule .X.a and a file $*.X. The first .X (in the .SUFFIXES list)
which fulfills these conditions is .¢ so the rule is .c.a, and the file is
ptilel.c. Set $< to be pfilel.c and execute the rule. make must then
compile pfilei.c.

14-13

make

8. The library has been updated. Execute the command associated with the
projlib: dependency, namely:

Q@echo projlib up-to-date
Note that to let pfile1.0 have dependencies, the following syntax is required:
projlib(pfilel.o): $ (INCDIR)/stdio.h pfilel.c

There is also a macro for referencing the archive member name when this form is
used. The $% macro is evaluated each time $@ is evaluated. If there is no
current archive member, $% is null. If an archive member exists, then $%
evaluates to the expression between the parenthesis.

Source Code Control System Filenames: the Tilde

The syntax of make does not directly permit referencing of prefixes. For most
types of files, this is acceptable since nearly everyone uses a suffix to distinguish
different types of files. The SCCS files are the exception. Here, 8. precedes the
filename part of the complete path name.

To allow make easy access to the prefix 8. the tilde, -, is used as an identifier of
SCCS files. Hence, .c~.0 refers to the rule which transforms an SCCS C language
source file into an object file. Specifically, the internal rule is:

. C +O:
$ (GET) $ (GFLAGS) $<
$(cC) $(CFLAGS) =-c $*.c
-rm ~-f $*.c

Thus, the tilde appended to any suffix transforms the file search into an SCCS

filename search with the suffix named by the dot and all characters up to (but not
including) the tilde.

The following SCCS suffixes are internally defined:
.C~
t-
y-
-
-8~
.sh-
.h-

14-14

make

The following rules involving SCCS transformations are internally defined:

.c~:

N o
.sh~:
.c-.a:
.c~.C:
.C~.0:
f-.a:
N o H
f-.0:
.8S~.a:
.8-.8:
.8-.0:
Jy-.c:
.y-.0:
d-:
d-.0:
.h-.h:

Obviously, the user can define other rules and suffixes, which may prove useful.
The tilde provides a handle on the SCCS filename format so that this is possible.

The Null Suffix

There are many programs that consist of a single source file. make handles this
case by the null suffix rule. Thus, to maintain the operating system program cat,
a rule in the maketile of the following form is needed:
.C3
$(CC) $(CFLAGB) $< -o $0

In fact, this .c: rule is internally defined so no makefile is necessary at all. The
user only needs to type:

make cat dd echo date

(these are all operating system single-file programs) and all four C language
source files are passed through the above shell command line associated with the
.C: rule.

make

The internally defined single suffix rules are:

.C:
R
8
f~:
.sh:
.sh-:

Others may be added in the makefile by the user.

include Files

The make program has a capability similar to the #include directive of the C
preprocessor. If the string include appears as the first seven letters of a line in a
makefile and is followed by a blank or a tab, the rest of the line is assumed to be
a filename, which the current invocation of make will read. Macros may be used
in filenames. The file descriptors are stacked for reading include files so that no
more than 16 levels of nested includes are supported.

SCCS Makefiles

Makefiles under SCCS control are accessible to make. That is, if make is typed
and only a file named s.makefile or s.Makefile exists, make will do a get on the
file, then read and remove the file.

Dynamic Dependency Parameters

The parameter has meaning only on the dependency line in a makefile. The $$@
refers to the current "thing” to the left of the colon (which is $@). Also the form
$9(@F) exists, which allows access to the file part of $@. Thus, in the following;:

cat: $s%0.c

the dependency is translated at execution time to the string cat.c. This is useful
for building a large number of executable files, each of which has only one source
file.

14-16

make

For instance, the operating system command directory could have a makefile like:

CMDS = cat dd echo date cmp comm chown

$ (CMDS) : $$0.c
$(CC) -0 $7? -o $0

Obviously, this is a subset of all the single file programs. For multiple file
programs, a directory is usually allocated and a separate makefile is made. For
any particular file that has a peculiar compilation procedure, a specific entry must
be made in the makefile.

The second useful form of the dependency parameter is $$(@F). It represents the
filename part of $$@. Again, it is evaluated at execution time. Its usefulness
becomes evident when trying to maintain the /usr/include directory from a

fnatelf'ille in the /usr/src/head directory. Thus, the /usr/src/head/makefile would
ook like:

INCDIR = /usr/include

INCLUDES = \
$ (INCDIR) /stdio.h \
$ (INCDIR) /pwd.h \
$ (INCDIR) /dir.h \
$ (INCDIR) /a.out.h

$ (INCLUDES) : $$(QF)

cp $7 $@
chmod 0444 ge

This would completely maintain the /usr/include directory whenever one of the
above files in /usr/src/head was updated.

Command Usage

The make command description is found under make(l) in the Programmer’s
Reference Manual.

14-17

make

The make Command

The make command takes macro definitions, options, description filenames, and
target filenames as arguments in the form:

make [options | [macro definitions] [targets]

The following summary of command operations explains how these arguments
are interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are
analyzed and the assignments made. Command-line macros override
corresponding definitions found in the description files. Next, the option
arguments are examined. The permissible options are as follows:

-i Ignore error codes returned by invoked commands. This mode is entered
if the fake target name .IGNORE appears in the description file.

-8 Silent mode. Do not print command lines before executing. This mode is
also entered if the fake target name .SILENT appears in the description
file.

~r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even lines
beginning with an @ sign are printed.

—~t Touch the target files (causing them to be up to date) rather than issue the
usual commands.

—q Question. The make command returns a zero or nonzero status code
depending on whether the target file is or is not up to date.

—p Print out the complete set of macro definitions and target descriptions.

-k Abandon work on the current entry if something goes wrong, but
continue on other branches that do not depend on the current entry.

—e Environment variables override assignments within makefiles.

~f Description filename. The next argument is assumed to be the name of a
description file. A filename of — denotes the standard input. If there are
no ~f arguments, the file named makefile or Makefile or s.[mM]akefile in
the current directory is read. The contents of the description files override
the built-in rules if they are present.

14-18

make

The following two arguments are evaluated in the same way as flags:

.DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAULT are used if it exists.

.PRECIOUS Dependents on this target are not removed when quit or
interrupt is pressed.

Finally, the remaining arguments are assumed to be the names of targets to be
made and the arguments are done in left-to-right order. If there are no such
arguments, the first name in the description file that does not begin with a period
is made.

Environment Variables

Environment variables are read and added to the macro definitions each time
make executes. Precedence is a prime consideration in doing this properly. The
following describes make’s interaction with the environment. A macro,
MAKEFLAGS, is maintained by make. The macro is defined as the collection of
all input flag arguments into a string (without minus signs). The macro is
exported and thus accessible to further invocations of make. Command line flags
and assignments in the makefile update MAKEFLAGS. Thus, to describe how
the environment interacts with make, the MAKEFLAGS macro (environment
variable) must be considered.

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or null,
the internal make variable MAKEFLAGS is set to the null string.
Otherwise, each letter in MAKEFLAGS is assumed to be an input flag
argument and is processed as such. (The only exceptions are the —f, —=p,
and - flags.)

2. Read the internal list of macro definitions.

Read the environment. The environment variables are treated as macro
definitions and marked as exported (in the shell sense).

4. Read the makefile(s). The assignments in the makefile(s) overrides the
environment. This order is chosen so that when a makefile is read and
executed, you know what to expect. That is, you get what is seen unless
the —e flag is used. The ~e is the line flag, which tells make to have the
environment override the makefile assignments. Thus, if make —e ... is
typed, the variables in the environment override the definitions in the
makefile. Also MAKEFLAGS override the environment if assigned. This
is useful for further invocations of make from the current makefile.

14-19

make

It may be clearer to list the precedence of assignments. Thus, in order from least
binding to most binding, the precedence of assignments is as follows:

1. internal definitions
2. environment
3. makefile(s)
4. command line
The —e flag has the effect of rearranging the order to:
1. internal definitions
2. makefile(s)
3. environment
4. command line

This order is general enough to allow a programmer to define a makefile or set of
makefiles whose parameters are dynamically definable.

Suggestions and Warnings

The most common difficulties arise from make’s specific meaning of dependency.
If file x.c has a line that specifies:

#include "defs.h"

then the object file x.0 depends on defs.h; the source file X.c does not. If defs.h
is changed, nothing is done to the file x.c while file x.0 must be recreated.

To discover what make would do, the —=n option is very useful. The command:
make ~n

orders make to print out the commands that make would issue without actually
taking the time to execute them. If a change to a file is absolutely certain to be
mild in character (e.g., adding a comment to an include file), the ~t (touch) option
can save a lot of time. Instead of issuing a large number of superfluous

recompilations, make updates the modification times on the affected file. Thus,
the command:

make —ts

(touch silently) causes the relevant files to appear up to date. Obvious care is
necessary because this mode of operation subverts the intention of make and
destroys all memory of the previous relationships.

14-20

make

Internal Rules
The standard set of internal rules used by make are reproduced below.

#
#* SUFFIXES RECOGNIZED BY MAKE
#

.BUFFIXE8: .o .c .c .y .y .1 .1 .8 .8 .h .h .sh .sh i S 4

#
PREDEFINED MACROS
#

MAKE=make
AR=ar
ARFLAGS=-rv
AS=as
ASFLAGS=
CC=cc
CFLAGS=-0
F77=277
F77FLAGS=
GET=get
GFLAGS=
LEX=lex
LFLAGS=
LD=1d
LDFLAGS=
YACC=yacc
YFLAGS=

Figure 14-2. make Internal Rules (Sheet 1 of 5)

14-21

make

S8INGLE S8UFFIX RULES

#* % %

$(cC) $(CFLAGS) $(LDFLAGB) $< -o $90

$ (GET) $(GFLAGS) $<
$(CC) $(CFLAGS) $(LDFLAGS) $*.c -o $=
~rm -2 $=*.c

$(F77) $(F77FLAGS) $(LDFLAGS) $< -o $0

$ (GET) $(GFLAGS) $<
$(F77) $(F77FLAGS) $(LDFLAGS) $< -o $=
~rm -f $%.f

.sh:
cp $< $9; chmod 0777 $0

.8h
$(GET) $(GFLAGS) 8<
cp $+.9h $*; chmod 0777 $0
~rm ~f $+%.sh

Figure 14-2. make Internal Rules (Sheet 2 of 5)

14-22

DOUBLE SUFFIX RULES

-~

.£7.2 .8 .se .sh” .sh .y .y .1 .1 .h .h:
$(GET) $(GFLAGS) $<

$(CC) -c¢ $(CFLAGS) $<
$ (AR) $ (ARFLAGS) $@ $*.0
rm -f $*.0

.Q(GET) $ (GFLAGS) $<

$(CC) -c $(CFLAGS) $=*.c
$ (AR) $ (ARFLAGS) $0 $*.0
rm -2 $*. [co)

$(cC) $(CFLAGS) -c $<

‘ $ (GET) $(GFLAGSB) $«<

$(CC) $(CFLAGS) -c $x*.c
-rm -f $*.c

$(F77) $(F77FLAGS) $(LDFLAGS) -c $*.f
$ (AR) $ (ARFLAGS) $@ $+.0
-rm -f $*.0

$(GET) $(GFLAGS) $<

$(F77) $(F77FLAGS) $(LDFLAGS) -c $».f
$ (AR) $(ARFLAGS) $0 $x*.o
-rm ~f $x%.[fo]

Figure 14-2. make Internal Rules (Sheet 3 of 5)

make

11-23

make

.f.0
$(F77) $(F77FLAGS) $(LDFLAGS) -c $*.f
27 .0
$ (GET) $(GFLAGS) $<
$(F77) $(F77FLAGS) $(LDFLAGS) -c $x*.f
-rm -f $».f
l~.l.:
$ (GET) $(GFLAGS) $<
$ (AS) $(ASFLAGS) -o $*.0 $x*.8
$ (AR) $ (ARFLAGS) $@ $x*.0
-rm -f $x%.[so]
8.0:
$ (AS) $(ASFLAGS) -o $0 $<
!~.0:
$ (GET) $(GFLAGS) $<
$(AS) $(ABFLAGS) -o $*.0 $*.8
-rm -f $*.@
.1l.¢e :
$ (LEX) $(LFLAGS) $«<
mv lex.yy.c $0
1% ¢

.S(GET) $ (GFLAGSB) $< .
$ (LEX) $(LFLAGS) $».1
mv lex.yy.c $0

Figure 14-2. make Internal Rules (Sheet 4 of 5)

14-24

$(LEX) $(LFLAGB) $<

$(CC) $(CFLAGS8) -c lex.yy.c
rm lex.yy.c

mv lex.yy.o $0

-rm -f $».1

8 (GET) $(GFLAG8) $<

$ (LEX) $(LFLAGS) $x.1

$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.1

mv lex.yy.o $*.0

. $(YACC) $(YFLAGB) $<
nv y.tab.c $@

$ (GET) $(GFLAGS) 8$<

$ (YACC) $(YFLAGSB) 8*.y
mv y.tab.c $*.c

-rm ~f $*.y

$(YACC) $(YFLAGB) $<

$(cC) $(CFLAGBS) -c y.tab.c
rm y.tab.c

mv y.tab.o $&

$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $».y
$(CC) $(CFLAGB) -c y.tab.c
rm -f y.tab.c $*.y

mv y.tab.o $*.0

Figure 14-2. make Internal Rules (Sheet 5 of 5)

make

14-25

CHAPTER 15
SOURCE CODE CONTROL SYSTEM (SCCS)

Introduction

The Source Code Control System (SCCS) is a maintenance and enhancement
tracking tool that runs under the operating system. SCCS takes custody of a file
and, when changes are made, identifies and stores them in the file with the
original source code and/or documentation. ' As other changes are made, they too
are identified and retained in the file.

Retrieval of the original or any set of changes is possible. Any version of the file
as it develops can be reconstructed for inspection or additional modification.
History data can be stored with each version: why the changes were made, who
made them, when they were made.

This guide covers the following:
e SCCS for Beginners: how to make, retrieve, and update an SCCS file
e Delta Numbering: how versions of an SCCS file are named
e SCCS Command Conventions: what rules apply to SCCS commands

e SCCS Commands: the fourteen SCCS commands and their more useful
arguments

e SCCS Files: protection, format, and auditing of SCCS files

Neither the implementation of SCCS nor the installation procedure for SCCS is
described in this guide.

SCCS For Beginners

Several terminal session fragments are presented in this section. Try them all.
The best way to learn SCCS is to use it.

Terminology

A delta is a set of changes made to a file under SCCS custody. To identify and
keep track of a delta, it is assigned an SID (SCCS IDentification) number. The SID
for any original file turned over to SCCS is composed of release number 1 and
level number 1, stated as 1.1. The SID for the first set of changes made to that

15-1

SOURCE CODE CONTROL SYSTEM (SCCS)

file, that is, its first delta is release 1 version 2, or 1.2. The next delta would be
1.3, the next 1.4, and so on. More on delta numbering later. At this point, it is
enough to know that by default SCCS assigns SIDs automatically.

Creating an SCCS File via admin

Suppose, for example, you have a file called lang that is simply a list of five
programming language names. Use a text editor to create file lang containing the
following list.

C

PL/1
FORTRAN
COBOL
ALGOL

Custody of your lang file can be given to SCCS using the admin command (i.e.,
administer SCCS file). The following creates an SCCS file from the lang file:

admin -ilang s.lang

All SCCS files must have names that begin with 8., hence s.lang. The —i
keyletter, together with its value lang, means admin is to create an SCCS file and
initialize it with the contents of the file lang.

The admin command replies
No id keywords (cm7)

This is a warning message that may also be issued by other SCCS commands.
Ignore it for now. Its significance is described later with the get command under
"S5CCS Commands.” In the following examples, this warning message is not
shown although it may be issued.

The lang file is no longer needed because it exists now under SCCS as s.lang.
Remove the lang file:

rm lang

Retrieving a File via get
Use the get command as follows:

get s.lang

15-2

SOURCE CODE CONTROL SYSTEM (SCCS)

This retrieves s.lang and prints:

1.1
5 lines

This tells you that get retrieved version 1.1 of the file, which is made up of five
lines of text.

The retrieved text has been placed in a new file known as a "g.file." SCCS forms
the g.file name by deleting the prefix s. from the name of the SCCS file. Thus,
the original lang file has been recreated.

If you list, Is(1), the contents of your directory, you will see both lang and s.lang.
SCCS retains s.lang for use by other users.

The get s.lang command creates lang as read-only and keeps no information
regarding its creation. Because you are going to make changes to it, get must be
informed of your intention to do so. This is done as follows:

get —e s.lang

get —e causes SCCS to create lang for both reading and writing (editing). It also
places certain information about lang in another new file, called the "p.file"
(p-lang here), which is needed later by the delta command.

get —e prints the same messages as get, except that now the SID for the first delta
you will create is issued:

1.1
new delta 1.2
B lines

Change lang by adding two more programming languages:

SNOBOL
ADA

Recording Changes via delta

Next, use the delta command as follows:
delta s.lang

delta then prompts with:

comments?

15-3

SOURCE CODE CONTROL SYSTEM (SCCS)

Your response should be an explanation of why the changes were made. For
example:

added more languages

delta now reads the p.file, p.lang, and determines what changes you made to
lang. It does this by doing its own get to retrieve the original version and
applying the diff(1) command to the original version and the edited version.
Next, delta stores the changes in s.lang and destroys the no longer needed p.lang
and lang files.

When this process is complete, delta outputs:

1.2

2 inserted
O deleted

5 unchanged

The number 1.2 is the SID of the delta you just created, and the next three lines
summarize what was done to s.lang.

Additional Information about get
The command:
get s.lang

retrieves the latest version of the file s.lang, now 1.2. SCCS does this by starting
with the original version of the file and applying the delta you made. If you use
the get command now, you can retrieve version 1.2. with any of the following:

get s.lang
get —r1 s.lang
get -r1.2 s.lang

The numbers following —r are SIDs. When you omit the level number of the SID
(as in get —r1 s.lang), the default is the highest level number that exists within
the specified release. Thus, the second command requests the retrieval of the
latest version in release 1, namely 1.2. The third command specifically requests
the retrieval of a particular version, in this case also 1.2.

Whenever a major change is made to a file, you may want to signify it by
changing the release number, the first number of the SID. This, too, is done with
the get command:

get —e —r2 s.lang

154

SOURCE CODE CONTROL SYSTEM (SCCS)

Because release 2 does not exist, get retrieves the latest version before release 2.
get also interprets this as a request to change the release number of the new delta
to 2, thereby naming it 2.1 rather than 1.3. The output is:

1.2
new delta 2.1
7 lines

which means version 1.2 has been retrieved, and 2.1 is the version delta will
create. If the file is now edited (for example, by deleting COBOL from the list of
languages), and delta is executed:

delta s.lang
comments? deleted cobol from list of languages

you will see by delta’s output that version 2.1 is indeed created:

2.1

O inserted
1 deleted

6 unchanged

Deltas can now be created in release 2 (deltas 2.2, 2.3, etc.), or another new
release can be created in a similar manner.

The help Command

If the command:
get lang

is now executed, the following message will be output:
ERROR [lang): not an SCCS file (col)

The code ¢o1 can be used with help to print a fuller explanation of the message:
help coi

This gives the following explanation of why get lang produced an error message:

col:

"not an SCCS file"

A file that you think is an SCCS file
does not begin with the characters "s.".

help is useful whenever there is doubt about the meaning of almost any SCCS
message.

15-5

SOURCE CODE CONTROL SYSTEM (SCCS)

Delta Numbering

Think of deltas as the nodes of a tree in which the root node is the original
version of the file. The root is normally named 1.1 and deltas (nodes) are named
1.2, 1.3, etc. The components of these SIDs are called release and level numbers,
respectively. Thus, normal naming of new deltas proceeds by incrementing the
level number. This is done automatically by SCCS whenever a delta is made.

Because the user may change the release number to indicate a major change, the
release number then applies to all new deltas unless specifically changed again.
Thus, the evolution of a particular file could be represented by Figure 15-1.

CROROROSONO

Figure 15-1. Evolution of an SCCS File

This is the normal sequential development of an SCCS file, with each delta
dependent on the preceding deltas. Such a structure is called the trunk of an
SCCS tree.

There are situations that require branching an SCCS tree. That is, changes are
planned to a given delta that will not be dependent on all previous deltas. For
example, consider a program in production use at version 1.3 and for which
development work on release 2 is already in progress. Release 2 may already
have a delta in progress as shown in Figure 15-1. Assume that a production user
reports a problem in version 1.3 that cannot wait to be repaired in release 2. The
changes necessary to repair the trouble will be applied as a delta to version 1.3
(the version in production use). This creates a new version that will then be
released to the user but will not affect the changes being applied for release 2
(i.e., deltas 1.4, 2.1, 2.2, etc.). This new delta is the first node of a new branch of
the tree.

Branch delta names always have four SID components: the same release number
and level number as the trunk delta, plus a branch number and sequence number.
The format is as follows:

release.level.branch.sequence

The branch number of the first delta branching off any trunk delta is always 1,
and its sequence number is also 1. For example, the full SID for a delta branching
off trunk delta 1.3 will be 1.3.1.1. As other deltas on that same branch are
created, only the sequence number changes: 1.3.1.2, 1.3.1.3, etc. This is shown in
Figure 15-2.

15-6

SOURCE CODE CONTROL SYSTEM (SCCS)

IR0

o1
OO ORORONO

Figure 15-2. Tree Structure with Branch Deltas

(

The branch number is incremented only when a delta is created that starts a new
branch off an existing branch, as shown in Figure 15-3. As this secondary branch
develops, the sequence numbers of its deltas are incremented (1.3.2.1, 1.3.2.2,
etc.), but the secondary branch number remains the same.

5)
® &
®

O—O—FO—O—0O

Figure 15-3. Extended Branching Concept

(

The concept of branching may be extended to any delta in the tree, and the
numbering of the resulting deltas proceeds as shown above. SCCS allows the
generation of complex tree structures. Although this capability has been provided

15-7

SOURCE CODE CONTROL SYSTEM (SCCS)

for certain specialized uses, the SCCS tree should be kept as simple as possible.
Comprehension of its structure becomes difficult as the tree becomes complex.

SCCS Command Conventions
SCCS commands accept two types of arguments:
e keyletters
e filenames

Keyletters are options that begin with a minus sign, —, followed by a lowercase
letter and, in some cases, a value.

File and/or directory names specify the file(s) the command is to process. Naming
a directory is equivalent to naming all the SCCS files within the directory. Non-
SCCS files and unreadable files (because of permission modes via chmod(1)) in
the named directories are silently ignored.

In general, filename arguments may not begin with a minus sign. If a filename of
— (a lone minus sign) is specified, the command will read the standard input
(usually your terminal) for lines and take each line as the name of an SCCS file to
be processed. The standard input is read until end-of-file. This feature is often
used in pipelines with, for example, the commands find(1) or Is(1).

Keyletters are processed before filenames. Therefore, the placement of keyletters
is arbitrary—that is, they may be interspersed with filenames. Filenames,
however, are processed left to right. Somewhat different conventions apply to
help(1), what(1), sccsdiff(1), and val(l), detailed later under "SCCS Commands."

Certain actions of various SCCS commands are controlled by flags appearing in

SCCS files. Some of these flags will be discussed, but for a complete description
see admin(l) in the Programmer’s Reference Manual.

The distinction between real user (see passwd(1l)) and effective user will be of
concern in discussing various actions of SCCS commands. For now, assume that
the real and effective users are the same—the person logged into the operating
system.

x.files and z.files

All SCCS commands that modify an SCCS file do so by writing a copy called the
"x.file." This is done to ensure that the SCCS file is not damaged if processing
terminates abnormally~ SCCS names the x.file by replacing the s. of the SCCS
filename with Xx.. The x.file is created in the same directory as the SCCS file,

15-8

SOURCE CODE CONTROL SYSTEM (SCCS)

given the same mode (see chmod(1)), and is owned by the effective user. When
processing is complete, the old SCCS file is destroyed and the modified x.file is
renamed (X. is replaced by 8.) and becomes the new SCCS file.

To prevent simultaneous updates to an SCCS file, the same modifying commands
also create a lock-file called the "z.file." SCCS forms its name by replacing the s.
of the SCCS filename with a z. prefix. The z.file contains the process number of
the command that creates it, and its existence prevents other commands from
processing the SCCS file. The z.file is created with access permission mode 444
(read only) in the same directory as the SCCS file and is owned by the effective
user. It exists only for the duration of the execution of the command that creates
it.

In general, users can ignore x.files and z.files. They are useful only in the event
of system crashes or similar situations.

Error Messages
SCCS commands produce error messages on the diagnostic output in this format:

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses can be used as an argument to the help command to
obtain a further explanation of the message. Detection of a fatal error during the
processing of a file causes the SCCS command to stop processing that file and
proceed with the next file specified.

SCCS Commands

This section describes the major features of the fourteen SCCS commands and
their most common arguments. Full descriptions with details of all arguments are
in the Programmer’s Reference Manual.

Here is a quick-reference overview of the commands:

get retrieves versions of SCCS files

unget undoes the effect of a get —e prior to the file being deltaed

delta applies deltas (changes) to SCCS files and creates new versions
admin initializes SCCS files, manipulates their descriptive text, and

controls delta creation rights

prs prints portions of an SCCS file in user specified format

SOURCE CODE CONTROL SYSTEM (SCCS)

sact prints information about files that are currently out for edit

help gives explanations of error messages

rmdel removes a delta from an SCCS file allows removal of deltas
created by mistake

cdc changes the commentary associated with a delta

what searches any operating system file(s) for all occurrences of a

special pattern and prints out what follows it useful in finding
identifying information inserted by the get command

scesdiff shows differences between any two versions of an SCCS file

comb combines consecutive deltas into one to reduce the size of an
SCCS file

val validates an SCCS file

ve a filter that may be used for version control

The get Command

The get(l) command creates a file that contains a specified version of an SCCS
file. The version is retrieved by beginning with the initial version and then
applying deltas, in order, until the desired version is obtained. The resulting file
is called the "g.file." It is created in the current directory and is owned by the real
user. The mode assigned to the g.file depends on how the get command is used.

The most common use of get is:
get s.abc

which normally retrieves the latest version of file abc from the SCCS file tree
trunk and produces (for example) on the standard output:

1.3
67 lines
No id keywords (cm7)

meaning version 1.3 of file s.abc was retrieved (assuming 1.3 is the latest trunk
delta), it has 67 lines of text, and no ID keywords were substituted in the file.

The generated g.file (file abc) is given access permission mode 444 (read only).
This particular way of using get is intended to produce g.files only for inspection,
compilation, etc. It is not intended for editing (making deltas).

15-10

SOURCE CODE CONTROL SYSTEM (SCCS)

When several files are specified, the same information is output for each one. For
example, the command:

get s.abc s.xyz
produces:

s.abc:

1.3

67 lines

No id keywords (cm?7)

8.Xyz:

1.7

85 lines

No id keywords (cm7)

ID Keywords

In generating a g.file for compilation, it is useful to record the date and time of
creation, the version retrieved, the module’s name, etc. within the g.file. This
information appears in a load module when one is eventually created. SCCS
provides a convenient mechanism for doing this automatically. Identification (ID)
keywords appearing anywhere in the generated file are replaced by appropriate
values according to the definitions of those ID keywords. The format of an ID
keyword is an uppercase letter enclosed by percent signs, %. For example, the ID
keyword replaced by the SID of the retrieved version of a file is:

%1%

Similarly, %H% and %M% are the names of the g.file. Thus, executing get on an
SCCS file that contains the PL/I declaration,

DCL ID CHAR(100) VAR INIT(%M% %1% %H%’);

gives (for example) the following:
DCL ID CHAR(100) VAR INIT("MODNAME 2.3 07/18/85');

When no ID keywords are substituted by get, the following message is issued:
No id keywords (cm7)

This message is normally treated as a warning by get although the presence of the
i flag in the SCCS file causes it to be treated as an error. For a complete list of the
approximately twenty ID keywords provided, see get(l) in the Programmer’s
Reference Manual.

SOURCE CODE CONTROL SYSTEM (SCCS)

Retrieval of Different Versions

The version of an SCCS file that get retrieves is the most recently created delta of
the highest numbered trunk release. However, any other version can be retrieved
with get =r by specifying the version’s SID. Thus, the command:

get —r1.3 s.abc

retrieves version 1.3 of file s.ab¢ and produces (for example) on the standard
output:

1.3
84 lines

A branch delta may be retrieved similarly, with a command such as:
get —r1.5.2.3 s.abc
which produces (for example) on the standard output:

1.6.2.3
234 lines

When a SID is specified and the particular version does not exist in the SCCS file,
an error message results.

Omitting the level number, as in:
get —r3 s.abc

causes retrieval of the trunk delta with the highest level number within the given
release. Thus, the above command might output:

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with the highest
level number within the highest-numbered existing release that is lower than the
given release. For example, assume release 9 does not exist in file s.abc and
release 7 is the highest-numbered release below 9. Executing the command:

get -r9 s.abc
might produce:

7.8
420 lines

15-12

SOURCE CODE CONTROL SYSTEM (SCCS)

which indicates that trunk delta 7.6 is the latest version of file s.abc below release
9. Similarly, omitting the sequence number, as in:

get -rd.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on
the given branch. (If the given branch does not exist, an error message results.)
This might result in the following output:

4.3.2.8
89 lines

get —t will retrieve the latest (top) version of a particular release when no = is
used or when its value is simply a release number. The latest version is the delta
produced most recently, independent of its location on the SCCS file tree. Thus,
if the most recent delta in release 3 is 3.5, the command:

get —r3 -t s.abc
might produce:

3.6
B9 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the
same command might produce:

3.2.1.5
46 lines

Retrieval With Intent to Make a Delta
get —e indicates an intent to make a delta. First, get checks the following items:

1. The user list to determine whether the login name or group ID of the
person executing get is present. The login name or group ID must be
present for the user to be allowed to make deltas. (See "The admin
Command" for a discussion of making user lists.)

2. Whether the release number (R) of the version being retrieved satisfies the
relation:

floor is less than or equal to R, which is
less than or equal to ceiling

to determine if the release being accessed is a protected release. The floor
and ceiling are flags in the SCCS file representing start and end of range.

3. That the R is not locked against editing. The lock is a flag in the SCCS
file.

15-13

SOURCE CODE CONTROL SYSTEM (SCCS)

4. Whether multiple concurrent edits are allowed for the SCCS file by the j
flag in the SCCS file.

A failure of any of the first three conditions causes the processing of the
corresponding SCCS file to terminate.

If the above checks succeed, get ~e causes the creation of a g.file in the current
directory with mode 644 (readable by everyone, writable only by the owner)
owned by the real user. If a writable g.file already exists, get terminates with an
error. This is to prevent inadvertent destruction of a g.file being edited to make a
delta.

Any ID keywords appearing in the g.file are not substituted by get —e because the
generated g.file is subsequently used to create another delta. Replacement of ID
keywords causes them to be permanently changed in the SCCS file. Because of
this, get does not need to check for their presence in the g.file. Thus, the
message:

No 1d keywords (cm7)
is never output when get —e is used.

In addition, get —e causes the creation (or updating) of a p.file that is used to pass
information to the delta command.

The command:
get —o s.abc
produces (for example) on the standard output:

1.3
new delta 1.4
687 lines

Undoing a get —e

There may be times when a file is retrieved for editing in error; there is really no
editing that needs to be done at this time. In such cases, the unget command can
be used to cancel the delta reservation that was set up.

Additional get Options

If get —r and/or -t are used together with —e, the version retrieved for editing is
the one specified with —r and/or ~t.

get —i and —x are used to specify a list (see get(1) in the Programmer’s Reference
Manual for the syntax of such a list) of deltas to be included and excluded,

15-14

SOURCE CODE CONTROL SYSTEM (5CCS)

respectively. Including a delta means forcing its changes to be included in the
retrieved version. This is useful in applying the same changes to more than one
version of the SCCS file. Excluding a delta means forcing it not to be applied.
This may be used to undo the effects of a previous delta in the version to be
created.

Whenever deltas are included or excluded, get checks for possible interference
with other deltas. Two deltas can interfere, for example, when each one changes
the same line of the retrieved g.file. A warning shows the range of lines within
the retrieved g.file where the problem may exist. The user should examine the
g.file to determine what the problem is and take corrective steps (e.g., edit the
file).

CAUTION

get —i and get —x should be used with extreme
care.

get —k is used either to regenerate a g.file that may have been accidentally
removed or ruined after get —e, or simply to generate a g.file in which the
replacement of ID keywords has been suppressed. A g.file generated by get —k is
identical to one produced by get —e, but no processing related to the p.file takes
place.

Concurrent Edits of Ditferent SID

The ability to retrieve different versions of an SCCS file allows several deltas to be
in progress at any given time. This means that several get — commands may be
executed on the same file as long as no two executions retrieve the same version
(unless multiple concurrent edits are allowed).

The p.file created by get —e is named by automatic replacement of the SCCS
filename’s prefix s. with p.. It is created in the same directory as the SCCS file,
given mode 644 (readable by everyone, writable only by the owner), and owned
by the effective user. The p.file contains the following information for each delta
that is still in progress:

e the SID of the retrieved version
e the SID given to the new delta when it is created

e the login name of the real user executing get

15-15

SOURCE CODE CONTROL SYSTEM (SCCS)

The first execution of get —e causes the creation of a p.file for the corresponding
SCCS file. Subsequent executions only update the p.file with a line containing the
above information. Before updating, however, get checks to assure that no entry
already in the p.file specifies that the SID of the version to be retrieved is already
retrieved (unless multiple concurrent edits are allowed). If the check succeeds,
the user is informed that other deltas are in progress and processing continues. If
the check fails, an error message results.

Note that concurrent executions of get must be carried out from different
directories. Subsequent executions from the same directory will attempt to
overwrite the g.file, which is an SCCS error condition. In practice, this problem
does not arise since each user normally has a different working directory. See
"Protection” under "SCCS Files" for a discussion of how different users are
permitted to use SCCS commands on the same files.

Figure 15-4 shows the possible SID components a user can specify with get (left-
most column), the version that will then be retrieved by get, and the resulting SID
for the delta, which delta will create (right-most column).

SID —b Key- SID SID of Delta

Specified Letter Other Retrieved To be Created

in getx Usedt Conditions by get by delta
nonei no R defaults to mR | mR.mL mR.(mL+1)
nonex yes R defaults to mR | mR.mL mR.mL.(mB+1)
R no R > mR mR.mL R.1§
R no R =mR mR.mL mR.(mL+1)
R yes R > mR mR.mL mR.mL.(mB+1).1
R yes R =mR mR.mL mR.mL.(mB+1).1

Figure 15-4. Determination of New SID (sheet 1 of 2)

15-16

SOURCE CODE CONTROL SYSTEM (SCCS)

SID —b Key- SID SID of Delta
Specified Letter Other Retrieved To be Created
in getx Usedt Conditions by get by delta

R - R< mR and R hR.mL#* | hR.mL.(mB+1).1
does not exist

R ~ Trunk successor | R.mL R.mL.(mB+1).1
number in
release > R

and R exists

R.L. no No trunk R.L R.(L+1)
successor

R.L. yes No trunk R.L R.L.(mB+1).1
successor

R.L — Trunk successor | R.L R.L.(mS+1).1
in release = R

R.L.B no No branch R.L.B.mS | R.L.B.(mS+1)
successor

R.L.B yes No branch R.L.B.mS | R.L.(mB+1).1
successor

R.L.B.S no No branch R.L.B.S R.L.B.(S+1)
successor

R.L.B.S yes No branch R.L.B.S R.L.(mB+1).1
successor

R.L.B.S — Branch successor | R.L.B.S R.L.(mB+1).1

Figure 15-4. Determination of New SID (sheet 2 of 2)

Footnotes to Figure 15-4:

* R, L, B, and S mean release, level, branch, and sequence numbers in the
SID, and m means maximum. Thus, for example, R.mL means the
maximum level number within release R. R.L.(mB+1).1 means the first

15-17

SOURCE CODE CONTROL SYSTEM (SCCS)

sequence number on the new branch (i.e., maximum branch number plus
1) of level L within release R. Note that if the SID specified is R.L, R.L.B,
or R.L.B.S, each of these specified SID numbers must exist.

t The —b keyletter is effective only if the b flag (see admin(1)) is present in
the file. An entry of — means irrelevant.

1 This case applies if the d (default SID) flag is not present. If the d flag is
present in the file, the SID is interpreted as if specified on the command
line. Thus, one of the other cases in this figure applies.

§ This is used to force the creation of the first delta in a new release.

*x hR is the highest existing release that is lower than the specified,
nonexistent release R.

Concurrent Edits of Same SID

Under normal conditions, more than one get —e for the same SID is not
permitted. That is, delta must be executed before a subsequent get —e is executed
on the same SID.

Multiple concurrent edits are allowed if the j flag is set in the SCCS file. Thus,
the command and output:

get —e s.abc
1.1

new delta 1.2
5 lines

may be immediately followed by:

get —e s.abc

1.1

new delta 1.1.1.1
5 lines

without an intervening delta. In this case, a delta after the first get will produce
delta 1.2 (assuming 1.1 is the most recent trunk delta), and a delta after the
second get will produce delta 1.1.1.1.

Keyletters That Affect Output

get —p causes the retrieved text to be written to the standard output rather than to
a g.file. In addition, all output normally directed to the standard output (such as

15-18

SOURCE CODE CONTROL SYSTEM (SCCS)

the SID of the version retrieved and the number of lines retrieved) is directed
instead to the diagnostic output. get —p is used, for example, to create a g file
with an arbitrary name, as in:

get —p s.abc > arbitrary-file-name

get —s suppresses output normally directed to the standard output, such as the
SID of the retrieved version and the number of lines retrieved, but it does not
affect messages normally directed to the diagnostic output. get —s is used to
prevent nondiagnostic messages from appearing on the user’s terminal and is
often used with —p to pipe the output, as in:

get —p —s s.abc | pg

get —g suppresses the retrieval of the text of an SCCS file. This is useful in
several ways. For example, to verify a particular SID in an SCCS file, the
command:

get —g -r4.3 s.abc

outputs the SID 4.3 if it exists in the SCCS file s.abc or an error message if it does
not. Another use of get —g is in regenerating a p.file that may have been
accidentally destroyed, as in:

get —e —g s.abc

get —1 causes SCCS to create an 'Lfile." It is named by replacing the s. of the
SCCS filename with ., created in the current directory with mode 444 (read only)
and owned by the real user. The Lfile contains a table (whose format is described
under get(l) in the Programmer’s Reference Manual) showing the deltas used in
constructing a particular version of the SCCS file. For example, the command:

get —r2.3 -l s.abc

generates an l.file showing the deltas applied to retrieve version 2.3 of file s.abc.
Specifying p with -, as in:

get -Ip ~-r2.3 s.abc

causes the output to be written to the standard output rather than to the Lfile.
get —g can be used with =] to suppress the retrieval of the text.

get —m identifies the changes applied to an SCCS file. Each line of the g.file is
preceded by the SID of the delta that caused the line to be inserted. The SID is
separated from the text of the line by a tab character.

get —n causes each line of a g.file to be preceded by the value of the ID keyword

15-19

SOURCE CODE CONTROL SYSTEM (SCCS)

and a tab character. This is most often used in a pipeline with grep(1). For
example, to find all lines that match a given pattern in the latest version of each
SCCS file in a directory, the following may be executed:

get —p —n -s directory | grep pattern

If both —m and ~h are specified, each line of the generated g.file is preceded by
the value of the chap3.13 ID keyword and a tab (this is the effect of ~n) and is
followed by the line in the format produced by —m. Because use of -m and/or ~n
causes the contents of the g.file to be modified, such a g.file must not be used for
creating a delta. Therefore, neither - nor —nh may be specified together with get
-e.

NOTE

See get(l) in the Programmer’s Reference Manual for
a full description of additional keyletters.

The delta Command

The delta(l) command is used to incorporate changes made to a g.file into the
corresponding SCCS file—that is, to create a delta and, therefore, a new version
of the file.

The delta command requires the existence of a p.file (created via get —e). It
examines the p.file to verify the presence of an entry containing the user’s login
name. If none is found, an error message results.

get —e performs. If all ¢hecks are successful, delta determines what has been
changed in the g.file by comparing it via diff(1) with its own temporary copy of
the g.file as it was before editing. This temporary copy of the g.file is called the
d.file and is obtained by performing an internal get on the SID specified in the
p-file entry.

The required p.file entry is the one containing the login name of the user
executing delta, because the user who retrieved the g.file must be the one who
creates the delta. However, if the login name of the user appears in more than
one entry, the same user has executed get —e more than once on the same SCCS
file. Then, delta —r must be used to specify the SID that uniquely identifies the
p.file entry. This entry is then the one used to obtain the SID of the delta to be
created.

15-20

SOURCE CODE CONTROL SYSTEM (SCCS)

In practice, the most common use of delta is:
delta s.abc

which prompts:
comments?

to which the user replies with a description of why the delta is being made,
ending the reply with a newline character. The user’s response may be up to 512
characters long with newlines (not intended to terminate the response) escaped by
backslashes, \.

If the SCCS file has a v flag, delta first prompts with:
MRs?

(Modification Requests), on the standard output. The standard input is then read
for MR numbers, separated by blanks and/or tabs, ended with a newline
character. A Modification Request is a formal way of asking for a correction or
enhancement to the file. In some controlled environments where changes to
source files are tracked, deltas are permitted only when initiated by a trouble
report, change request, trouble ticket, etc., collectively called MRs. Recording MR
numbers within deltas is a way of enforcing the rules of the change management
process.

delta -y and/or -m can be used to enter comments and MR numbers on the
command line rather than through the standard input, as in:

delta -y"descriptive comment” —m"mrnuml mrmum2" s.abc

In this case, the prompts for comments and MRs are not printed, and the
standard input is not read. These two keyletters are useful when delta is
executed from within a shell procedure (see sh(l) in the Programmer’s Reference
Manual).

NOTE

delta —m is allowed only if the SCCS file has a v
flag.

No matter how comments and MR numbers are entered with delta, they are
recorded as part of the entry for the delta being created. Also, they apply to all
SCCS files specified with the delta.

If delta is used with more than one file argument and the first file named has a v
flag, all files named must have this flag. Similarly, if the first file named does not
have the flag, none of the files named may have it.

15-21

SOURCE CODE CONTROL SYSTEM (SCCS)

When delta processing is complete, the standard output displays the SID of the
new delta (from the p.file) and the number of lines inserted, deleted, and left
unchanged. For example:

1.4

14 inserted

7 deleted

345 unchanged

If line counts do not agree with the user’s perception of the changes made to a
g.file, it may be because there are various ways to describe a set of changes,
especially if lines are moved around in the g.file. However, the total number of
lines of the new delta (the number inserted plus the number left unchanged)
should always agree with the number of lines in the edited g.file.

If you are in the process of making a delta, the delta command finds no ID
keywords in the edited g.file, the message:

No id keywords (cm7)

is issued after the prompts for commentary but before any other output. This
means that any ID keywords that may have existed in the SCCS file have been
replaced by their values or deleted during the editing process. This could be
caused by making a delta from a g.file that was created by a get without —e (ID
keywords are replaced by get in such a case). It could also be caused by
accidentally deleting or changing ID keywords while editing the g.file. Or, it is
possible that the file had no ID keywords. In any case, the delta will be created
unless there is an i flag in the SCCS file (meaning the error should be treated as
fatal), in which case the delta will not be created.

After the processing of an SCCS file is complete, the corresponding p.file entry is
removed from the p.file. All updates to the p.file are made to a temporary copy,
the "q.file," whose use is similar to the use of the x.file described earlier under
"S5CCS Command Conventions.” If there is only one entry in the p.file, then the
p-file itself is removed.

In addition, delta removes the edited g.file unless —n is specified. For example,
the command:

delta —n s.abc
will keep the g file after processing.

delta —s suppresses all output normally directed to the standard output, other
than comments? and MRs?. Thus, use of ~s with =y (and/or —m) causes delta
to neither read the standard input nor write the standard output.

15-22

SOURCE CODE CONTROL SYSTEM (SCCS)

The differences between the g.file and the d.file constitute the delta and may be
printed on the standard output by using delta —p. The format of this output is
similar to that produced by diff(1).

The admin Command

The admin(l) command is used to administer SCCS files—that is, to create new
SCCS files and change the parameters of existing ones. When an SCCS file is
created, its parameters are initialized by use of keyletters with admin or are
assigned default values if no keyletters are supplied. The same keyletters are
used to change the parameters of existing SCCS files.

Two keyletters are used in detecting and correcting corrupted SCCS files (see
“Auditing” under "SCCS Files").

Newly created SCCS files are given access permission mode 444 (read only) and
are owned by the effective user. Only a user with write permission in the
directory containing the SCCS file may use the admin command on that file.

Creation of SCCS Files
An SCCS file can be created by executing the command:
admin -ifirst s.abc

in which the value first with —i is the name of a file from which the text of the
initial delta of the SCCS file s.abc is to be taken. Omission of a value with =i
means admin is to read the standard input for the text of the initial delta.

The command:
admin —i s.abc < first

is equivalent to the previous example.

If the text of the initial delta does not contain ID keywords, the message:
No id keywords (cm7)

is issued by admin as a warning. However, if the command also sets the i flag
(not to be confused with the —i keyletter), the message is treated as an error and
the SCCS file is not created. Only one SCCS file may be created at a time using
admin —i.

15-23

SOURCE CODE CONTROL SYSTEM (SCCS)

admin —r is used to specify a release number for the first delta. Thus, the
command:

admin —ifirst —r3 s.abc

means the first delta should be named 3.1 rather than the normal 1.1. Because —r
has meaning only when creating the first delta, its use is permitted only with —i.

Inserting Commentary for the Initial Delta

When an SCCS file is created, the user may want to record why this was done.
Comments (admin -y) and/or MR numbers (-m) can be entered in exactly the
same way as a delta.

If -y is omitted, a comment line of the form:
date and time created YY/MM/DD HH:MM:SS by logname
is automatically generated.

If it is desired to supply MR numbers (admin —m), the v flag must be set via -f.
The v flag simply determines whether MR numbers must be supplied when using
any SCCS command that modifies a delta commentary (see sccsfile() in the
Programmer’s Reference Manual) in the SCCS file. Thus:

admin —ifirst —-mmrnuml —fv s.abc
Note that ~y and -m are effective only if a new SCCS file is being created.

Initialization and Modification of SCCS File Parameters

Part of an SCCS file is reserved for descriptive text, usually a summary of the
file’s contents and purpose. It can be initialized or changed by using admin ~t.

When an SCCS file is first being created and ~t is used, it must be followed by the
name of a file from which the descriptive text is to be taken. For example, the
command:

admin -ifirst —tdesc s.abc
specifies that the descriptive text is to be taken from file desc.

When processing an existing SCCS file, —t specifies that the descriptive text (if
any) currently in the file is to be replaced with the text in the named file. Thus,
the command:

admin —tdesc s.abc

specifies that the descriptive text of the SCCS file is to be replaced by the contents
of desc.

15-24

SOURCE CODE CONTROL SYSTEM (SCCS)

Omission of the filename after the -t keyletter, as in:
admin -t s.abc
causes the removal of the descriptive text from the SCCS file.

The flags of an SCCS file may be initialized or changed by admin —f, or deleted
via —d.

SCCS file flags are used to direct certain actions of the various commands. (See
admin(l) in the Programmer’s Reference Manual for a description of all the flags.)
For example, the i flag specifies that a warning message (stating that there are no
ID keywords contained in the SCCS file) should be treated as an error. The d
(default SID) flag specifies the default version of the SCCS file to be retrieved by
the get command.

admin —f is used to set flags and, if desired, their values. For example, the
command:

admin =ifirst —fi —fmmodname s.abc

sets the i and m (module name) flags. The value modname specified for the m flag
is the value that the get command will use to replace the %M% ID keyword. (In
the absence of the m flag, the name of the g.file is used as the replacement for the
%M% ID keyword.) Several —f keyletters may be supplied on a single admin, and
they may be used whether the command is creating a new SCCS file or processing
an existing one.

admin —d is used to delete a flag from an existing SCCS file. As an example, the
command:

admin —dm s.abc

removes the m flag from the SCCS file. Several —d keyletters may be used with
one admin and may be intermixed with —f.

SCCS files contain a list of login names and/or group IDs of users who are
allowed to create deltas. This list is empty by default, allowing anyone to create
deltas. To create a user list (or add to an existing one), admin —a is used. For
example, the command:

admin —axyz -awql —-a1234 s.abc

adds the login names xyz and wql and the group ID 1234 to the list. admin —a
may be used whether creating a new SCCS file or processing an existing one.

admin —e (erase) is used to remove login names or group IDs from the list.

15-25

SOURCE CODE CONTROL SYSTEM (SCCS)

The prs Command

The prs(1) command is used to print all or part of an SCCS file on the standard
output. If prs —d is used, the output will be in a format called data specification.
Data specification is a string of SCCS file data keywords (not to be confused with
get ID keywords) interspersed with optional user text.

Data keywords are replaced by appropriate values according to their definitions.
For example, the symbol:

 H
is defined as the data keyword replaced by the SID of a specified delta. Similarly,
:F: is the data keyword for the SCCS filename currently being processed, and :C:
is the comment line associated with a specified delta. All parts of an SCCS file

have an associated data keyword. For a complete list, see prs(l) in the
Programmer’s Reference Manual.

There is no limit to the number of times a data keyword may appear in a data
specification. Thus, for example, the command line:

prs —d":l: this is the top delta for :F: :I:" s.abc
may produce on the standard output:
2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying its SID using prs
—r. For example, the command line:

prs —d":F:: :l: comment line is: :C:" -r1.4 s.abc
may produce the following output:
s.abc: 1.4 comment line is: THIS IS A COMMENT

If —r is not specified, the value of the SID defaults to the most recently created
delta.

In addition, information from a range of deltas may be obtained with =l or —e.
The use of prs —e substitutes data keywords for the SID designated via —r and all
deltas created earlier, while prs -l substitutes data keywords for the SID
designated via —r and all deltas created later. Thus, the command:

prs -d:l: -r1.4 —e s.abc

15-26

SOURCE CODE CONTROL SYSTEM (SCCS)

may output:

H
SRS ER'S
-

-

and the command:
prs —d:I: -r1.4 -l s.abc

may produce:

=N NN WWW
PR NNHEDW
-
[y

Substitution of data keywords for all deltas of the SCCS file may be obtained by
specifying both —e and -I.

The sact Command

sact(l) is like a special form of the prs command that produces a report about
files that are out for edit. The command takes only one type of argument: a list of
file or directory names. The report shows the SID of any file in the list that is out
for edit, the SID of the impending delta, the login of the user who executed the
get —~e command, and the date and time the get —e was executed. It is a useful
command for an administrator.

The help Command

The help(1) command prints the syntax of SCCS commands and of messages that
may appear on the users terminal. Arguments to help are simply SCCS
commands or the code numbers that appear in parentheses after SCCS messages.
(If no argument is given, help prompts for one.) Explanatory information is
printed on the standard output. If no information is found, an error message is
printed. When more than one argument is used, each is processed
independently, and an error resulting from one will not stop the processing of the
others.

SOURCE CODE CONTROL SYSTEM (SCCS)

NOTE

There is no conflict between the help(l) command
of SCCS and the operating system help(1) utilities.
The installation procedure for each package checks
for the prior existence of the other.

Explanatory information related to a command is a synopsis of the command. For
example, the command:

help ge5 rmdel
produces:

geb:

"nonexistent sid"

The specifled sid does not exist in the
given file.

Check for typos.

rmdel:
rmdel -rSID name

The rmdel Command

The rmdel(l) command allows removal of a delta from an SCCS file. Its use
should be reserved for deltas in which incorrect global changes were made. The
delta to be removed must be a leaf delta. That is, it must be the most recently
created delta on its branch or on the trunk of the SCCS file tree. In Figure 15-3,
only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed. Only after they are removed
can deltas 1.3.2.1 and 2.1 be removed.

To be allowed to remove a delta, the effective user must have write permission in
the directory containing the SCCS file. In addition, the real user must be either
the one who created the delta being removed or the owner of the SCCS file and
its directory.

The —r keyletter is mandatory with rmdel. It is used to specify the complete SID
of the delta to be removed. Thus, the command:

rmdel —-r2.3 s.abc

specifies the removal of trunk delta 2.3.

15-28

SOURCE CODE CONTROL SYSTEM (SCCS)

Before removing the delta, rmdel checks that the release number (R) of the given
SID satisfies the relation:

floor less than or equal to R less than or equal to ceiling

The rmdel command also checks the SID to make sure it is not for a version on
which a get for editing has been executed and whose associated delta has not yet
been made. In addition, the login name or group ID of the user must appear in
the file’s user list (or the user list must be empty). Also, the release specified
cannot be locked against editing. That is, if the | flag is set (see admin(1) in the
Programmer’s Reference Manual), the release must not be contained in the list. If
these conditions are not satisfied, processing is terminated, and the delta is not
removed.

Once a specified delta has been removed, its type indicator in the delta table of
the SCCS file is changed from D (delta) to R (removed).

The cdc Command

The cdc(1) command is used to change the commentary made when the delta was
created. It is similar to the rmdel command (e.g., =r and full SID are necessary),
although the delta need not be a leaf delta. For example, the command:

cdc -r3.4 s.abc

specifies that the commentary of delta 3.4 is to be changed. New commentary is
then prompted for as with delta.

The old commentary is kept, but it is preceded by a comment line indicating that
it has been superseded, and the new commentary is entered ahead of the
comment line. The inserted comment line records the login name of the user
executing cdc and the time of its execution.

The cdc command also allows for the insertion of new and deletion of old ("!"
prefix) MR numbers. Thus, the command:

cdc -r1.4 s.abc
MRs? mrnum3 Imrnum1 (The MRs? prompt appears only
if the v flag has been set.)
comments? deleted wrong MR number and inserted correct MR number

inserts mrnum3 and deletes mrnum1 for delta 1.4.

15-29

SOURCE CODE CONTROL SYSTEM (SCCS)

NOTE

An MR (Modification Request) is described above
under the deita command.

The what Command

The what(l) command is used to find identifying information within any file
whose name is given as an argument. No keyletters are accepted. The what
command searches the given file(s) for all occurrences of the string @(#), which is
the replacement for the %2Z% ID keyword (see get(1)). It prints on the standard
output whatever follows the string until the first double quote, ", greater than, >,
backslash, \, newline, or nonprinting NUL character.

For example, if an SCCS file called s.prog.c (a C language program) contains the
following line:

char 4id[]= "%W%";
and if the command:
get -r3.4 s.prog.c

is used, the resulting g.file is compiled to produce prog.o and a.out. Then, the
command:

what prog.c prog.o a.out

produces:
prog.c:
prog.c: 3.4
prog.o:
prog.c: 3.4
a.out:

prog.c: 3.4

The string searched for by what need not be inserted via an ID keyword of get; it
may be inserted in any convenient manner.

The sccsdiff Command

The scesdiif(l) command determines (and prints on the standard output) the
differences between any two versions of an SCCS file. The versions to be
compared are specified with sccsdiff —r in the same way as with get ~r. SID
numbers must be specified as the first two arguments. Any following keyletters

15-30

SOURCE CODE CONTROL SYSTEM (SCCS)

are interpreted as arguments to the pr(l) command (which prints the differences)
and must appear before any filenames. The SCCS file(s) to be processed are
named last. Directory names and a name of — (a lone minus sign) are not
acceptable to sccsdiff.

The following is an example of the format of sccsdift:
sccsdiff —r3.4 -r5.6 s.abc
The differences are printed the same way as by diff(1).

The comb Command

The comb(1l) command lets the user try to reduce the size of an SCCS file. It
generates a shell procedure (see sh(1) in the Programmer’s Reference Manual) on the
standard output, which reconstructs the file by discarding unwanted deltas and
combining other specified deltas. (It is not recommended that comb be used as a
matter of routine.)

In the absence of any keyletters, comb preserves only leaf deltas and the
minimum number of ancestor deltas necessary to preserve the shape of an SCCS
tree. The effect of this is to eliminate middle deltas on the trunk and on all
branches of the tree. Thus, in Figure 15-3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would
be eliminated.

Some of the keyletters used with this command are:

comb -8 This option generates a shell procedure that produces a report of
the percentage space (if any) the user will save. This is often
useful as an advance step.

comb —p This option is used to specify the oldest delta the user wants
preserved.

comb —¢ This option is used to specify a list (see get(1) in the Programmer’s
Reference Manual for its syntax) of deltas the user wants preserved.
All other deltas will be discarded.
The shell procedure generated by comb is not guaranteed to save space. A
reconstructed file may even be larger than the original. Note, too, that the shape
of an SCCS file tree may be altered by the reconstruction process.

15-31

SOURCE CODE CONTROL SYSTEM (SCCS)

The val Command

The val(1l) command is used to determine whether a file is an SCCS file meeting
the characteristics specified by certain keyletters. It checks for the existence of a
particular delta when the SID for that delta is specified with .

The string following —y or -m is used to check the value set by the t or m flag,
respectively. See admin(l) in the Programmer’s Reference Manual for descriptions of
these flags.

The val command treats the special argument — differently from other SCCS
commands. It allows val to read the argument list from the standard input
instead of from the command line, and the standard input is read until an end-of-
file (CTRL-D) is entered. This permits one val command with different values for
keyletters and file arguments. For example, the command:

val —-yc —mabc s.abc -mxyz -ypl1 s.xyz

first checks if file s.abc has a value ¢ for its type flag and value abc for the
module name flag. Once this is done, val processes the remaining file, in this
case S.Xyz.

The val command returns an 8-bit code. Each bit set shows a specific error (see
val(1) for a description of errors and codes). In addition, an appropriate
diagnostic is printed unless suppressed by —=s. A return code of 0 means all files
met the characteristics specified.

The ve Command

The ve(l) command is an awk-like tool used for version control of sets of files.
While it is distributed as part of the SCCS package, it does not require the files it
operates on to be under SCCS control. A complete description of v¢ may be
found in the Programmer’s Reference Manual.

SCCS Files

This section covers protection mechanisms used by SCCS, the format of SCCS
files, and the recommended procedures for auditing SCCS files.

15-32

SOURCE CODE CONTROL SYSTEM (SCCS)

Protection

SCCS relies on the capabilities of the operating system for most of the protection
mechanisms required to prevent unauthorized changes to SCCS files—that is,
changes by non-SCCS commands. Protection features provided directly by SCCS
are the release lock flag, the release floor and ceiling flags, and the user list.

Files created by the admin command are given access permission mode 444 (read
only). This mode should remain unchanged because it prevents modification of
SCCS files by non-SCCS commands. Directories containing SCCS files should be
given mode 755, which allows only the owner of the directory to modify it.

SCCS files should be kept in directories that contain only SCCS files and any
temporary files created by SCCS commands. This simplifies their protection and
auditing. The contents of directories should be logical groupings—subsystems of
the same large project, for example.

SCCS files should have only one link (name) because commands that modify them
do so by creating a copy of the file (the x.file; see "SCCS Command
Conventions"). When processing is done, the old file is automatically removed
and the x.file renamed (8. prefix). If the old file had additional links, this breaks
them. Then, rather than process such files, SCCS commands will produce an
error message.

When only one person uses SCCS, the real and effective user IDs are the same;
and the user ID owns the directories containing SCCS files. Therefore, SCCS may
be used directly without any preliminary preparation.

When several users with unique user IDs are assigned SCCS responsibilities (e.g.,
on large development projects), one user—that is, one user ID-—must be chosen
as the owner of the SCCS files. This person will administer the files (e.g. use the
admin command) and will be SCCS administrator for the project. Because other
users do not have the same privileges and permissions as the SCCS administrator,
they are not able to execute directly those commands that require write
permission in the directory containing the SCCS files. Therefore, a project-
dependent program is required to provide an interface to the get, delta, and, if
desired, rmdel and cdec commands.

The interface program must be owned by the SCCS administrator and must have
the set user ID on execution bit on (see chmod(1) in the User’s Reference Manual).
This assures that the effective user ID is the user ID of the SCCS administrator.
With the privileges of the interface program during command execution, the
owner of an SCCS file can modify it at will. Other users whose login names or
group IDs are in the user list for that file (but are not the owner) are given the

15-33

SOURCE CODE CONTROL SYSTEM (SCCS)

necessary permissions only for the duration of the execution of the interface
program. Thus, they may modify SCCS only with delta and, possibly, rmdel and
cdc.

A project-dependent interface program, as its name implies, can be custom built
for each project. Its creation is discussed later under "An SCCS Interface
Program.”

Formatting
SCCS files are composed of lines of ASCII text arranged in six parts as follows:

Checksum a line containing the logical sum of all the characters of the
file (not including the checksum itself)

Delta Table information about each delta, such as type, SID, date and
time of creation, and commentary

User Names list of login names and/or group IDs of users who are
allowed to modify the file by adding or removing deltas

Flags indicators that control certain actions of SCCS commands
Descriptive Text usually a summary of the contents and purpose of the file

Body the text administered by SCCS, intermixed with internal
SCCS control lines

Details on these file sections may be found in sccsfile(4). The checksum is
discussed below under "Auditing."

Since SCCS files are ASCII files they can be processed by non-SCCS commands
like ed(1), grep(1), and cat(l). This is convenient when an SCCS file must be
modified manually (e.g., a delta’s time and date were recorded incorrectly
because the system clock was set incorrectly), or when a user wants simply to
look at the file.

CAUTION

Extreme care should be exercised when modifying
SCCS files with non-SCCS commands.

15-34

SOURCE CODE CONTROL SYSTEM (SCCS)

Auditing

When a system or hardware malfunction destroys an SCCS file, any command
will issue an error message. Commands also use the checksum stored in an SCCS
file to determine whether the file has been corrupted since it was last accessed
(possibly by having lost one or more blocks or by having been modified with
ed(1)). No SCCS command will process a corrupted SCCS file except the admin
command with —h or -z, as described below.

SCCS files should be audited for possible corruptions on a regular basis. The
simplest and fastest way to do an audit is to use admin —h and specify all SCCS
files, as in:

admin -h s.filel s.file2 ...
or

admin -h directoryl directory2 ...

If the new checksum of any file is not equal to the checksum in the first line of
that file, the message:

corrupted file (co8)

is produced for that file. The process continues until all specified files have been
examined. When examining directories (as in the second example above), the
checksum process will not detect missing files. A simple way to learn whether
files are missing from a directory is to execute the Is(1) command periodically,
and compare the outputs. Any file whose name appeared in a previous output
but not in the current one no longer exists.

When a file has been corrupted, the way to restore it depends on the extent of the
corruption. If damage is extensive, the best solution is to contact the local system
administrator and request that the file be restored from a backup copy. If the
damage is minor, repair through editing may be possible. After such a repair, the
admin command must be executed:

admin -z s.file

The purpose of this is to recompute the checksum and bring it into agreement
with the contents of the file. After this command is executed, any corruption that
existed in the file will no longer be detectable.

CHAPTER 16
sdb—THE SYMBOLIC DEBUGGER

Introduction

This chapter describes the symbolic debugger, sdb(1), as implemented for C
language programs on the operating system. The sdb program is useful both for
examining core images of aborted programs and for providing an environment in
which execution of a program can be monitored and controlled.

The sdb program allows interaction with a debugged program at the source
language level. When debugging a core image from an aborted program, sdb
reports which line in the source program caused the error and allows all variables
to be accessed symbolically and to be displayed in the correct format.

When executing, breakpoints may be placed at selected statements or the program
may be single stepped on a line-by-line basis. To facilitate specification of lines in
the program without a source listing, sdb provides a mechanism for examining
the source text. Procedures may be called directly from the debugger. This
feature is useful both for testing individual procedures and for calling user-
provided routines, which provide formatted printouts of structured data.

Using sdb

To use sdb to its full capabilities, it is necessary to compile the source program
with the —g option. This causes the compiler to generate additional information
about the variables and statements of the compiled program. When the —g option
has been specified, sdb can be used to obtain a trace of the called functions at the
time of the abort and interactively display the values of variables.

A typical sequence of shell commands for debugging a core image is:

cc —g prgm.c —o prgm

prgm

Bus error - core dumped
sdb prgm

main:25: x[1i] = 0;

*

The program prgm was compiled with the —g option and then executed. An error
occurred, which caused a core dump. The sdb program is then invoked to
examine the core dump to determine the cause of the error. It reports that the

16-1

sdb—THE SYMBOLIC DEBUGGER

bus error occurred in function main at line 25 (line numbers are always relative to
the beginning of the file) and outputs the source text of the offending line. The
sdb program then prompts the user with an *, which shows that it is waiting for
a command.

It is useful to know that sdb has a notion of current function and current line. In
this example, they are initially set to main and 25, respectively.

Here sdb was called with one argument, prgm. In general, it takes three
arguments on the command line. The first is the name of the executable file that
is to be debugged; it defaults to a.out when not specified. The second is the
name of the core file, defaulting to core; and the third is the list of the directories
(separated by colons) containing the source of the program being debugged. The
default is the current working directory. In the example, the second and third
arguments defaulted to the correct values, so only the first was specified.

If the error occurred in a function that was not compiled with the —g option, sdb
prints the function name and the address at which the error occurred. The
current line and function are set to the first executable line in main. If main was
not compiled with the —g option, sdb will print an error message, but debugging
can continue for those routines that were compiled with the —g option.

Figure 16-1, at the end of the chapter, shows a more extensive example of sdb
use.

Printing a Stack Trace

It is often useful to obtain a listing of the function calls that led to the error. This
is obtained with the t command. For example:

g
sub (x=2, y=3) {prgm.c:26]
inter (i=16012) [prgm.c:986]

main(argc=1,argv=0x7fff2f64, envp=0x7££££26c) ([prgm.c:16]

This indicates that the program was stopped within the function sub at line 25 in
file prgm.c. The sub function was called with the arguments x=2 and y=3 from
inter at line 96. The inter function was called from main at line 15. The main
function is always called by a startup routine with three arguments often referred
to as argc, argv, and envp. Note that argv and envp are pointers, so their values
are printed in hexadecimal.

16-2

sdb—THE SYMBOLIC DEBUGGER

Examining Variables

The sdb program can be used to display variables in the stopped program.
Variables are displayed by typing their name followed by a slash, so:

*errflag/

causes sdb to display the value of variable errflag. Unless otherwise specified,
variables are assumed to be either local to or accessible from the current function.
To specify a different function, use the form:

xgub:1/

to display variable i in function sub. FORTRAN 77 users can specify a common
block variable in the same way, provided it is on the call stack.

The sdb program supports a limited form of pattern matching for variable and
function names. The symbol * is used to match any sequence of characters of a
variable name and ? to match any single character. Consider the following
commands:

x/
*sub:y?/
wok /

The first prints the values of all variables beginning with X, the second prints the
values of all two letter variables in function sub beginning with y, and the last
prints all variables. In the first and last examples, only variables accessible from
the current function are printed. The command:

kg ok
displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format determined by its
type as declared in the source program. To request a different format, a specifier
is placed after the slash. The specifier consists of an optional length specification
followed by the format. The length specifiers are:

b one byte
h two bytes (half word)
I four bytes (long word)

The length specifiers are effective only with the formats d, 0, x, and u. If no
length is specified, the word length of the host machine is used. A number can

16-3

sdb—THE SYMBOLIC DEBUGGER

be used with the s or a formats to control the number of characters printed. The
s and a formats normally print characters until either a null is reached or 128
characters have been printed. The number specifies exactly how many characters

should be printed.
There are a number of format specifiers available:
¢ character
d decimal
u decimal unsigned
o octal
x hexadecimal
f 32-bit single-precision floating point
g 64-bit double-precision floating point
8 Assume variable is a string pointer and print characters starting at the
address pointed to by the variable until a null is reached.
a Print characters starting at the variable’s address until a null is reached.
p Pointer to function.

Interpret as a machine-language instruction.

For example, the variable i can be displayed with:

*1/x

which prints out the value of i in hexadecimal.

sdb also knows about structures, arrays, and pointers so that all the following
commands work.

«array [2] [3]/
%gym.id/
*psym->usage/
*xgym[20] .p->usage/

The only restriction is that array subscripts must be numbers. Note that as a
special case, the command:

*psym[O]

displays the structure pointed to by psym in decimal.

16-4

sdb—THE SYMBOLIC DEBUGGER

Core locations can also be displayed by specifying their absolute addresses. The
command:

*1024/

displays location 1024 in decimal. As in C language, numbers may also be
specified in octal or hexadecimal, so the above command is equivalent to both:

*02000/
and:
*0x400/
It is possible to mix numbers and variables so that the command:
*1000.x/
refers to an element of a structure starting at address 1000, and the command:
*1000~->x/

refers to an element of a structure whose address is at 1000. For commands of the
type *1000.x/ and *1000->x/, the sdb program uses the structure template of the
last structured referenced.

The address of a variable is printed with =, so the command:

*i=

displays the address of i. Another feature whose usefulness will become apparent
later is the command:

*,/
which redisplays the last variable typed.

Source File Display and Manipulation

The sdb program has been designed to make it easy to debug a program without
constant reference to a current source listing. There are facilities that perform
context searches within the source files of the program being debugged and that
display selected portions of the source files. The commands are similar to those
of the operating system text editor ed(1). Like the editor, sdb has a notion of
current file and line within the current file. sdb also knows how the lines of a file
are partitioned into functions, so it also has a notion of current function. As
noted in other parts of this document, the current function is used by a number of
sdb commands.

16-5

sdb—THE SYMBOLIC DEBUGGER

Displaying the Source File

Four commands exist for displaying lines in the source file. They are useful for
perusing the source program and for determining the context of the current line.
The commands are:

p Prints the current line.

w Window; prints a window of ten lines around the current line.

z Prints ten lines starting at the current line. Advances the current
line by ten.

control-d Scrolls; prints the next ten lines and advances the current line by
ten. This command is used to cleanly display long segments of
the program.

When a line from a file is printed, it is preceded by its line number. This not only
indicates its relative position in the file, but it is also used as input by some sdb
commands.

Changing the Current Source File or Function

The e command is used to change the current source file. Either of the following
forms may be used:

*@ function
*g file.c

may be used. The first causes the file containing the named function to become
the current file, and the current line becomes the first line of the function. The
other form causes the named file to become current. In this case, the current line
is set to the first line of the named file. Finally, an @ command with no argument
causes the current function and file named to be printed.

Changing the Current Line in the Source File

The z and control-d commands have a side effect of changing the current line in
the source file. The following paragraphs describe other commands that change
the current line.

16-6

sdb—THE SYMBOLIC DEBUGGER

There are two commands that search for instances of regular expressions in source
files. They are:

*/regular expression/
*?regular expression?

The first command searches forward through the file for a line containing a string
that matches the regular expression and the second searches backwards. The
trailing / and ? may be omitted from these commands. Regular expression
matching is identical to that of ed(1).

The + and — commands may be used to move the current line forward or
backward by a specified number of lines. Typing a new-line advances the current
line by one, and typing a number causes that line to become the current line in
the file. These commands may be combined with the display commands so that
the command:

*+152

advances the current line by 15 and then prints ten lines.

A Controlled Environment for Program Testing

One useful feature of sdb is breakpoint debugging. After entering sdb,
breakpoints can be set at certain lines in the source program. The program is then
started with an sdb command. Execution of the program proceeds as normal
until it is about to execute one of the lines at which a breakpoint has been set.
The program stops and sdb reports the breakpoint where the program stopped.
Now, sdb commands may be used to display the trace of function calls and the
values of variables. If the user is satisfied the program is working correctly to this
point, some breakpoints can be deleted and others set; then program execution
may be continued from the point where it stopped.

A useful alternative to setting breakpoints is single stepping. sdb can be
requested to execute the next line of the program and then stop. This feature is
especially useful for testing new programs, so they can be verified on a
statement-by-statement basis. If an attempt is made to single step through a
function that has not been compiled with the —g option, execution proceeds until
a statement in a function compiled with the —g option is reached. It is also
possible to have the program execute one machine level instruction at a time.
This is particularly useful when the program has not been compiled with the -g
option.

16-7

sdb—THE SYMBOLIC DEBUGGER

Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function compiled with the —g option. The
command format is:

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. The line numbers are
relative to the beginning of the file as printed by the source file display
commands. The second form sets a breakpoint at line 12 of function proc, and
the third sets a breakpoint at the first line of proc. The last sets a breakpoint at
the current line.

Breakpoints are deleted similarly with the d command:

«12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints are deleted
interactively. Each breakpoint location is printed, and a line is read from the user.
If the line begins with a y or d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B command, and the
D command deletes all breakpoints. It is sometimes desirable to have sdb
automatically perform a sequence of commands at a breakpoint and then have
execution continue. This is achieved with another form of the b command:

*12b t;x/

causes both a trace back and the value of x to be printed each time execution gets
to line 12. The a command is a variation of the above command. There are two
forms:

*proc:a

*proc:12a
The first prints the function name and its arguments each time it is called, and the
second prints the source line each time it is about to be executed. For both forms

of the a command, execution continues after the function name or source line is
printed.

16-8

sdb—THE SYMBOLIC DEBUGGER

Running the Program

The r command is used to begin program execution. It restarts the program as if
it were invoked from the shell. The command:

*r args

runs the program with the given arguments as if they had been typed on the shell
command line. If no arguments are specified, then the arguments from the last
execution of the program within sdb are used. To run a program with no
arguments, use the R command.

After the program is started, execution continues until a breakpoint is
encountered, a signal such as INTERRUPT or QUIT occurs, or the program
terminates. In all cases after an appropriate message is printed, control returns to
the user.

The ¢ command may be used to continue execution of a stopped program. A line
number may be specified, as in:

*proc:12c

This places a temporary breakpoint at the named line. The breakpoint is deleted
when the ¢ command finishes. There is also a C command that continues but
passes the signal that stopped the program back to the program. This is useful
for testing user-written signal handlers. Execution may be continued at a
specified line with the g command. For example, the command:

*17 g

continues at line 17 of the current function. A use for this command is to avoid
executing a section of code that is known to be bad. The user should not attempt
to continue execution in a function different from that of the breakpoint.

The s command is used to run the program for a single statement. It is useful for
slowly executing the program to examine its behavior in detail. An important
alternative is the S command. This command is like the 8 command but does not
stop within called functions. It is often used when one is confident that the called
function works correctly but is interested in testing the calling routine.

The i command is used to run the program one machine level instruction at a time
while ignoring the signal that stopped the program. Its uses are similar to the s
command. There is also an | command that causes the program to execute one
machine level instruction at a time, but also passes the signal that stopped the
program back to the program.

16-9

sdb—THE SYMBOLIC DEBUGGER

Calling Functions

It is possible to call any of the functions of the program from sdb. This feature is
useful both for testing individual functions with different arguments and for
calling a user-supplied function to print structured data.

There are two ways to call a function:

*proc (argl, arg2, 2D
xproc(argl, arg2, ...)/m

The first simply executes the function. The second is intended for calling
functions (it executes the function and prints the value that it returns). The value
is printed in decimal unless some other format is specified by m. Arguments to
functions may be integer, character or string constants, or variables that are
accessible from the current function.

An unfortunate bug in the current implementation is that if a function is called
when the program is not stopped at a breakpoint (such as when a core image is
being debugged) all variables are initialized before the function is started. This
makes it impossible to use a function that formats data from a dump.

Machine Language Debugging

The sdb program has facilities for examining programs at the machine language
level. It is possible to print the machine language statements associated with a
line in the source and to place breakpoints at arbitrary addresses. The sdb
program can also be used to display or modify the contents of the machine
registers.

Displaying Machine Language Statements

To display the machine language statements associated with line 25 in function
main, use the command:

*main:257

The ? command is identical to the / command except that it displays from text
space. The default format for printing text space is the i format, which interprets
the machine language instruction. The control-d command may be used to print
the next ten instructions.

Absolute addresses may be specified instead of line numbers by appending a : to
them, so that the command:

*0x1024: 7
displays the contents of address 0x1024 in text space.
16-10

sdb—THE SYMBOLIC DEBUGGER

Note that the command:
*0x10247

displays the instruction corresponding to line 0x1024 in the current function. It is
also possible to set or delete a breakpoint by specifying its absolute address the
command:

*0x1024:b
sets a breakpoint at address 0x1024.

Manipulating Registers

The x command prints the values of all the registers. Also, individual registers
may be named by appending a % sign to their name so that the command:

*r3%

displays the value of register 3.

Other Commands
To exit sdb, use the ¢ command.

The | command (when used immediately after the * prompt) is identical to that in
ed(1) and is used to have the shell execute a command. The ! can also be used to
change the values of variables or registers when the program is stopped at a
breakpoint. This is done with the command:

*yariable!value
*»r3!value

which sets the variable or the named register to the given value. The value may
be a number, character constant, register, or the name of another variable. If the
variable is of type float or double, the value can also be a floating-point constant
(specified according to the standard C language format).

An sdb Session

An example of a debugging session using sdb is shown in Figure 16-1.

Comments (preceded by a pound sign, #) have been added to help you see what
is happening.

16-11

sdb—THE SYMBOLIC DEBUGGER

sdb myoptim ~ .:../common# enter sdb command

Source path: .:../common

No core image

*window:b # set a breakpoint at start of window

0x2462 (window:1459+2) b

*r < m.8 > out.m.s # run the program

Breakpoint at

0x2462 in window:1459: window(size, func) register int size;
boolean (*func) O;

*t # print stack trace

window(size=2, func=w2o0pt) [optim.c:1468]

peep () [peep.c:34]

pseudo(s=.def " Imain;"I.val~I.;"I.8cl”I-1;"I.endef) [local.c:483]
yylex() [local.c:229]

main (argc=0,argv=0x1FFFE43,-1073610300) [optim.c:227]

*Z # print 10 lines of source

1469: window(size, func) register int size; boolean (%*func){(); <
1480:

1461: extern NODE =#»initw();

1482: register NODE *pl;

1463: register int 1i;

1484:

14865 TRACE (window) ;

14886:

1487: /% find firet window =/

1468: .
*g # step

window:1469: window(eize, func) register int size; boolean (*func) ();

*p # step
window:1486: TRACE (window) ;
g # step
window:1489: wsize = size;
*8 # step
window:1470: if ((pl = initw(nO.forw)) == NULL)
*5 # etep through procedure call
window: 1476: for (opf = pf->back; ; opf = pf->back) {
*pl # show variable pl
0x86b38
*x # print the register contents
r0/ 0x86b38 ri/ 0O r2/ 0x8796¢
r3/ 0x85830 r4/ Ox1FFFBSBF r6/ Ox1FFF907
r8/ Ox1FFFB87 r7/ 0x86b38 r8/ 2
ap/ OxiFFFD23 tp/ Ox1FFFCF7 ep/ Ox1FFFCF7
psw/ 0x2004 pc/ 0x24b0
0x24b0 (window:1475): MOVW 0x80d8c,%r0 [-0x72£77£274,%r0]

Figure 16-1. Example of sdb Usage (Sheet 1 of 2)

n 16-12

»pl[0]

pl[0].torw/ 0x86b6c
pl[0] .back/ Ox86ac8
pl[0] .opa[0]/ mov.w
pll[0].uniqid/ ©
plio]l .op/ 123

pl[0] .nlive/ 3588
pll0] .ndead/ 4098
*pl->forw{0]

sdb—THE SYMBOLIC DEBUGGER

dereference the pointer

dereference the pointer

pl->forw([0] .forw/ Ox86cal
pl->forw([0] .back/ O0x86b38
pl->forw([0] .ops[0]/ call
pl->forw([0] .uniqid/ ©

pl->Zorw(0].op/ 9

pl->forw[0] .nlive/ 3684
pl->forw[0] .ndead/ 4099

*plipl->forw
*pl

0x88b6¢c

sc

Breakpoint at

replace pl with pl->forw
show pl

continue

0x2462 in window:1459: window(size, func) register int size;

boolean (*func) ();
™

step

window:1459: window(size, func) register int size; boolean (*func) (); {

*g # step

window:1465: TRACE (window) ;

*glize # show function argument size
3

*D # delete all breakpoints

All breakpoints deleted

*c

Process terminated
*q

$

continue

quit sdb

Figure 16-1. Example of sdb Usage (Sheet 2 of 2)

16-13

CHAPTER 17
lint

Introduction

The lint program examines C language source programs for a number of bugs and
obscurities. It enforces the type rules of C language more strictly than the C
compiler. It may also be used to enforce portability restrictions involved in
moving programs between different machines and/or operating systems. It
detects a number of legal but wasteful or error prone constructions. lint accepts
multiple input files and library specifications and checks them for consistency.

Usage
The lint command has the form:
lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages; files are the
files to be checked which end with .c or .In; and library-descriptors are the names
of libraries to be used in checking the program.

The options currently supported by the lint command are:

-a Suppress messages about assignments of long values to variables
that are not long.

-b Suppress messages about break statements that cannot be reached.

- Only check for intra-file bugs; leave external information in files

suffixed with .In.

~h Do not apply heuristics (which attempt to detect bugs, improve
style, and reduce waste).

-n Do not check for compatibility with either the standard or the
portable lint library.

—oname Create a lint library from input files named Hib—Iname.In.
-p Attempt to check portability.

-u Suppress messages about function and external variables used and
not defined or defined and not used.

17-1

-v Suppress messages about unused arguments in functions.
-X Do not report variables referred to by external declarations but
never used.

When more than one option is used, they should be combined into a single
argument, such as —ab or —xha.

The names of files that contain C language programs should end with the suffix
.¢, which is mandatory for lint and the C compiler.

lint accepts certain arguments, such as:
—Im

These arguments specify libraries that contain functions used in the C language
program. The source code is tested for compatibility with these libraries. This is
done by accessing library description files whose names are constructed from the
library arguments. These files all begin with the comment:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of
these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number and types of arguments to the
function. The VARARGS and ARGSUSED comments can be used to specify
features of the library functions. The next section, "lint Message Types," describes
how it is done.

lint library files are processed almost exactly like ordinary source files. The only
difference is that functions that are defined in a library file but are not used in a
source file do not result in messages. lint does not simulate a full library search
algorithm and will print messages if the source files contain a redefinition of a
library routine.

By default, lint checks the programs it is given against a standard library file that
contains descriptions of the programs that are normally loaded when a C
language program is run. When the —p option is used, another file is checked
containing descriptions of the standard library routines which are expected to be
portable across various machines. The —h option can be used to suppress all
library checking.

17-2

lint

lint Message Types

The following paragraphs describe the major categories of messages printed by
lint.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments
to functions may become unused. It is common for external variables or even
entire functions to become unnecessary and yet not be removed from the source.
Although these types of errors rarely cause working programs to fail, they are a
source of inefficiency and make programs harder to understand and change.
Also, information about such unused variables and functions can occasionally
serve to discover bugs.

lint prints messages (unless suppressed by the —u or —x option) about variables
and functions which are defined but not otherwise mentioned.

Certain styles of programming may permit a function to be written with an
interface where some of the function’s arguments are optional. Such a function
can be designed to accomplish a variety of tasks depending on which arguments
are used. Normally lint prints messages about unused arguments; however, the
—v option is available to suppress the printing of these messages. When ~v is in
effect, no messages are produced about unused arguments except for those
arguments which are unused and also declared as register arguments. This can be
considered an active (and preventable) waste of the register resources of the
machine.

Messages about unused arguments can be suppressed for one function by adding
the comment:

/* ARGSUSED */

to the source code before the function. This has the effect of the —v option for
only one function. Also, the comment:

/* VARARGS */

can be used to suppress messages about variable number of arguments in calls to
a function. The comment should be added before the function definition.
Sometimes, it is desirable to check the first several arguments and leave the later
arguments unchecked. This can be done with a digit giving the number of
arguments which should be checked. For example, the comment:

/* VARARGS2 */

will cause only the first two arguments to be checked.

17-3

lint

When lint is applied to some but not all files out of a collection that are to be
loaded together, it issues complaints about unused or undefined variables. This
information is, of course, more distracting than helpful. Functions and variables
that are defined may not be used; conversely, functions and variables defined
elsewhere may be used. The ~u option suppresses the spurious messages.

Set/Used Information

lint attempts to detect cases where a variable is used before it is set. lint detects
local variables (automatic and register storage classes) whose first use appears
physically earlier in the input file than the first assignment to the variable. It
assumes that taking the address of a variable constitutes a "use" since the actual
use may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the
algorithm simple and quick to implement since the true flow of control need not
be discovered. It does mean that lint can print error messages about program
fragments that are legal, but these programs would probably be considered bad
on stylistic grounds. Because static and external variables are initialized to zero,
no meaningful information can be discovered about their uses. The lint program
does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables that are
set and never used. These form a frequent source of inefficiencies and may also be
symptomatic of bugs.

Flow of Control

lint attempts to detect unreachable portions of a program. It will print messages
about unlabeled statements immediately following goto, break, continue, or
return statements. It attempts to detect loops that cannot be left at the bottom
and to recognize the special cases while(1) and for(;;) as infinite loops. lint also
prints messages about loops that cannot be entered at the top. Valid programs
may have such loops, but they are considered to be bad style. If you do not want
messages about unreached portions of the program, use the ~b option.

lint has no way of detecting functions that are called and never return. Thus, a
call to exit may cause unreachable code which lint does not detect. The most
serious effects of this are in the determination of returned function values (see
"Function Values"). If a particular place in the program is thought to be
unreachable in a way that is not apparent to lint, the comment:

/* NOTREACHED x*/

can be added to the source code at the appropriate place. This comment will

174

lint

inform lint that a portion of the program cannot be reached, and lint will not print
a message about the unreachable portion.

Programs generated by yacc and especially lex may have hundreds of
unreachable break statements, but messages about them are of little importance.
There is typically nothing the user can do about them, and the resulting messages
would clutter up the lint output. The recommendation is to invoke lint with the
-b option when dealing with such input.

Function Values

Sometimes functions return values that are never used. Sometimes programs
incorrectly use function values that have never been returned. lint addresses this
problem in a number of ways.

Locally, within a function definition, the appearance of the statements:
return(expr);

and:
return ;

is cause for alarm; lint will give the message:
function name has return(e) and return

The most serious difficulty with this is detecting when a function return is implied
by flow of control reaching the end of the function. This can be seen with a
simple example:

£ Ca) {
if (a) return (3);
g O;
}

Notice that, if a tests false, f will call g and then return with no defined return
value; this will trigger a message from lint. If g, like exit, never returns, the
message will still be produced when in fact nothing is wrong. This comment in
the source code will cause the message to be suppressed:

/*NOTREACHED*/
In practice, some potentially serious bugs have been discovered by this feature.

On a global scale, lint detects cases where a function returns a value that is

17-5

lint

sometimes or never used. When the value is never used, it may constitute an

inefficiency in the function definition that can be overcome by specifying the
function as being of type (void), as in:

(void) fprintf(stderr,"File busy. Try again later!\n");

When the value is sometimes unused, it may represent bad style (e.g., not testing
for error conditions).

The opposite problem, using a function value when the function does not return
one, is also detected. This is a serious problem.

Type Checking

lint enforces the type checking rules of C language more strictly than the
compilers do. The additional checking is in four major areas:

e across certain binary operators and implied assignments
e at the structure selection operators

e between the definition and uses of functions

e in the use of enumerations

There are a number of operators which have an implied balancing between types
of the operands. The assignment, conditional (?:), and relational operators have
this property. The argument of a return statement and expressions used in
initialization suffer similar conversions. In these operations, char, short, int,
long, unsigned, float, and double types may be freely intermixed. The types of
pointers must agree exactly except that arrays of xs can, of course, be intermixed
with pointers to xs.

The type checking rules also require that, in structure references, the left operand
of the => be a pointer to structure, the left operand of the . be a structure, and
the right operand of these operators be a member of the structure implied by the
left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int, and
unsigned. Also, pointers can be matched with the associated arrays. Aside from
this, all actual arguments must agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are
not mixed with other types or other enumerations and that the only operations
applied are =, initialization, ==, !=, and function arguments and return values.

17-6

lint

If it is desired to turn off strict type checking for an expression, the comment:
/* NOSTRICT */

should be added to the source code immediately before the expression. This
comment will prevent strict type checking for only the next line in the program.

Type Casts

The type cast feature in C language was introduced largely as an aid to producing
more portable programs. Consider the assignment:

p=1;

where p is a character pointer. lint will print a message as a result of detecting
this. Consider the assignment:

P = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this and has clearly
signaled his intentions. Nevertheless, lint will continue to print messages about
this.

Nonportable Character Use

On some systems, characters are signed quantities with a range from —128 to 127.
On other C language implementations, characters take on only positive values.
Thus, lint will print messages about certain comparisons and assignments as
being illegal or nonportable. For example, the fragment:

char c;

if((c =.ée;char()) < 0)

will work on one machine but will fail on machines where characters always take
on positive values. The real solution is to declare ¢ as an integer since getchar is
actually returning integer values. In any case, lint will print the message:

nonportable character comparison

A similar issue arises with bit fields. When assignments of constant values are
made to bit fields, the field may be too small to hold the value. This is especially
true because on some machines bit fields are considered as signed quantities.
While it may seem logical to consider that a two-bit field declared of type int
cannot hold the value 3, the problem disappears if the bit field is declared to have
type unsigned.

lint

Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which will truncate the

contents. This may happen in programs which have been incompletely converted

to use typedefs. When a typedef variable is changed from int to long, the .
program can stop working because some intermediate results may be assigned to

ints, which are truncated. The —a option can be used to suppress messages about

the assignment of longs to ints.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are detected by lint.
It is hoped the messages encourage better code quality, clearer style, and may
even point out bugs. The —h option is used to suppress these checks. For
example, in the statement:

*p++ ;
the * does nothing. This provokes the message:
null effect
from lint. The following program fragment: .

unsigned x ;
if(x < 0)

results in a test that will never succeed. Similarly, the test:
if(x > 0)
is equivalent to:
1£f(x = 0)
which may not be the intended action. lint will print the message:
degenerate unsigned comparison
in these cases. If a program contains something similar to:
if(1 !=0)
lint will print the message:
constant in conditional context .

since the comparison of 1 with 0 gives a constant result.

17-8

lint

Another construction detected by lint involves operator precedence. Bugs which
arise from misunderstandings about the precedence of operators can be
accentuated by spacing and formatting, making such bugs extremely hard to find.
For example, the statements:

if(x&077 == 0)
and:
x<<2 + 40

probably do not do what was intended. The best solution is to parenthesize such
expressions, and lint encourages this by an appropriate message.

Old Syntax

Several forms of older syntax are now illegal. These fall into two classes:
assignment operators and initialization.

The older forms of assignment operators (e.g., =+, ==, ..) could cause
ambiguous expressions, such as:

a =-1 ;
which could be taken as either of the following:

a=-1;

a=-1;

The situation is especially perplexing if this kind of ambiguity arises as the result
of a macro substitution. The newer and preferred operators (e.g., +=, —=, ...)
have no such ambiguities. To encourage the abandonment of the older forms, lint
prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language allowed:
int x 1;

to initialize x to 1. This also caused syntactic difficulties. For example, the
initialization:

int x (-1) ;
looks somewhat like the beginning of a function definition:
int x (y) {

17-9

lint

and the compiler must read past x to determine the correct meaning. Again, the
problem is even more perplexing when the initializer involves a macro. The
current syntax places an equals sign between the variable and the initializer:

int x = -1 ; .

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines and illegal on
others due entirely to alignment restrictions. lint tries to detect cases where
pointers are assigned to other pointers and such alignment problems might arise.
The message:

possible pointer alignment problem

results from this situation.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions

may be highly machine dependent. For example, on machines in which the stack .
runs backwards, function arguments will probably be best evaluated from right to

left. On machines with a stack running forward, left to right seems most

attractive. Function calls embedded as arguments of other functions may or may

not be treated similarly to ordinary arguments. Similar issues arise with other

operators that have side effects, such as the assignment operators and the

increment and decrement operators.

So that the efficiency of C language on a particular machine is not unduly
compromised, the C language leaves the order of evaluation of complicated
expressions up to the local compiler. In fact, the various C compilers have
considerable differences in the order in which they will evaluate complicated
expressions. In particular, if any variable is changed by a side effect and also
used elsewhere in the same expression, the result is explicitly undefined.

lint checks for the important special case where a simple scalar variable is
affected. For example, the statement:

a1l = bli++]; .

will cause lint to print the message:
warning: 1 evaluation order undefined

to call attention to this condition.

17-10

CHAPTER 18
C LANGUAGE

Introduction

This chapter contains a summary of the grammar and syntax rules of the C
Programming Language. A consistent attempt is made to point out where other
implementations may differ.

Lexical Conventions

There are six classes of tokens: identifiers, keywords, constants, string literals,
operators, and other separators. Blanks, tabs, new-lines, and comments
(collectively, "white space") as described below are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next
token is taken to include the longest string of characters that could possibly
constitute a token.

Comments

The characters /* introduce a comment that terminates with the characters */.
Comments do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a
letter. The underscore (_) counts as a letter. Uppercase and lowercase letters are
different. There is no limit on the length of a name. Other implementations may
collapse case distinctions for external names, and may reduce the number of
significant characters for both external and non-external names.

18-1

C LANGUAGE

Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

asm double if struct
auto else int switch
break enum long typedef
case external register union
char float return unsigned
continue for short void
default fortran sizeof while
do goto static

Constants

There are several kinds of constants. Each has a type; an introduction to types is
given in "Storage Class and Type."

Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it
begins with 0 (digit zero). An octal constant consists of the digits 0 through 7
only. A sequence of digits preceded by Ox or 0X (digit zero) is taken to be a
hexadecimal integer. The hexadecimal digits include a or A through f or F with
values 10 through 15. Otherwise, the integer constant is taken to be decimal. A
decimal constant whose value exceeds the largest signed machine integer is taken
to be long; an octal or hex constant that exceeds the largest unsigned machine
integer is likewise taken to be long. Otherwise, integer constants are int.

Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by I (letter
ell) or L is a long constant. As discussed below, integer and long values may be
considered identical on some computers.

Character Constants

A character constant is a character enclosed in single quotes, as in ’)’. The value
of a character constant is the numerical value of the character in the machine’s
character set. Certain nongraphic characters, the single quote (") and the
backslash (\), may be represented according to the table of escape sequences
shown in Figure 18-1.

18-2

C LANGUAGE

new-1lineNL (LF)\n
horizontal tabHT\t
vertical tabVT\v
backspaceBS\b
carriage returnCR\r
form feedFF\f
backslash\\\

single quote’\~

bit patternddd\ddd

Figure 18-1. Escape Sequences for Nongraphic Characters

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits that
are taken to specify the value of the desired character. A special case of this
construction is \0 (not followed by a digit), which indicates the ASCII character
NUL. If the character following a backslash is not one of those specified, the
behavior is undefined. An explicit new-line character is illegal in a character
constant. The type of a character constant is int.

Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an
e or E, and an optionally signed integer exponent. The integer and fraction parts
both consist of a sequence of digits. Either the integer part or the fraction part
(not both) may be missing. Either the decimal point or the @ and the exponent
(not both) may be missing. Every floating constant has type double.

Enumeration Constants

Names declared as enumerators (see "Structure, Union, and Enumeration
Declarations” under "Declarations") have type int.

18-3

C LANGUAGE

String Literals

A string literal is a sequence of characters surrounded by double quotes, as in
"..". A string literal has type "array of char" and storage class static (see "Storage
Class and Type") and is initialized with the given characters. The compiler places
a null byte (\0) at the end of each string literal so that programs that scan the
string literal can find its end. In a string literal, the double quote character (%)
must be preceded by a \; in addition, the same escapes as described for character
constants may be used.

A\ and the immediately following new-line are ignored. All string literals, even
when written identically, are distinct.

Syntax Notation

Syntactic categories are indicated by italic type and literal words and characters by
bold type. Alternative categories are listed on separate lines. An optional entry
is indicated by the subscript “opt," so that:

{ expresszonop ; }

indicates an optional expression enclosed in braces. The syntax is summarized in
"Syntax Summary" at the end of the chapter.

Storage Class and Type

The C language bases the interpretation of an identifier on two attributes of the
identifier: its storage class and its type. The storage class determines the location
and lifetime of the storage associated with an identifier; the type determines the
meaning of the values found in the identifier's storage.

Storage Class
There are four declarable storage classes:
e automatic
e static
e external
e register
Automatic variables are local to each invocation of a block (see "Compound
Statement or Block” in "Statements”) and are discarded on exit from the block.

Static variables are local to a block but retain their values on reentry to a block
even after control has left the block. External variables exist and retain their

18-4

C LANGUAGE

values throughout the execution of the entire program and may be used for
communication between functions, even separately compiled functions. Register
variables are (if possible) stored in the fast registers of the machine; like automatic
variables, they are local to each block and disappear on exit from the block.

Type

The C language supports several fundamental types of objects. Objects declared
as characters (char) are large enough to store any member of the
implementation’s character set. If a genuine character from that character set is
stored in a char variable, its value is equivalent to the integer code for that
character. Other quantities may be stored into character variables, but the
implementation is machine dependent. In particular, char may be signed or
unsigned by default. In this implementation the default is unsigned.

Up to three sizes of integer, declared short int, int, and long int, are available.
Longer integers provide no less storage than shorter ones, but the implementation
may make either short integers or long integers, or both, equivalent to plain
integers. Plain integers have the natural size suggested by the host machine
architecture. The other sizes are provided to meet special needs. The sizes for
computers based on the M68000 family of microprocessors are shown in Figure
18-2.

Motorola M68000 Family
(ASCII)
char 8 bits
int 32
short 16
long 32
float 32
double 64
float range IEEE
specification
double range IEI.ZI.S' .
specification

Figure 18-2. M68000 Family-Based Computer Hardware Characteristics

The properties of enum types (see "Structure, Union, and Enumeration
Declarations" under "Declarations”) are identical to those of some integer types.

18-5

C LANGUAGE

The implementation may use the range of values to determine how to allot
storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2"
where 7 is the number of bits in the representation.

Single-precision floating point (float) and double precision floating point (double)
may be synonymous in some implementations.

Because objects of the foregoing */pes can usefully be interpreted as numbers,
they will be referred to as arithmetic types. Char, int of all sizes whether
unsigned or not, and enum will collectively be called integral types. The float
and double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as the type returned by
functions that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class of
derived types constructed from the fundamental types in the following ways:

e arrays of objects of most types

¢ functions that return objects of a given type

s pointers to objects of a given type

e structures containing a sequence of objects of various types

¢ unions capable of containing any one of several objects of various types

In general these methods of constructing objects can be applied recursively.

Objects and Ivalues

An object is a manipulatable region of storage. An lvalue is an expression
referring to an object. An obvious example of an lvalue expression is an
identifier. There are operators that yield lvalues: for example, if E is an
expression of pointer type, then *E is an Ivalue expression referring to the object
to which E points. The name "lvalue” comes from the assignment expression
E1 = E2 in which the left operand E1 must be an lvalue expression. The
discussion of each operator below indicates whether it expects Ivalue operands
and whether it yields an lvalue.

18-6

C LANGUAGE

Operator Conversions

A number of operators may, depending on their operands, cause conversion of
the value of an operand from one type to another. This part explains the result to
be expected from such conversions. The conversions demanded by most ordinary
operators are summarized under "Arithmetic Conversions."” The summary will be
supplemented as required by the discussion of each operator.

Characters and Integers

A character or a short integer may be used wherever an integer may be used. In
all cases the value is converted to an integer. Conversion of a shorter integer to a
longer preserves sign. On the computer sign extension of char variables does not
occur. It is guaranteed that a member of the standard character set is non-
negative.

On machines that treat characters as signed, the characters of the ASCII set are all
non-negative. However, a character constant specified with an octal escape
suffers sign extension and may appear negative; for example, \377” has the value
-1.

When a longer integer is converted to a shorter integer or to a char, it is truncated
on the left. Excess bits are simply discarded.

Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a float
appears in an expression it is lengthened to double by zero padding its fraction.
When a double must be converted to float, for example by an assignment, the
double is rounded before truncation to float length. This result is undefined if it
cannot be represented as a float.

Floating and Integral

Conversions of floating values to integral type are rather machine dependent. In
particular, the direction of truncation of negative numbers varies. The result is
undefined if it will not fit in the space provided.

Conversions of integral values to floating type behave well. Some loss of
accuracy occurs if the destination lacks sufficient bits.

18-7

C LANGUAGE

Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in
such a case, the first is converted as specified in the discussion of the addition
operator. Two pointers to objects of the same type may be subtracted; in this
case, the result is converted to an integer as specified in the discussion of the
subtraction operator.

Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain integer
is converted to unsigned and the result is unsigned. The value is the least
unsigned integer congruent to the signed integer (modulo gwordsizey In 5 2's
complement representation, this conversion is conceptual; there is no actual
change in the bit pattern.

When an unsigned short integer is converted to long, the value of the result is
the same numerically as that of the unsigned integer. Thus, the conversion
amounts to padding with zeros on the left.

Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way.
This pattern will be called the "usual arithmetic conversions."

1. First, any operands of type char or short are converted to int, and any
operands of type unsigned char or unsigned short are converted to
unsigned int.

2. Then, if either operand is double, the other is converted to double and that
is the type of the result.

3. Otherwise, if either operand is unsighed long, the other is converted to
unsigned long and that is the type of the result.

4. Otherwise, if either operand is long, the other is converted to long and that
is the type of the result.

5. Otherwise, if one operand is long, and the other is unsigned int, they are
both converted to unsigned long and that is the type of the result.

6. Otherwise, if either operand is unsigned, the other is converted to unsigned
and that is the type cf the result.

7. Otherwise, both operands must be int, and that is the type of the result.

18-8

C LANGUAGE

Void

The (nonexistent) value of a void object may not be used in any way, and neither
explicit nor implicit conversion may be applied. Because a void expression
denotes a nonexistent value, such an expression may be used only as an
expression statement (see "Expression Statement” under "Statements”) or as the
left operand of a comma expression (see "Comma Operator” under "Expressions”).

An expression may be converted to type void by use of a cast. For example, this
makes explicit the discarding of the value of a function call used as an expression
statement.

Expressions and Operators

The precedence of expression operators is the same as the order of the major
subsections of this section, highest precedence first. Thus, for example, the
expressions referred to as the operands of + (see "Additive Operators") are those
expressions defined under "Primary Expressions”, "Unary Operators”, and
"Multiplicative Operators”. Within each subpart, the operators have the same
precedence. Left- or right-associativity is specified in each subsection for the
operators discussed therein. The precedence and associativity of all the
expression operators are summarized in the grammar of "Syntax Summary".

Otherwise, the order of evaluation of expressions is undefined. In particular, the
compiler considers itself free to compute subexpressions in the order it believes
most efficient even if the subexpressions involve side effects. Expressions
involving a commutative and associative operator (*, +, & |, %) may be
rearranged arbitrarily even in the presence of parentheses; to force a particular
order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is undefined.
Most existing implementations of C ignore integer overflows; treatment of
division by 0 and all floating-point exceptions varies between machines and is
usually adjustable by a library function.

18-9

C LANGUAGE

Primary Expressions

Primary expressions involving ., =>, subscripting, and function calls group from
left to right:

primary-expression: .
identifier

constant

string literal

(expression)

primary-expression [expression]

primary-expression (expression-listo t)

primary-expression . identifier P

primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared as

discussed below. Its type is specified by its declaration. If the type of the

identifier is "array of ...", then the value of the identifier expression is a pointer to

the first object in the array and the type of the expression is "pointer to ...". .
Moreover, an array identifier is not an lvalue expression. Likewise, an identifier

that is declared "function returning ...", when used except in the function-name

position of a call, is converted to "pointer to function returning . ..".

A constant is a primary expression. Its type may be int, long, or double
depending on its form. Character constants have type int and floating constants
have type double.

A string literal is a primary expression. Its type is originally "array of char", but
following the same rule given above for identifiers, this is modified to "pointer to
char” and the result is a pointer to the first character in the string literal. (There is
an exception in certain initializers; see "Initialization” under "Declarations.")

A parenthesized expression is a primary expression whose type and value are
identical to those of the unadorned expression. The presence of parentheses does
not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary
expression. The intuitive meaning is that of a subscript. Usually, the primary .
expression has type "pointer to ...", the subscript expression is int, and the type
of the result is "...". The expression E1[E2] is identical (by definition) to
*((E1)+(E2)). All the clues needed to understand this notation are contained in
this subpart together with the discussions in “Unary Operators” and "Additive
Operators” on identifiers, * and +, respectively. The implications are

18-10

C LANGUAGE

summarized under "Arrays, Pointers, and Subscripting” under "Types Revisited."”

A function call is a primary expression followed by parentheses containing a
possibly empty, comma-separated list of expressions that constitute the actual
arguments to the function. The primary expression must be of type "function
returning ...", and the result of the function call is of type "...". As indicated
below, a hitherto unseen identifier followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer.

Any actual arguments of type float are converted to double before the call. Any
of type char or short are converted to int. Array names are converted to pointers.
No other conversions are performed automatically; in particular, the compiler
does not compare the types of actual arguments with those of formal arguments.
If conversion is needed, use a cast; see "Unary Operators” and "Type Names"
under "Declarations.”

In preparing for the call to a function, a copy is made of each actual parameter.
Thus, all argument passing in C is strictly by value. A function may change the
values of its formal parameters, but these changes cannot affect the values of the
actual parameters. It is possible to pass a pointer on the understanding that the
function may change the value of the object to which the pointer points. An array
name is a pointer expression. The order of evaluation of arguments is undefined
by the language; take note that the various compilers differ. Recursive calls to
any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression.
The first expression must be a structure or a union, and the identifier must name
a member of the structure or union. The value is the named member of the
structure or union, and it is an lvalue if the first expression is an lvalue.

A primary expression followed by an arrow (built from — and >) followed by an
identifier is an expression. The first expression must be a pointer to a structure or
a union and the identifier must name a member of that structure or union. The
result is an lvalue referring to the named member of the structure or union to
which the pointer expression points. Thus the expression E1-> MOS is the same
as (*E1).MOS. Structures and unions are discussed in "Structure, Union, and
Enumeration Declarations" under "Declarations."

18-11

C LANGUAGE

Unary Operators
Expressions with unary operators group from right to left:

unary-expression:
* expression
& lvalue
~ expression
! expression
~ expression
++ lvalue
—lvalue
lvalue + +
lvalue —
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means "indirection”; the expression must be a pointer, and
the result is an lvalue referring to the object to which the expression points. If the
type of the expression is "pointer to .. .," the type of the resultis "...".

The result of the unary & operator is a pointer to the object referred to by the
lvalue. If the type of the Ivalue is "...", the type of the result is "pointer to .. .".

The result of the unary — operator is the negative of its operand. The usual
arithmetic conversions are performed. The negative of an unsigned quantity is
computed by subtracting its value from 2~ where n is the number of bits in the
corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! is one if the value of its operand is
zero, zero if the value of its operand is nonzero. The type of the result is it.t. It is
applicable to any arithmetic type or to pointers.

The -~ operator yields the one’s complement of its operand. The usual arithmetic
conversions are performed. The type of the operand must be integral.

The object referred to by the Ivalue operand of prefix ++ is incremented. The
value is the new value of the operand but is not an lvalue. The expression ++x
is equivalent to x += 1. See the discussions "Additive Operators" and
"Assignment Operators" for information on conversions.

The lvalue operand of prefix — is decremented analogously to the prefix ++
operator.

18-12

C LANGUAGE

When postfix ++ is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is incremented in
the same way as for the prefix ++ operator. The type of the result is the same as
the type of the lvalue expression.

When postfix — is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is decremented in
the manner as for the prefix — operator. The type of the result is the same as the
type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes
conversion of the value of the expression to the named type. This construction is
called a cast. Type names are described in "Type Names" under "Declarations.”

The sizeof operator yields the size in bytes of its operand. (A byte is undefined
by the language except in terms of the value of sizeof. However, in all existing
implementations, a byte is the space required to hold a char.) When applied to
an array, the result is the total number of bytes in the array. The size is
determined from the declarations of the objects in the expression. This expression
is semantically an unsigned constant and may be used anywhere a constant is
required. Its major use is in communication with routines like storage allocators
and VO systems.

The sizeof operator may also be applied to a parenthesized type name. In that
case it yields the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression
sizeof(type)-2 is the same as (sizeof(type))-2.

Multiplicative Operators

The multiplicative operators *, /, and % group from left to right. The usual
arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression | expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative.
Expressions with several multiplications at the same level may be rearranged by
the compiler. The binary / operator indicates division.

The binary % operator yields the remainder from the division of the first
expression by the second. The operands must be integral.

18-13

C LANGUAGE

When positive integers are divided, truncation is toward 0; but the form of
truncation is machine-dependent if either operand is negative. On all machines
covered by this manual, the remainder has the same sign as the dividend. It is
always true that (a/b)*b + a%b is equal to a (if b is not 0).

Additive Operators

The additive operators + and - group from left to right. The usual arithmetic
conversions are performed. There are some additional type possibilities for each
operator.

additive-expression:
expression + expression
expression — expression

The result of the + operator is the sum of the operands. A pointer to an object in
an array and a value of any integral type may be added. The latter is always
converted to an address offset by multiplying it by the length of the object to
which the pointer points. The result is a pointer of the same type as the original
pointer that points to another object in the same array, appropriately offset from
the original object. Thus if P is a pointer to an object in an array, the expression
P+1 is a pointer to the next object in the array. No further type combinations are
allowed for pointers.

The + operator is associative. Expressions with several additions at the same
level may be rearranged by the compiler.

The result of the — operator is the difference of the operands. The usual
arithmetic conversions are performed. Additionally, a value of any integral type
may be subtracted from a pointer, and then the same conversions for addition
apply.

If two pointers to objects of the same type are subtracted, the result is converted
(by division by the length of the object) to an int representing the number of
objects separating the pointed-to objects. This conversion will in general give
unexpected results unless the pointers point to objects in the same array, since
pointers, even to objects of the same type, do not necessarily differ by a multiple
of the object length.

18-14

C LANGUAGE

Shift Operators

The shift operators << and >> group from left to right. Both perform the usual
arithmetic conversions on their operands, each of which must be integral. Then
the right operand is converted to int; the type of the result is that of the left
operand. The result is undefined if the right operand is negative or greater than
or equal to the length of the object in bits.

shift-expression:
expression << expression
expression >> expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are O filled. The value of E1>>E2 is E1 right-shifted E2 bit
positions. The right shift is guaranteed to be logical (0 fill) if E1 is unsigned;
otherwise, it may be arithmetic.

Relational Operators
The relational operators group from left to right:

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to), and >=
(greater than or equal to) all yield 0 if the specified relation is false and 1 if it is
true. The type of the result is int. The usual arithmetic conversions are
performed. Two pointers may be compared; the result depends on the relative
locations in the address space of the pointed-to objects. Pointer comparison is
portable only when the pointers point to objects in the same array.

Equality Operators

equality-expression:
expression == expression
expression != expression

The == (equal to) and the 1= (not equal to) operators are exactly analogous to the
relational operators except for their lower precedence. (Thus a<b ==c¢<d is 1
whenever a<b and ¢<d have the same truth value.)

A pointer may be compared to an integer only if the integer is the constant 0. A
pointer to which 0 has been assigned is guaranteed not to point to any object and

18-15

C LANGUAGE

will appear to be equal to 0. In conventional usage, such a pointer is considered
to be null.

Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged.
The usual arithmetic conversions are performed. The result is the bitwise AND
function of the operands. The operator applies only to integral operands.

Bitwise Exclusive OR Operator

exclusive-or-expression:
expression ~ expression

The ~ operator is associative, and expressions involving ~ may be rearranged. The
usual arithmetic conversions are performed; the result is the bitwise exclusive OR
function of the operands. The operator applies only to integral operands.

Bitwise Inclusive OR Operator

inclusive-or-expression:
expression | expression

The | operator is associative, and expressions involving | may be rearranged. The
usual arithmetic conversions are performed; the result is the bitwise inclusive OR
function of its operands. The operator applies only to integral operands.

Logical AND Operator

logical-and-expression:
expression && expression
The && operator groups from left to right. It returns 1 if both its operands
evaluate to nonzero, 0 otherwise. Unlike & && guarantees left-to-right

evaluation; moreover, the second operand is not evaluated if the first operand
evaluates to 0.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

18-16

C LANGUAGE

Logical OR Operator

logical-or-expression:
expression || expression

The || operator groups from left to right. It returns 1 if either of its operands
evaluates to nonzero, 0 otherwise. Unlike |, Il guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the value of the first operand
evaluates to nonzero.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group from right to left. The first expression is
evaluated; if it is nonzero, the result is the value of the second expression,
otherwise that of third expression. If possible, the usual arithmetic conversions
are performed to bring the second and third expressions to a common type. If
both are structures or unions of the same type, the result has the type of the
structure or union. If both pointers are of the same type, the result has the
common type. Otherwise, one must be a pointer and the other the constant 0,
and the result has the type of the pointer. Only one of the second and third
expressions is evaluated.

Assighment Operators

There are a number of assignment operators, all of which group from right to left.
All require an lvalue as their left operand, and the type of an assignment
expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

18-17

C LANGUAGE

assignment-expression:
lvalue = expression
lvalue + = expression
lvalue ~= expression
lvalue %= expression
lvalue /= expression
lvalue %= expression
lvalue >>= expression
lvalue <<= expression
lvalue &= expression
lvalue ~= expression
lvalue |= expression

In the simple assignment with =, the value of the expression replaces that of the
object referred to by the lvalue. If both operands have arithmetic type, the right
operand is converted to the type of the left preparatory to the assignment.
Second, both operands may be structures or unions of the same type. Finally, if
the left operand is a pointer, the right operand must in general be a pointer of the
same type. However, the constant 0 may be assigned to a pointer; it is
guaranteed that this value will produce a null pointer distinguishable from a
pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by taking
it as equivalent to E1 = E1 op (E2); however, E1 is evaluated only once. In +=
and —=, the left operand may be a pointer, in which case the (integral) right
operand is converted as explained in "Additive Operators.” All right operands
and all nonpointer left operands must have arithmetic type.

Comma Operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated from left to right, and
the value of the left expression is discarded. The type and value of the result are
the type and value of the right operand. This operator groups from left to right.
In contexts where comma is given a special meaning, e.g., in lists of actual
arguments to functions (see "Primary Expressions"”) and lists of initializers (see
“Initialization” under "Declarations"), the comma operator as described in this
subpart can only appear in parentheses. For example, the expression:

f(a, (t=3, t+2), ¢)

has three arguments, the second of which has the value 5.

18-18

C LANGUAGE

Declarations

Declarations are used to specify the interpretation that C gives to each identifier;
they do not necessarily reserve storage associated with the identifier.
Declarations have the form:

declaration:

decl-specifiers declarator-listop L
The declarators in the declarator-list contain the identifiers being declared. The
decl-specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl-specifiersop ;

The list must be self-consistent in a way described below.

Storage Class Specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage. It is called a "storage class
specifier" only for syntactic convenience. See "typedef’ for more information.
The meanings of the various storage classes were discussed in "Names."

The auto, static, and register declarations also serve as definitions in that they
cause an appropriate amount of storage to be reserved. In the extern case, there
must be an external definition (see "External Definitions") for the given identifiers
somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a
hint to the compiler that the variables declared will be heavily used. Only the
first few such declarations in each function are effective. Moreover, only variables
of certain types will be stored in registers. One other restriction applies to
variables declared using register storage class: the address-of operator, &, cannot
be applied to them. Smaller, faster programs can be expected if register
declarations are used appropriately.

C LANGUAGE

At most, one sc-specifier may be given in a declaration. If the sc-specifier is
missing from a declaration, it is taken to be auto inside a function, extern outside.
Exception: functions are never automatic.

Type Specifiers
The type specifiers are:

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

At most, one of the words long or short may be specified with int; the meaning is
the same as if int were not mentioned. The word long may be specified with
float; the meaning is the same as double. The word unsigned may be specified
alone, or with int or any of its short or long varieties, or with char.

Otherwise, at most one type-specifier may be given in a declaration. In
particular, adjectival use of long, short, or unsigned is not permitted with

typedef names. If the type-specifier is missing from a declaration, it is taken to
be int.

Specifiers for structures, unions, and enumerations are discussed in "Structure,
Union, and Enumeration Declarations.” Declarations with typedef names are
discussed in "typedef.”

18-20

C LANGUAGE

Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of
declarators, each of which may have an initializer:

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:

declarator initializer opt

Initializers are discussed in "Initialization.” The specifiers in the declaration
indicate the type and storage class of the objects to which the declarators refer.
Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression

opt]

The grouping is the same as in expressions.

Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same
form as the declarator appears in an expression, it yields an object of the indicated
type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared.
If an unadorned identifier appears as a declarator, then it has the type indicated
by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the
binding of complex declarators may be altered by parentheses. See the examples
below.

Now imagine a declaration of the form:
™

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this
declaration makes the identifier have type "... T ," where the "..." is empty if
D1 is just a plain identifier (so that the type of x in “int x" is just int).

18-21

C LANGUAGE

Then if D1 has the form:

*D
the type of the contained identifier is "... pointerto T ."
If D1 has the form:
D()
then the contained identifier has the type ". .. function returning T."

If D1 has the form:
D[constant-expression)

or:

D[]

then the contained identifier has type . array of T." In the first case, the
constant expression is an expression whose value is determinable at compile time,
whose type is int, and whose value is positive. (Constant expressions are defined
precisely in "Constant Expressions.”) When several “array of" specifications are
adjacent, a multi-dimensional array is created; the constant expressions that
specify the bounds of the arrays may be missing only for the first member of the
sequence. This elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first constant
expression may also be omitted when the declarator is followed by initialization.
In this case the size is calculated from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a
structure or union, or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The
restrictions are as follows: functions may not return arrays or functions although
they may return pointers; there are no arrays of functions although there may be
arrays of pointers to functions. Likewise, a structure or union may not contain a
function; but it may contain a pointer to a function.

As an example, the declaration:
int i, *ip, (), *fip(), (*pfi)();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a
function fip returning a pointer to an integer, and a pointer pfi to a function,
which returns an integer. It is especially useful to compare the last two. The
binding of *fip() is *(fip()). The declaration suggests (and the same construction
in an expression requires) the calling of a function fip, and then the use of
indirection through the (pointer) result to yield an integer. In the declarator

18-22

C LANGUAGE

(*pfi)(), the extra parentheses are necessary (as they are also in an expression) to
indicate that indirection through a pointer to a function yields a function, which is
then called. This function returns an integer. As another example, the function:

float tfa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers.
Finally, the expression:

static int x3d[3][51[7];

declares a static 3-dimensional array of integers, with rank 3xX5X7. In complete
detail, x3d is an array of three items; each item is an array of five arrays; each of
the latter arrays is an array of seven integers. Any of the expressions x3d, x3d[i],
x3d[i][j1, x3d[il[jl[k] may reasonably appear in an expression. The first three
have type "array” and the last has type int.

Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each
member may have any type. A union is an object that may, at a given time,
contain any one of several members. Structure and union specifiers have the
same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:

struct
union

The struct-decl-list is a sequence of declarations for the members of the structure
or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

18-23

C LANGUAGE

In the usual case, a struct-declarator is just a declarator for a member of a
structure or union. A structure member may also consist of a specified number of
bits. Such a member is also called a field; its length, a non-negative constant
expression, is set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses that increase as the
declarations are read from left to right. Each non-field member of a structure
begins on an addressing boundary appropriate to its type; therefore, there may be
unnamed holes in a structure. Field members are packed into machine integers;
they do not straddle words. A field that does not fit into the space remaining in a
word is put into the next word. No field may be wider than a word. (See Figure
18-2 for sizes of basic types.)

A struct-declarator with no declarator, only a colon and a width, indicates an
unnamed field useful for padding to conform to externally-imposed layouts. As a
special case, a field with a width of 0 specifies alignment of the next field at an
implementation dependent boundary.

The language does not restrict the types of things that are declared as fields.
Moreover, even int fields may be considered to be unsigned. For these reasons, it
is strongly recommended that fields be declared as unsigned where that is the
intent. There are no arrays of fields, and the address-of operator, &, may not be
applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0
and whose size is sufficient to contain any of its members. At most, one of the
members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of:

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure
specified by the list. A subsequent declaration may then use the third form of
specifier, one of:

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also
permit the long part of the declaration to be given once and used several times. It
is illegal to declare a structure or union that contains an instance of itself, but a

18-24

C LANGUAGE

structure or union may contain a pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to a declaration
that gives the complete specification of the structure or union in situations in
which the size of the structure or union is unnecessary. The size is unnecessary
in two situations: when a pointer to a structure or union is being declared and
when a typedef name is declared to be a synonym for a structure or union. This,
for example, allows the declaration of a pair of structures that contain pointers to
each other.

The names of members and tags do not conflict with each other or with ordinary
variables. A particular name may not be used twice in the same structure, but the
same name may be used in several different structures in the same scope.

A simple but important example of a structure declaration is the following binary
tree structure:

struct tnode

{
char tword({20];
int count;
struct tnode *left;
struct tnode *right;
};

which contains an array of 20 characters, an integer, and two pointers to similar
structures. Once this declaration has been given, the declaration:

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure
of the given sort. With these declarations, the expression:

sp->count
refers to the count field of the structure to which sp points; the expression:
s.left

refers to the left subtree pointer of the structure s; and the expression:
s.right->tword[0]

refers to the first character of the tword member of the right subtree of s.

18-25

C LANGUAGE

Enumeration Declarations
Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:

identifier

identifier = constant-expression
The identifiers in an enum-list are declared as constants and may appear
wherever constants are required. If no enumerators with = appear, then the
values of the corresponding constants begin at 0 and increase by 1 as the
declaration is read from left to right. An enumerator with = gives the associated
identifier the value indicated; subsequent identifiers continue the progression
from the assigned value.

The names of enumerators in the same scope must all be distinct from each other
and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of the
structure tag in a struct-specifier; it names a particular enumeration. For example,
the segment:

enum color { chartreuse, burgundy, claret=20, winedark };
enum color =*cp, col;

col = claret;
cp = &col;

if (*cp == burgundy)

makes color the enumeration-tag of a type describing various colors, and then
declares cp as a pointer to an object of that type and col as an object of that type.
The possible values are drawn from the set {0,1,20,21}.

18-26

C LANGUAGE

Initialization

A declarator may specify an initial value for the identifier being declared. The
initializer is preceded by = and consists of an expression or a list of values nested
in braces:
initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be
constant expressions, which are described in "Constant Expressions,” or
expressions that reduce to the address of a previously declared variable, possibly
offset by a constant expression. Automatic or register variables may be initialized
by arbitrary expressions involving constants and previously declared variables and
functions.

Static and external variables that are not initialized are guaranteed to start off as
zero. Automatic and register variables that are not initialized are guaranteed to
start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it
consists of a single expression, perhaps in braces. The initial value of the object is
taken from the expression; the same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer
consists of a brace-enclosed, comma-separated list of initializers for the members
of the aggregate written in increasing subscript or member order. If the aggregate
contains subaggregates, this rule applies recursively to the members of the
aggregate. If there are fewer initializers in the list than there are members of the
aggregate, then the aggregate is padded with zeros. It is not permitted to
initialize unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins with a left brace,
then the succeeding comma-separated list of initializers initializes the members of
the aggregate; it is erroneous for there to be more initializers than members. If,
however, the initializer does not begin with a left brace, then only enough
elements from the list are taken to account for the members of the aggregate; any
remaining members are left to initialize the next member of the aggregate of
which the current aggregate is a part.

18-27

C LANGUAGE

A final abbreviation allows a char array to be initialized by a string literal. In this
case successive characters of the string literal initialize the members of the array.
For example, the expression:

int X[] ={1: 3!5};

declares and initializes X as a one-dimensional array that has three members,
since no size was specified and there are three initializers. The expression:

float y[4][3] =
{
{1,3,5},
{2,4,6},
{3,5,7},
I

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the
array Y[0], namely y[0][0], y[Q]{1], and y[0][2]. Likewise, the next two lines
initialize y[1] and y[2]. The initializer ends early and therefore y[3] is initialized
with 0. Precisely the same effect could have been achieved by:

float y[4][3] =
{

1,3,5,2,4,6,3,5,7
b

The initializer for y begins with a left brace but that for y[0] does not; therefore,
three elements from the list are used. Likewise, the next three are taken
successively for y[1] and y[2]. Also, the expression:

float y[4][3] =
{1h{24L{3}L {4}

initializes the first column of y (regarded as a two-dimensional array) and leaves
the rest 0.

Finally, the expression:
char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string literal. The

length of the string (or size of the array) includes the terminating NUL character,
\0.

18-28

C LANGUAGE

Type Names

In two contexts (to specify type conversions explicitly via a cast and as an
argument of sizeof), it is desired to supply the name of a data type. This is
accomplished using a "type name,” which in essence is a declaration for an object
of that type that omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression opt]

To avoid ambiguity, in the construction:
(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is
possible to identify uniquely the location in the abstract-declarator where the
identifier would appear if the construction were a declarator in a declaration. The
named type is then the same as the type of the hypothetical identifier. For
example, the expressions:

int

int *

int *[3)]

int (*) (3]
int *()

int (*) O
int (*[31) 0O

name respectively the types "integer," "pointer to integer," "array of three pointers
to integers,” "pointer to an array of three integers,” “"function returning pointer to
integer," "pointer to function returning an integer," and "array of three pointers to

functions returning an integer."

18-29

C LANGUAGE

Implicit Declarations

It is not always necessary to specify both the storage class and the type of
identifiers in a declaration. The storage class is supplied by the context in
external definitions and in declarations of formal parameters and structure
members. In a declaration inside a function, if a storage class but no type is
given, the identifier is assumed to be int; if a type but no storage class is
indicated, the identifier is assumed to be auto. An exception to the latter rule is
made for functions because auto functions do not exist. If the type of an
identifier is "function returning . ..," it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is
contextually declared to be "function returning int.”

typedef

Declarations whose “storage class” is typedef do not define storage, but instead
define identifiers that can be used later as if they were type keywords naming
fundamental or derived types:

typedef-name:
identifier
Within the scope of a declaration involving typedef, each identifier appearing as
part of any declarator therein becomes syntactically equivalent to the type

keyword naming the type associated with the identifier in the way described in
"Meaning of Declarators.” For example, after:

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions:

MILES distance;
extern KLICKSP metricp;
complex z, xzp;

are all legal declarations; the type of distance is int, that of metricp is "pointer to
int," and that of z is the specified structure. The zp is a pointer to such a
structure.

The typedef does not introduce brand-new types, only synonyms for types that
could be specified in another way. Thus, distance in the example above is
considered to have exactly the same type as any other int object.

18-30

C LANGUAGE

Statements

Except as indicated, statements are executed in sequence.

Expression Statement
Most statements are expression statements, which have the form:
expression ;

Expression statements are usually assignments or function calls.

Compound Statement or Block

So that several statements can be used where one is expected, the compound
statement (also, and equivalently, called "block") is provided:

compound-statement:

{ declaration-list opt statement-list opt }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer
declaration is pushed down for the duration of the block, after which it resumes
its force.

Any initializations of auto or register variables are performed each time the block
is entered at the top. It is currently possible (but a bad practice) to transfer into a
block; in that case the initializations are not performed. Initializations of static
variables are performed only once when the program begins execution. Inside a
block, extern declarations do not reserve storage, so initialization is not
permitted.

18-31

C LANGUAGE

Conditional Statement
The two forms of the conditional statement are:

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; if it is nonzero, the first substatement
is executed. In the second case, the second substatement is executed if the
expression is 0. The else ambiguity is resolved by connecting an else with the
last encountered else-less if.

while Statement
The while statement has the form:
while (expression) statement

The substatement is executed repeatedly so long as the value of the expression
remains nonzero. The test takes place before each execution of the statement.

do Statement
The do statement has the form:
do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression
becomes 0. The test takes place after each execution of the statement.

for Statement
The for statement has the form:
for (exp-1 opt exp-2,, ot exp-3 opt) statement
Except for the behavior of continue, this statement is equivalent to:

exp-1 ;
while (exp-2)
{

statement
exp-3 ;
}

Thus the first expression specifies initialization for the loop; the second specifies a
test, made before each iteration, such that the loop is exited when the expression

18-32

C LANGUAGE

becomes 0. The third expression often specifies an incrementing that is
performed after each iteration.

Any or all the expressions may be dropped. A missing exp-2 makes the implied
while clause equivalent to while(1); other missing expressions are simply dropped
from the expansion above.

switch Statement

The switch statement causes control to be transferred to one of several statements
depending on the value of an expression. It has the form:

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result
must be int. The statement is typically compound. Any statement within the
statement may be labeled with one or more case prefixes as follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in the
same switch may have the same value. Constant expressions are precisely
defined in "Constant Expressions.”

There may also be at most one statement prefix of the form:
default :
which properly goes at the end of the case constants.

When the switch statement is executed, its expression is evaluated and compared
in turn with each case constant. If one of the case constants is equal to the value
of the expression, control is passed to the statement following the matched case
prefix. If no case constant matches the expression and if there is a default prefix,
control passes to the statement prefixed by default. If no case matches and if
there is no default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues
unimpeded across such prefixes. That is, once a case constant is matched, all
case statements (and the default) from there to the end of the switch are
executed. To exit from a switch, see "break Statement."

Usually, the statement that is the subject of a switch is compound. Declarations
may appear at the head of this statement, but initializations of automatic or

register variables are ineffective. A simple example of a complete switch
statement is:

18-33

C LANGUAGE
m switch () {

case “0°:
oflag = TRUE;
break;

case ‘p”:
pflag = TRUE;
break;

case ‘r’:
rflag = TRUE;
break;

default :
(void) fprintf(stderr, *“Unkmnown option\n¥);
exit (2);

}

break Statement

The statement break ; causes termination of the smallest enclosing while, do, for,
or switch statement; control passes to the statement following the terminated
statement.

continue Statement

The statement continue ; causes control to pass to the loop-continuation portion
of the smallest enclosing while, do, or for statement; that is to the end of the
loop. More precisely, in each of the statements below, a continue is equivalent to
goto contin:

while (...) do for (...)
{ { {
contin;.; conbin;.; contin;.;
} } while (...); }

(Following the contin: is a null statement; see "Null Statement.")

return Statement

A function returns to its caller by means of the return statement, which has one of
the forms below:

return ;
return expression ;

In the first case, the returned value is undefined. In the second case, the value of
18-34

C LANGUAGE

the expression is returned to the caller of the function. If required, the expression
is converted, as if by assignment, to the type of function in which it appears.
Flowing off the end of a function is equivalent to a return with no returned value.

goto Statement
Control may be transferred unconditionally by means of the statement:
goto identifier ;

The identifier must be a label (see "Labeled Statement”) located in the current
function.

Labeled Statement
Any statement may be preceded by label prefixes of the form:
identifier :
which serve to declare the identifier as a label. The only use of a label is as a

target of a goto. The scope of a label is the current function, excluding any
subblocks in which the same identifier has been redeclared. See "Scope Rules.”

Null Statement

The null statement has the form:

A null statement is useful to carry a label just before the } of a compound
statement or to supply a null body to a looping statement such as while.

External Definitions

A C program consists of a sequence of external definitions. An external definition
declares an identifier to have storage class extern (by default) or perhaps static,
and a specified type. The type-specifier (see "Type Specifiers” in "Declarations")
may also be empty, in which case the type is taken to be int. The scope of
external definitions persists to the end of the file in which they are declared just
as the effect of declarations persists to the end of a block. The syntax of external
definitions is the same as that of all declarations except that only at this level may
the code for functions be given.

18-35

C LANGUAGE

External Function Definitions
Function definitions have the form:

function-definition:
decl-speciﬁersop ; function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see
“Scope of Externals” in "Scope Rules" for the distinction between them. A
function declarator is similar to a declarator for a “function returning ... " except
that it lists the formal parameters of the function being defined.

function-declarator:
declarator (parameter-list opt)

parameter-list:
identifier
identifier , parameter-list
The function-body has the form:

function-body:
declaration-listopt compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in
the declaration list. Any identifiers whose type is not given are taken to be int.
The only storage class that may be specified is register; if it is specified, the
corresponding actual parameter will be copied, if possible, into a register at the
outset of the function.

A simple example of a complete function definition is:

int max(a, b, ¢c)
Rat &, b, ¢;

{
int m;
m= (a>b) ? a: b;
return((m > ¢) ? m : ¢);
}

Here int is the type-specifier; max(a, b, c) is the function-declarator; int a, b, c; is
the declaration-list for the formal parameters; { ... } is the block giving the code for
the statement.

The C program converts all float actual parameters to double, so formal
parameters declared float have their declaration adjusted to read double. All
char and short formal parameter declarations are similarly adjusted to read int.

18-36

C LANGUAGE

Also, since a reference to an array in any context (in particular as an actual
parameter) is taken to mean a pointer to the first element of the array,
declarations of formal parameters declared "array of ..." are adjusted to read
“pointer to"

External Data Definitions
An external data definition has the form:

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static, but
not auto or register.

Scope Rules

A C program need not all be compiled at the same time. The source text of the
program may be kept in several files, and precompiled routines may be loaded
from libraries. Communication among the functions of a program may be carried
out both through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what may be called the
lexical scope of an identifier, which is essentially the region of a program during
which it may be used without drawing "undefined identifier" diagnostics; and
second, the scope associated with external identifiers, which is characterized by
the rule that references to the same external identifier are references to the same
object.

Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the
definition through the end of the source file in which they appear. The lexical
scope of identifiers that are formal parameters persists through the function with
which they are associated. The lexical scope of identifiers declared at the head of
a block persists until the end of the block. The lexical scope of labels is the whole
of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block,
including the block constituting a function, any declaration of that identifier
outside the block is suspended until the end of the block.

Remember also (see the "Structure and Union” and "Enumeration” sections under
"Declarations”) that tags, identifiers associated with ordinary variables, and
identities associated with structure and union members form three distinct classes

18-37

C LANGUAGE

which do not conflict. Members and tags follow the same scope rules as other
identifiers. The enum constants are in the same class as ordinary variables and
follow the same scope rules. The typedef names are in the same class as ordinary
identifiers. They may be redeclared in inner blocks, but an explicit type must be
given in the inner declaration:

typedef float distance;

{
int distance;

The second declaration must contain the int, or it would be taken as a declaration
with no declarators and type distance.

Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere among
the files or libraries constituting the complete program there must be at least one
external definition for the identifier. All functions in a given program that refer to
the same external identifier refer to the same object, so care must be taken that
the type and size specified in the definition are compatible with those specified by
each function that references the data.

It is illegal to explicitly initialize any external identifier more than once in the set
of files and libraries comprising a multi-file program. It is legal to have more than
one data definition for any external non-function identifier; explicit use of extern
does not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class takes on an
additional meaning. In these environments, the explicit appearance of the extern
keyword in external data declarations of identities without initialization indicates
that the storage for the identifiers is allocated elsewhere, either in this file or
another file. It is required that there be exactly one definition of each external
identifier (without extern) in the set of files and libraries comprising a mult-file
program.

Identifiers declared static at the top level in external definitions are not visible in
other files. Functions may be declared static.

18-38

C LANGUAGE

Compiler Control Lines

The C compilation system contains a preprocessor capable of macro substitution,
conditional compilation, and inclusion of named files. Lines beginning with #
communicate with this preprocessor. There may be any number of blanks and
horizontal tabs between the # and the directive, but no additional material (such
as comments) is permitted. These lines have syntax independent of the rest of
the language; they may appear anywhere and have effect that lasts (independent
of scope) until the end of the source program file.

Token Replacement
A control line of the form:
#define identifier token-string opt

causes the preprocessor to replace subsequent instances of the identifier with the
given string of tokens. Semicolons in or at the end of the token-string are part of
that string. A line of the form:

#define identifier(identifier, ...) token-stringopt

where there is no space between the first identifier and the (, is a macro definition
with arguments. There may be zero or more formal parameters. Subsequent
instances of the first identifier followed by a (, a sequence of tokens delimited by
commas, and a) are replaced by the token string in the definition. Each
occurrence of an identifier mentioned in the formal parameter list of the definition
is replaced by the corresponding token string from the call. The actual arguments
in the call are token strings separated by commas; however, commas in quoted
strings or protected by parentheses do not separate arguments. The number of
formal and actual parameters must be the same. Strings and character constants
in the token-string are scanned for formal parameters, but strings and character

constants in the rest of the program are not scanned for defined identifiers to
replace.

In both forms the replacement string is rescanned for more defined identifiers. In
both forms a long definition may be continued on another line by writing \ at the
end of the line to be continued. This facility is most valuable for definition of
"manifest constants,"” as in:

#define TABSIZE 100

int table [TABSIZE];

18-39

C LANGUAGE

A control line of the form:
#undef identifier
causes the identifier's preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no intervening
#undef, then the two token-strings are compared textually. If the two token-
strings are not identical (all white space is considered as equivalent), then the
identifier is considered to be redefined.

File Inclusion
A control line of the form:
#include “filename"

causes the replacement of that line by the entire contents of the file filename. The
named file is searched for first in the directory of the file containing the #include,
and then in a sequence of specified or standard places. Alternatively, a control
line of the form

#include <filename >

searches only the specified or standard places and not the directory of the
#include. (How the places are specified is not part of the language. See cpp(1)
for a description of how to specify additional libraries.)

The #includes may be nested.

Conditional Compilation
A compiler control line of the form:
#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero.
(Constant expressions are discussed in "Constant Expressions”; the following
additional restrictions apply here: the constant expression may not contain
sizeof, casts, or an enumeration constant.)

18-40

C LANGUAGE

A restricted-constant expression may also contain the additional unary expression:
defined identifier

or:
defined (identifier)

which evaluates to 1 if the identifier is currently defined in the preprocessor and
to 0 if it is not.

All currently defined identifiers in restricted-constant-expressions are replaced by
their token-strings (except those identifiers modified by defined) just as in normal
text. The restricted-constant expression will be evaluated only after all
expressions have finished. During this evaluation, all undefined (to the
procedure) identifiers evaluate to zero.

A control line of the form:
#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e.,
whether it has been the subject of a #define control line. It is equivalent to #if
defined (identifier).

A control line of the form:
#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is
equivalent to #if Idefined (identifier).

All three forms are followed by an arbitrary number of lines, possibly containing a
control line:

#else
and then by a control line:
#endif

If the checked condition is true, then any lines between #else and #endif are
ignored. If the checked condition is false, then any lines between the test and a
#else or, lacking a #else, the #endif are ignored.

Another control directive is:
#elif restricted-constant-expression

An arbitrary number of #elif directives can be included between #if, #ifdef, or
#ifndef and #else, or #endif directives. These constructions may be nested.

18-41

C LANGUAGE

Line Control

For the benefit of other preprocessors that generate C programs, a line of the
form:

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the line
number of the next source line is given by the constant and the current input file
is named by "filename". 1f “filename” is absent, the remembered file name does not
change.

Version Control

This capability, known as S-lists, helps administer version control information. A
line of the form:

#ident "version"

puts any arbitrary string in the .comment section of the a.out file. It is usually
used for version control. It is worth remembering that .comment sections are not
loaded into memory when the a.out file is executed.

Types Revisited

This part summarizes the operations that can be performed on objects of certain

types.

Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and
returned by functions. Other plausible operators, such as equality comparison
and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of the —> or
the . must specify a member of the aggregate named or pointed to by the
expression on the left. In general, a member of a union may not be inspected
unless the value of the union has been assigned using that same member.
However, one special guarantee is made by the language in order to simplify the
use of unions: if a union contains several structures that share a common initial
sequence and if the union currently contains one of these structures, it is
permitted to inspect the common initial part of any of the contained structures.

18-42

C LANGUAGE

For example, the following is a legal fragment:

union
{
struct
{
int type.:
} n;
struct
{
int type;
int intnode;
} ni;
struct
{
int type:
float floatnode;
} nf;
} u;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)
. sin(u.nf.floatnode)

Functions

There are only two things that can be done with a function: call it or take its
address. If the name of a function appears in an expression not in the function-
name position of a call, a pointer to the function is generated. Thus, to pass one
function to another, one might say:

int £Q);

s.;-(i-!);

18-43

C LANGUAGE

Then the definition of g might read:

g(funcp)

int (*funcp)) ;
{

(xfunep)) ;
b4

Notice that f must be declared explicitly in the calling routine since its appearance
in g(f) was not followed by (.

Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted into
a pointer to the first member of the array. Because of this conversion, arrays are
not lvalues. By definition, the subscript operator [] is interpreted in such a way
that E1[E2] is identical to *((E1)+(EZ2)). Because of the conversion rules that
apply to +, if E1 is an array and E2 an integer, then E1[E2] refers to the E2 -th
member of E1. Therefore, despite its asymmetric appearance, subscripting is a
commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If E is an n-
dimensional array of rank iXjX...xk, then E appearing in an expression is
converted to a pointer to an (n-1)-dimensional array with rank jx...xk. If the *
operator, either explicitly or implicitly as a result of subscripting, is applied to this
pointer, the result is the pointed-to (n-1)-dimensional array, which itself is
immediately converted into a pointer.

For example, consider int x[3][5]; Here x is a 3X5 array of integers. When x
appears in an expression, it is converted to a pointer to (the first of three) 5-
membered arrays of integers. In the expression x[i], which is equivalent to
*(x+1), x is first converted to a pointer as described. Then i is converted to the
type of x, which involves multiplying i by the length of the object to which the
pointer points, namely five-integer objects. The results are added and indirection
applied to yield an array (of five integers) which in turn is converted to a pointer
to the first of the integers. If there is another subscript, the same argument
applies again; this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first
subscript in the declaration helps determine the amount of storage consumed by
an array. Arrays play no other part in subscript calculations.

18-44

C LANGUAGE

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation-
dependent aspects. They are all specified by means of an explicit type-conversion
operator (see "Unary Operators” under "Expressions” and "Type Names" under
"Declarations”).

A pointer may be converted to any of the integral types large enough to hold it.
Whether an int or long is required is machine-dependent. The mapping function
is also machine-dependent, but is intended to be unsurprising to those who know
the addressing structure of the machine.

An object of integral type may be explicitly converted to a pointer. The mapping
always carries an integer converted from a pointer back to the same pointer but is
otherwise machine-dependent.

A pointer to one type may be converted to a pointer to another type. The
resulting pointer may cause addressing exceptions when used if the subject
pointer does not refer to an object suitably aligned in storage. It is guaranteed
that a pointer to an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an
object to allocate, and return a char pointer; it might be used in this way:

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof (double));
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is
suitable for conversion to a pointer to double; then the use of the function is
portable.

Constant Expressions

In several places, C requires expressions that evaluate to a constant: after case,
as array bounds, and in initializers. In the first two cases, the expression can
involve only integer constants, character constants, casts to integral types,
enumeration constants, and sizeof expressions, possibly connected by the binary
operators:

18-45

C LANGUAGE

+=*1%&| << >>==l=<><=>=8&&ll

or by the unary operators:

or by the ternary operator:
9.

Parentheses can be used for grouping, but not for function calls.

More latitude is permitted for initializers. Besides constant expressions as
discussed above, one can also use floating constants and arbitrary casts and can
also apply the unary & operator to external or static objects and to external or
static arrays subscripted with a constant expression. The unary & can also be
applied implicitly by appearance of unsubscripted arrays and functions. The basic
rule is that initializers must evaluate either to a constant or to the address of a
previously declared external or static object plus or minus a constant.

Portability Considerations

Certain parts of C are inherently machine-dependent. The following list of
potential trouble spots is not meant to be all-inclusive but to point out the main
ones.

Purely hardware issues like word size and the properties of floating-point
arithmetic or integer division have proven to be not much of a problem. Other
facets of the hardware are reflected in differing implementations. Some of these,
particularly sign extension (converting a negative character into a negative integer)
and the order in which bytes are placed in a word, are nuisances that must be
carefully watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies
from machine to machine as does the set of valid types. Nonetheless, the
compilers all do things properly for their own machine; excess or invalid register
declarations are ignored.

The order of evaluation of function arguments is not specified by the language.
The order in which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter character
constants may be permitted. The specific implementation is very machine-
dependent because the order in which characters are assigned to a word varies
from one machine to another.

18-46

C LANGUAGE

Fields are assigned to words and characters to integers right to left on some
machines and left to right on other machines. These differences are invisible to
isolated programs that do not indulge in type punning (e.g., by converting an int
pointer to a char pointer and inspecting the pointed-to storage) but must be
accounted for when conforming to externally-imposed storage layouts.

Syntax Summary

This summary of C syntax is intended more for aiding comprehension than as an
exact statement of the language.

Expressions
The basic expressions are:

expression:
primary
* expression
& lvalue
— expression
! expression
~ expression
++ lvalue
— lvalue
lvalue ++
lvalue —
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression , expression

18-47

C LANGUAGE

primary:
identifier
constant
string literal
(expression)
primary (expression-listo ;)
primary [expression]
primary . identifier
primary > identifier
lvalue:
identifier
primary [expression]
lvalue . identifier
primary —> identifier
* expression
(lvalue)

The primary-expression operators:
on.->

have highest priority and group from left to right. The unary operators:
* & — ! - ++ — sizeof (type-name)

have priority below the primary operators but higher than any binary operator.
They group from right to left. Binary operators group from left to right; they have
priority decreasing as indicated below.

binop:

~
R

\
A
A

-V
A
]
\
]

TR IAV+*

R

The conditional operator groups from right to left.

Assignment operators all have the same priority and all group from right to left.

18-48

C LANGUAGE

asgnop.‘

The comma operator has the lowest priority and groups from left to right.

Declarations

declaration:

decl-specifiers init-declarator—listopt ;

decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl-specifiers | ot

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
. struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

. enum-specifier:

enum { enum-list }
enum identifier { enum-list }
enum identifier

18-49

C LANGUAGE

enum-list:
enumerator
enum-list , enumerator

enumerator: .
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:

declarator mztlalzzeropt

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression opt]

struct-or-union-specifier: .
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier
struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator: .
declarator
declarator : constant-expression
: constant-expression

18-50

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

lype-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression

typedef-name:
identifier

opt I

Statements

compound-statement:
{ declaration-list opt statement-list opt }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

C LANGUAGE

18-51

C LANGUAGE

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expopt;expont;expo ¢) statement
switch (‘expression) statement
case constant-expression : statement
default : statement
break ;
continue ;
return ;
return expression ;
goto identifier ;
identifier : statement

7

External Definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition
function-definition:
decl-specifier opt function-declarator function-body

function-declarator:
declarator (parameter-list

opt)

parameter-list:

identifier

identifier , parameter-list
function-body:

declaration-list opt compound-statement

18-52

C LANGUAGE

data-definition:
extern declaration ;
static declaration ;

Preprocessor

#define identifier token-string
#define identifier(identifier,.. flp fcen strzng
#undef identifier

#include “filename"

#include <filename >

#if restricted-constant-expression
#ifdef identifier

#itndef identifier

#elif restricted-constant-expression
#else

#endif

#line constant “filename"

. #ident "version"

18-53

CHAPTER 19
SYSTEM ASSEMBLER

Introduction

This is a reference manual for the SYSTEM V/68 resident assembler, as.
Programmers familiar with the M68XXX family of processors should be able to
program in as by referring to this manual, but this is not a manual for the
processors. Details about the effects of instructions, the meanings of status
register bits, the handling of interrupts, and many other issues are not dealt with
here. This manual, therefore, should be used in conjunction with the following
reference manuals:

e M68000 8-/16-/32-Bit Microprocessors Programmer’s Reference Manual, Fifth
Edition; Englewood Cliffs, NJ: PRENTICE-HALL, 1986. This manual is also
available from the Motorola Literature Distribution Center, part number
M68000UM/AD REV 4.

e MC68020 32-Bit Microprocessor User's Manual; Englewood Cliffs, NJ:
PRENTICE-HALL, 1984. This manual is also available from the Motorola
Literature Distribution Center, part number MC68020UM/AD REV 1.

e MC68030 Enhanced 32-Bit Microprocessor User's Manual; MOTOROLA, 1987.
This manual is available from the Motorola Literature Distribution Center, part
number MC68030UM/AD.

e MC68881 Floating Point Coprocessor User's Manual, MC68881UM/AD;
MOTOROLA, 1985. This manual is available from the Motorola Literature
Distribution Center, part number MC68881UM/AD.

e MC68851 Paged Memory Management Unit User’s Manual, MC68851UM/AD;
Englewood Cliffs, NJ: PRENTICE-HALL, 1986. This manual is also available
from the Motorola Literature Distribution Center, part number
MC68851UM/AD.

e M68000 Family Resident Structured Assembler Reference Manual,
M68KMASM.

e SYSTEM V/68 User's Reference Manual, MU43810UR/D3.

For users of the SGS M68020 Cross Compilation System, references to as(l)
and cc(1) should be read as as20(1) and cc20(1) if you have a MC68020
processor system or as30(1) and cc30(1) if you have a MC68030 processor

19-1

SYSTEM ASSEMBLER

system. Information about the MC68020 commands is provided in the SGS
M68020 Cross Compilation System Reference Manual, M6BKUNASX.

Warnings

A few important warnings to the as user should be emphasized at the outset.
Though for the most part there is a direct correspondence between as notation and
the notation used in the documents listed in the preceding section, several
exceptions exist that could lead the unsuspecting user to write incorrect code. In
addition to the exceptions described in the following paragraphs, refer also to the
"Address Mode Syntax" and "Machine Instructions” sections later in this chapter
for further information.

Comparison Instructions

First, the order of the operands in compare instructions follows one convention in
the M68000 Programmer’s Reference Manual and the opposite convention in as.
Using the convention of the M68000 Programmer’s Reference Manual, one might
write:

CMP.W D5, D3 Is D3 less than D5?
BLE IS_LESS Branch if less.

Using the as convention, one would write:

cmp.w %d3,%d5 # Is d3 less than d5 ?
ble is_less # Branch if less.

This convention makes for straightforward reading of compare-and-branch
instruction sequences, but does nonetheless lead to the peculiarity that if a
compare instruction is replaced by a subtract instruction, the effect on the condition
codes will be entirely different. This may be confusing to programmers who are
used to thinking of a comparison as a subtraction whose result is not stored.
Users of as who become accustomed to the convention will find that both the
compare and subtract notations make sense in their respective contexts.

Overloading of Opcodes

Another issue that users must be aware of arises from the M68000 processors’ use
of several different instructions to do more or less the same thing. For example,
the M68000 Programmer’s Reference Manual lists the instructions SUB, SUBA,
SUBI, and SUBQ, which all have the effect of subtracting their source operand
from their destination operand. As provides the convenience of allowing all these
operations to be specified by a single assembly instruction sub. Based on the

19-2

SYSTEM ASSEMBLER

operands given to the sub instruction, the as assembler selects the appropriate
M68000 operation code. The danger created by this convenience is that it could
leave the misleading impression that all forms of the SUB operation are
semantically identical. In fact, they are not. The careful reader of the M68000
Programmer’s Reference Manual will notice that whereas SUB, SUBI, and SUBQ all
affect the condition codes in a consistent way, SUBA does not affect the condition
codes at all. Consequently, the as user must be aware that when the destination
of a sub instruction is an address register (which causes the sub to be mapped
into the operation code for SUBA), the condition codes will not be affected.

Use of the Assembler
The SYSTEM V/68 command as invokes the assembler and has the following
syntax:

as [—o output] file

When as is invoked with the —o output flag, the output of the assembly is put in
the file output. If the —o flag is not specified, the output is left in a file whose
name is formed by removing the .8 suffix, if there is one, from the input filename
and appending a .0 suffix.

The M68020 cross assembler, as20(1), is invoked with the same syntax as as(l1).
For information about additional options for these commands, refer to the
SYSTEM VI/68 Programmer’s Reference Manual for as(1) and the SGS M68020 Cross
Compilation System Reference Manual for as20(1).

General Syntax Rules

Format of Assembly Language Line

Typical lines of as assembly code look like these:

SYSTEM ASSEMBLER

Clear a block of memory at location %a3

text 2
mov.w &conset, %d1
loop: clr.l (%a3)+
db? %d1,loop # go back for const

repetitions

init2:
clr.l count; clr.l credit; clr.l debit;

These general points about the example should be noted:

— An identifier occurring at the beginning of a line and followed by a colon (:) is
a label. One or more labels may precede any assembly language instruction or
pseudo-operation. Refer to "Location Counters and Labels" later in this
chapter.

— A line of assembly code need not include an instruction. It may consist of a
comment alone (introduced by #), a label alone (terminated by :), or it may be
entirely blank.

— It is good practice to use tabs to align assembly language operations and their
operands into columns, but this is not a requirement of the assembler. An
opcode may appear at the beginning of the line, if desired, and spaces may
precede a label. A single blank or tab suffices to separate an opcode from its
operands. Additional blanks and tabs are ignored by the assembler.

- It is permissible to write several instructions on one line separating them by
semicolons. The semicolon is syntactically equivalent to a newline character;
however, a semicolon inside a comment is ignored.

Comments

Comments are introduced by the character # and continue to the end of the line.

Comments may appear anywhere and are completely disregarded by the
assembler.

Identifiers

An identifier is a string of characters taken from the set a-z, A-Z, _, ", %, and 0-
9. The first character of an identifier must be a letter (uppercase or lowercase) or

an underscore. Uppercase and lowercase letters are distinguished; for example,
cond5 and CON35 are two distinct identifiers.

There is no limit on the length of an identifier. The value of an identifier is

19-4

SYSTEM ASSEMBLER

established by the set pseudo-operation (refer to "Symbol Definition Operations")
or by using it as a label (refer to "Location Counters and Labels").

The tilde character (") has special significance to the assembler. A - used alone,
as an identifier, means "the current location." More specifically, a = used in an
instruction means -the value of the program counter at the beginning of that
instruction and a tilde used in a pseudo-instruction means the current value of
the location counter for the current section. A~ used as the first character in an
identifier becomes a period (.) in the symbol table, allowing symbols such as .e0s
and .0fake to be entered into the symbol table, as required by the Common Object
File Format (COFF). Information about file formats is provided in the
Programmer’s Reference Manual.

Register Identifiers

A register identifier is an identifier preceded by the character %. It represents one
of the MC68000 processor’s registers.
The predefined register identifiers are:

%d0 %d4 %a0 %a4 %cc Tousp
%dl %d5 %al %a5 %pc %fp
%d2 %d6 %a2 %ab %sp %ccr
%d3 %d7 %a3 %a7 %sr

Notes:

%c¢ and %ccr are equivalent.

The identifiers %a7 and %sp represent the same machine register. Likewise, %a6
and %fp are equivalent. Use of both %a7 and %s$p, or %a6 and %fp, in the same
program may result in confusion.

With the proper option, the assembler will correctly assemble instructions
intended for the M68010. The entire register set of the MC68000 is included in the
MC68010 register set. The following are new control registers for the MC68010.

REGISTERS ADDED FOR THE MC68010
NAME DESCRIPTION
%sfc,%sfcr | Source Function Code Register
%dfc,%dfcr | Destination Function Code Register
%vbr Vector Base Register

19-5

SYSTEM ASSEMBLER

Notes:
%sfc and %sfcr are equivalent.
%dfc and %dfcr are equivalent.

The entire register set of the MC68010 is included in the MC68020 register set.
The following are new control registers for the MC68020:

MC68020 REGISTERS
NAME | DESCRIPTION
%caar | Cache Address Register
Jocacr Cache Control Register
Pisp Interrupt Stack Pointer
%msp | Master Stack Pointer

The entire register set of the MC68020 is included in the MC68030 register set.
The following are control registers for the MC68030:

MC68030 REGISTERS .
NAME DESCRIPTION
Jocrp Cpu Root Pointer Register
Josrp Supervisor Root Pointer Register
otc _Translation Control Register
% tt0 Transparent Translation Register 0
%ttl Transparent Translation Register 1
%mmusr | Memory Management Unit Status Register

Notes:
The new MC68030 registers are dedicated to memory management.
Y%mmusr is equivalent to the %psr on the MC68851.

The following are suppressed registers (zero registers) used in various MC68020
addressing modes. .

19-6

SYSTEM ASSEMBLER

MC68020 ZERO REGISTERS

SUPPRESSED SUPPRESSED SUPPRESSED
ADDRESS REGISTERS | DATA REGISTERS PROGRAM COUNTER

%zal %zd0 %zpcC

%zal %zdl

%za2 %zd2

%za3 %zd3

% zad %zd4

%zab %zd5

% zab %zd6

%za7 %zd7

Constants

as deals only with integer constants. They may be entered in decimal, octal, or
hexadecimal, or they may be entered as character constants. Internally, as treats
all constants as 32-bit binary two’s complement quantities.

Numerical Constants.

A decimal constant is a string of digits beginning with a non-zero digit. An octal
constant is a string of digits beginning with zero. A hexadecimal constant
consists of the characters 0x or 0X followed by a string of characters from the set
0-9, a-f, and A-F. In hexadecimal constants, uppercase and lowercase letters are
not distinguished.

Examples:
set const,35 # Decimal 35
mov.w &035,%d1 # Octal 35 (decimal 29)
set const, 0x35 # Hex 35 (decimal 53)

mov.w &Oxff,%d1 # Hex ff (decimal 255)

Character Constants.

An ordinary character constant consists of a single-quote character () followed by
an arbitrary ASCI character other than the backslash (\). The value of the
constant is equal to the ASCII code for the character. Special meanings of
characters are overridden when used in character constants; for example, if '# is
used, the # is not treated as introducing a comment.

19-7

SYSTEM ASSEMBLER

A special character constant consists of "\ followed by another character. All the
special character constants and examples of ordinary character constants are listed
in the following table.

CONSTANT VALUE MEANING
"\b 0x08 Backspace
\t 0x09 Horizontal Tab
\n 0x0a Newline (Line Feed)
\v 0x0b Vertical Tab
\f 0x0c Form Feed
\r 0x0d Carriage Return
"\ 0x5¢ Backslash
re 0x27 Single Quote
0 0x30 Zero
‘A Ox41 Uppercase A
‘a 0x61 Lowercase a

Other Syntactic Details

For a discussion of expression syntax, see "Expressions” in this chapter. For
information about the syntax of specific components of as instructions and
pseudo-operations, see "Pseudo-Operations” and "Address Mode Syntax."

Segments, Location Counters, And Labels

Segments

A program in as assembly language may be broken into segments known as text,
data, and bss segments. The convention regarding the use of these segments is to
place instructions in text segments, initialized data in data segments, and
uninitialized data in bss segments. However, the assembler does not enforce this
convention; for example, it permits intermixing of instructions and data in a fext
segment.

Primarily to simplify compiler code generation, the assembler permits up to four
separate text segments and four separate data segments named 0, 1, 2, and 3. The
assembly language program may switch freely between them by using assembler
pseudo-operations (refer to ‘‘Location Counter Control Operations””). When
generating the object file, the assembler concatenates the fext segments to
generate a single text segment, and the data segments to generate a single data
segment. Thus, the object file contains only one fext segment and only one data
segment. There is always only one bss segment and it maps directly into the
object file.

19-8

SYSTEM ASSEMBLER

Because the assembler keeps together everything from a given segment when
generating the object file, the order in which information appears in the object file
may not be the same as in the assembly language file. For example, if the data
for a program consisted of:

data 1 # segment 1
short 0x1111
data O # segment 0
long OxSEEEEfEE
data 1 # segment 1
byte Oxff

then equivalent object code would be generated by:

data 0

long OxfreEeeee
short 0Ox1111
byte Oxff

Location Counters and Labels

The assembler maintains separate location counters for the bss segment and for each
of the text and data segments. The location counter for a given segment is
incremented by one for each byte generated in that segment.

The location counters allow values to be assigned to labels. When an identifier is
used as a label in the assembly language input, the current value of the current
location counter is assigned to the identifier. The assembler also keeps track of
which segment the label appeared in. Thus, the identifier represents a memory
location relative to the beginning of a particular segment. Any label relative to
the location counter should be within the text segment.

Types
Identifiers and expressions may have values of different types.

— In the simplest case, an expression (or identifier) may have an absolute value,
such as 29, -5000, or 262143.

— An expression (or identifier) may have a value relative to the start of a
particular segment. Such a value is known as a relocatable value. The memory
location represented by such an expression cannot be known at assembly time,
but the relative values of two such expressions (i.e., the difference between
them) can be known if they refer to the same segment.

SYSTEM ASSEMBLER

Identifiers which appear as labels have relocatable values.

— If an identifier is never assigned a value, it is assumed to be an undefined
external. Such identifiers may be used with the expectation that their values
will be defined in another program, and therefore known at load time; but the .
relative values of undefined externals cannot be known.

Expressions

For conciseness, the following abbreviations are useful:

abs absolute expression
rel relocatable expression
ext undefined external

All constants are absolute expressions. An identifier may be thought of as an
expression having the identifier's type. Expressions may be built up from lesser
expressions using the operators +, —, %, and /, according to the following type
rules:

abs + abs = abs

abs + rel = rel + abs = rel

abs + ext = ext + abs = ext

abs — abs = abs

rel - abs = rel

ext — abs = ext

rel — rel = abs

(provided that the two relocatable expressions are relative to the same segment)

abs * abs = abs
abs / abs = abs
- abs = abs

Note that rel — rel expressions are permitted only within the context of a switch

statement (refer to “Switch Table Operation”). Use of a rel — rel expression is

dangerous, particularly when dealing with identifiers from text segments. The

problem is that the assembler will determine the value of the expression before it .
has resolved all questions concerning span-dependent optimizations.

The unary minus operator takes the highest precedence; the next highest
precedence is given to * and /, and lowest precedence is given to + and binary —.
Parentheses may be used to coerce the order of evaluation.

19-10

SYSTEM ASSEMBLER

If the result of a division is a positive non-integer,jt will be truncated toward
zero. If the result is a negative non-integer, M

guaranteed.
Pseudo-Operations

Data Initialization Operations

byte abs,abs,...
One or more arguments, separated by commas, may be given. The values
of the arguments are computed to produce successive bytes in the assembly
output.

short abs,abs,...
One or more arguments, separated by commas, may be given. The values
of the arguments are computed to produce successive 16-bit words in the
assembly output.

long expr,expr,...
One or more arguments, separated by commas, may be given. Each
expression may be absolute, relocatable, or undefined external. A 32-bit quantity
is generated for each such argument (in the case of relocatable or undefined
external expressions, the actual value may not be filled in until load time).

Alternatively, the arguments may be bit-field expressions. A bit-field
expression has the form:

n : value

where both n and wvalue denote absolute expressions. The quantity n
represents a field width; the low-order n bits of value become the contents of
the bit-field. Successive bit-fields fill up 32-bit long quantities starting with
the high-order part. If the sum of the lengths of the bit-fields is less than 32
bits, the assembler creates a 32-bit long with zeros filling out the low-order

bits. For example:
long 4: -1, 168: O0x7f, 12:0, BOO0OO

and:

long 4: -1, 18: 0x7f, 6000
are equivalent to:

19-11

SYSTEM ASSEMBLER

long O0x£f007£000, BOOO

Bit-fields may not span pairs of 32-bit longs. Thus:

long 24: Oxa, 24: Oxb, 24:0xc

yields the same thing as:

long 0x00000a00, 0x00000b00, 0x00000c00

space abs
The value of abs is computed, and the resultant number of bytes of zero data
is generated.
For example:

space 6
is equivalent to:

byte 0,0,0,0,0,0

Symbol Definition Operations

set identifier,expr
The value of identifier is set equal to expr, which may be absolute or
relocatable.

comm identifier,abs
The named identifier is to be assigned to a common area of size abs bytes. If
identifier is not defined by another program, the loader will allocate space for
it.

lecomm identifier,abs
The named identifier is assigned to a local common of size abs bytes. This
results in allocation of space in the bss segment.

The type of identifier becomes relocatable.

global identifier
This causes identifier to be externally visible. If identifier is defined in the
current program, then declaring it global allows the loader to resolve
references to identifier in other programs.

If identifier is not defined in the current program, the assembler expects an
external resolution; in this case, therefore, identifier is global by default.

19-12

SYSTEM ASSEMBLER

Location Counter Control Operations

data abs
The argument, if present, must evaluate to 0, 1, 2, or 3; this
indicates the number of the data segment into which assembly is
to be directed. If no argument is present, assembly is directed
into data segment 0.

text abs
The argument, if present, must evaluate to 0, 1, 2, or 3; this
indicates the number of the text segment into which assembly is
to be directed. If no argument is present, assembly is directed
into text segment 0.

Before the first text or data operation is encountered, assembly is
directed by default into text segment 0.

org expr
The current location counter is set to expr. Expr must represent a
value in the current segment, and must not be less than the
current location counter.

even
The current location counter is rounded up to the next even
value.

Symbolic Debugging Operations

The assembler allows for symbolic debugging information to be placed into the
object code file with special pseudo-operations. The information typically
includes line numbers and information about C language symbols, such as their
type and storage class. The C compiler (cc(1)) generates symbolic debugging
information when the -g option is used. Assembler programmers may also
include such information in source files.

file and In

The file pseudo-operation passes the name of the source file into the object file
symbol table. It has the form:

file filename
where filename consists of one to 14 characters enclosed in quotation marks.
The In pseudo-operation makes a line number table entry in the object file. That

is, it associates a line number with a memory location. Usually the memory

19-13

SYSTEM ASSEMBLER

location is the current location in text. The format is:
In line[,value]

where line is the line number. The optional value is the address in text, data, or
bss to associate with the line number. The default when value is omitted (which is
usually the case) is the current location in text.

Symbol Attribute Operations.

The basic symbolic testing pseudo-operations are def and endef. These
operations enclose other pseudo-vperations that assign attributes to a symbol and
must be paired.

def name
. # Attribute
. # Assigning
. # Operations
endef

NOTES

e def does not define the symbol, although it does create a symbol table entry.
Because an undefined symbol is treated as external, a symbol which appears in
a def, but which never acquires a value, will ultimately result in an error at
link edit time.

e To allow the assembler to calculate the sizes of functions for other tools, each
def/endef pair that defines a function name must be matched by a def/endef
pair after the function in which a storage class of -1 is assigned.

The paragraphs below describe the attribute-assigning operations. Keep in mind

that all these operations apply to symbol name which appeared in the opening def
pseudo-operation.

val expr

Assigns the value expr to name. The type of the expression expr determines
with which section name is associated. If the value is ~, the current location
in the text section is used.

scl expr

Declares a storage class for name. The expression expr must yield an
ABSOLUTE value that corresponds to the C compiler's internal

representation of a storage class. The special value —1 designates the
physical end of a function.

19-14

SYSTEM ASSEMBLER

type expr

tag

line

size

dim

Declares the C language type of name. The expression expr must yield an
ABSOLUTE value that corresponds to the C compiler's internal
representation of a basic or derived type.

str
Associates name with the structure, enumeration, or union named str which
must have already been declared with a def/endef pair.

expr

Provides the line number of name, where name is a block symbol. The
expression expr should yield an ABSOLUTE value that represents a line
number.

expr

Gives a size for name. The expression expr must yield an ABSOLUTE value.
When name is a structure or an array with a predetermined extent, expr gives
the size in bytes. For bit fields, the size is in bits.

exprl,expr2,...
Indicates that name is an array. Each of the expressions must yield an
ABSOLUTE value that provides the corresponding array dimension.

Switch Table Operation

The C compiler generates a compact set of instructions for the C language switch
construct. An example is shown below.

sub.! &1,%d0
cmp.l %d0,&4
bhi L%21
mov.w (%d0.w*2,L%22),%d0
jmp (%d0.w,L%22)
swbeg &5

L%22:
short L%15-L%22
short L%21-L%22
short L%16-L%22
short L%21-L%22
short L%17-L%22

The special swbeg pseudo-operation communicates to the assembler that the lines
following it contain rel-rel subtractions. Remember that ordinarily such
subtractions are risky because of span-dependent optimization. In this case,
however, the assembler makes special allowances for the subtraction because the
compiler guarantees that both symbols will be defined in the current assembler

19-15

SYSTEM ASSEMBLER

file, and that one of the symbols is a fixed distance away from the current
location.

The swbeg pseudo-operation takes an argument that looks like an immediate
operand. The argument is the number of lines that follow swbeg and that contain
switch table entries. Swbeg inserts two words into text. The first is the ILLEGAL
instruction code. The second is the number of table entries that follow. The
disassembler dis(1) needs the ILLEGAL instruction as a hint that what follows is a
switch table. Otherwise, it would get confused when it tried to decode the table
entries, differences between two symbols, as instructions.

Span-Dependent Optimization

The assembler makes certain choices about the object code it generates based on
the distance between an instruction and its operand(s). Choosing the smallest,
fastest form is called span-dependent optimization. Span-dependent optimization
occurs most obviously in the choice of object code for branches and jumps. It also
occurs when an operand may be represented by the program counter relative
address mode instead of as an absolute 2-word (long) address. The span-
dependent optimization capability is normally enabled; the —n command line flag
disables it. When this capability is disabled, the assembler makes worst-case
assumptions about the types of object code that must be generated. Span-
dependent optimizations are performed only within text segment 0. Any
reference outside text segment 0 is assumed to be worst-case.

The C compiler (cc(1)) generates branch instructions without a specific offset size.
When the optimizer is used, it identifies branches which could be represented by
the short form, and it changes the operation accordingly. The assembler chooses
only between word (16 bits) and long-word (32 bits) representations for branches.

For the MC68000 and MC68010 processors, branch instructions, e.g., bra, bsr, or
bgt, can have either a byte or a word pc-relative address operand. A byte or
word size specification should be used only when the user is sure that the address
intended can be represented in the byte or word allowed. The assembler will take
one of these instructions with a size specification and generate the byte or word
form of the instruction without asking questions.

Although the largest offset specification allowed for the MC68000 and MC68010
processors is a word, large programs could conceivably have need for a branch to
location not reachable by a word displacement. Therefore, equivalent long-word
forms of these instructions might be needed. When the assembler encounters a
branch instruction without a size specification, it tries to choose between the word
and long-word forms of the instruction. If the operand can be represented in a
word, then the word form of the instruction will be generated. Otherwise, the
long-word form will be generated. For unconditional branches, e.g., br, bra, and

19-16

SYSTEM ASSEMBLER

bsr, the long-word form is just the equivalent jump (jmp and jsr) with an
absolute address operand (instead of pc-relative). For conditional branches, the
equivalent long-word form is a conditional branch around a jump, where the
conditional test has been reversed.

The following table summarizes span-dependent optimizations. The optimizer
chooses only between the word form and long-word forms for branches (but not
bsr).

Assembler Span-Dependent Optimizations

Instruction Word Form Long-word Form
br, bra, bsr word offset | Jmp or jsr with absolute
long address
conditional branch | word offset | short conditional branch
with reversed condition
around jmp with
absolute long address

For the MC68020 and MC68030 processors, branch instructions can have either a
byte, word, or long-word pc-relative address operand.

Address Mode Syntax

The following table summarizes the as syntax for MC68000, MC68010, MC68020
and MC68030 addressing modes. Addressing modes for the MC68020 and
MC68030 are shown with “MC68020 Only” in parentheses beneath the MC68000
notation; modes not specified in this way are for all four processors.

In the table, the following abbreviations are used:
an Address register, where n is any digit from 0 through 7.

dn Data register, where n is any digit from 0 through 7. (2)
ri Index register i may be any addresgﬂ,‘agr data register, with an optional size
designation (i.e., ri.w for 16 bits or ri.l for 32 bits); default size is .W.

scl Optional scale factor that may be multiplied times index register in some
modes. Values for scl are 1, 2, 4, or 8; default is 1. Only MC68020 and
MC68030 instructions can have scale factors.

bd Two’s complement base displacement that is added before indirection takes
place; size can be 16 or 32 bits. Only MC68020 and MC68030 instructions
can have scale factors.

19-17

SYSTEM ASSEMBLER

od

pc
[1

0

{}

Outer displacement that is added as part of effective address calculation
after memory indirection; size can be 16 or 32 bits. Only MC68020 and
MC68030 instructions can have scale factors.

Two’s complement or sign-extended displacement that is added as part of
effective address calculation; size may be 8 or 16 bits; when omitted,
assembler uses value of zero.

Program counter

Grouping characters used to enclose an indirect expression; required
characters. Addressing arguments can occur in any order within the
brackets.

Grouping characters used to enclose an entire effective address; required
characters. Addressing arguments can occur in any order within the
parentheses.

Indicate that a scale factor is optional; not required characters.

It is important to note that expressions used for the absolute addressing modes

need

not be absolute expressions in the sense described earlier under "Types."”

Although the addresses used in those addressing modes must ultimately be filled
in with constants, that can be done later by the loader. There is no need for the
assembler to be able to compute them. Indeed, the Absolute Long addressing
mode is commonly used for accessing undefined external addresses.

19-18

SYSTEM ASSEMBLER

Effective Address Modes

Mé68000 as EFFECTIVE
FAMILY NOTATION NOTATION ADDRESS MODE
Dn %dn Data Register Direct
An %an Address Register Direct
(An) (%an) Address Register Indirect
(An)+ (%an)+ Address Register Indirect
With Postincrement
—~(An) —(%an) Address Register Indirect
With Predecrement
d(An) d(%an) Address Register Indirect
With Displacement (4
signifies a signed 16-bit
absolute displacement)
d(An,Ri) d(%an,%ri.w) Address Register Indirect
d(%an,%ri.l) With Index Plus Displacement
(d signifies
a signed 8-bit absolute
displacement)
(bd,An,Ri{*scl}) (bd, %an, %ri{*scl}) Address Register Direct
(MC68020/MC68030 Ontly) With Index Plus Base
Displacement
([bd, An,Ri{*scl}],od) ([bd, %an, %ri{*scl}],od) | Memory Indirect With
(MC68020/MC68030 Only) Preindexing Plus Base
and Quter Displacement
([bd, An],Ri{*scl},od) (Ibd, %an], %ri{*scl},od) | Memory Indirect With
(MC68020/MC68030 Only) Postindexing Plus Base
and Outer Displacement
d(PC) d(%pc) Program Counter Indirect
With Displacement (d
signifies 16-bit
displacement)
d(PC,Ri) d(%pc, %rmn.l) Program Counter Direct
d(%pc, %ern.w) With Index and Displace-
ment (d signifies 8-bit
displacement)
(bd,PC,Rif*scl}) (bd, % pc, %rif*scl}) Program Counter Direct
(MC68020/MC68030 Only) With Index and Base
Displacement
([bd,PC],Ri{*scl},od) ({bd, % pcl, %ri{*scl},od) | Program Counter Memory
(MC68020/MC68030 Only) Indirect With Post-

indexing Plus Base and
Outer Displacement

19-19

SYSTEM ASSEMBLER

M68000 as EFFECTIVE

FAMILY NOTATION NOTATION ADDRESS MODE
(Ibd,PC,Ri{*scl}],od) ([bd,%pc,%ri{*scl}],, pHipgram Counter Memory
(MC68020/MC68030 Only) Indirect With Prein-

dexing Plus Base and
Outer Displacement
ox.W XXX Absolute Short Address
(xxx signifies an
expression yielding a
16-bit memory address)
xox.L 00K Absolute Long Address
(xxx signifies an
expression yielding a
32-bit memory address)
#00¢ ook Immediate Data

(xxx signifies

an absolute constant
expression)

In the table above, the index register notation should be understood as
ri.size*scale, where both size and scale are optional. Refer to Chapter 2 of the
M68000 Family Resident Structured Assembler Reference Manual for additional
information about effective address modes. Section 2 of the MC68020 32-Bit
Microprocessor User's Manual also provides information about generating effective
addresses and assembler syntax.

Note that suppressed address register %zan can be used in place of %an,
suppressed PC register %zpc can be used in place of %pc, and suppressed data
register %zdn can be used in place of %dn, if suppression is desired.

The address modes for the MC68020 and MC68030 use two different formats of
extension. The brief format provides fast indexed addressing, while the full
format provides a number of options in size of displacement and indirection. The
assembler will generate the brief format if the effective address expression is not
memory indirect, value of displacement is within a byte, and no base or index
suppression is specified; otherwise, the assembler will generate the full format.

Some source code variations of the new modes may be redundant with the
MC68000 address register indirect, address register indirect with displacement,
and program counter with displacement modes. The assembler will select the
more efficient mode when redundancy occurs. For example, when the assembler
sees the form (An), it will generate address register indirect mode (mode 2).

19-20

SYSTEM ASSEMBLER

The assembler will generate address register indirect with displacement (mode 5)
when seeing any of the following forms (as long as bd fits in 16 bits or less):

bd(An)
(bd,An)
(An,bd)

Machine Instructions

Instructions For The MC68000/MC68010/MC68020/MC68030

The following table shows how MC68000/MC68010/MC68020/MC68030
instructions should be written in order to be understood correctly by the as
assembler. The entire instruction set for the MC68030 can be used. Instructions
that are MC68010/MC68020/MC68030-only, MC68020-only or MC68020/MC68030-
only are noted as such in the “OPERATION” column. Additional MC68030-only
instructions which deal specifically with memory management are listed
separately as a subset of the MC68851 instructions.

Several abbreviations are used in the table:

S The letter S, as in add.S, stands for one of the operation size attribute letters
b, w, or |, representing a byte, word, or long operation.

A The letter A, as in add.A, stands for one of the address operation size
attribute letters w or |, representing a word or long operation.

CC In the contexts bCC, dbCC, and sCC, the letters CC represent any of the
following condition code designations (except that f and t may not be used
in the bCC instruction):

cc carry clear Is low or same
¢s carry set It less than

eq equal mi minus

f false ne not equal

ge greater or equal pl plus

gt greater than t true

hi high vc overflow clear
hs high or same (=cc) vs overflow set

le less or equal
lo low (=cs)

EA This represents an arbitrary effective address.

19-21

SYSTEM ASSEMBLER

I An absolute expression, used as an immediate operand.
Q An absolute expression evaluating to a number from 1 to 8.

L A label reference, or any expression representing a memory address in the
current segment.

d Two’'s complement or sign-extended displacement that is added as part of
effective address calculation; size may be 8 or 16 bits; when omitted,
assembler uses value of zero.

%dx, %dy, %dn Represent data registers.
%ax, %ay, %an Represent address registers.
%rx, %ry, %trn Represent either data or address registers.

%rc Represents control register (%sfc, %dfc, %cacr, %vbr, %caar, %msp,
%isp).

offset Either an immediate operand or a data register.

width Either an immediate operand or a data register.

19-22

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION
ABCD abecd.b %dy,%dx Add Decimal with Extend
—{%ay),~{%ax)
ADD add.$ EA,%dn Add Binary
%dn,EA
ADDA add.A EA,%an Add Address.
adda.A EA,%an Second form is PMMU-
supported as20 only.
ADDI add.S &ILEA Add Immediate.
addl.S &IL,EA Second form is PMMU-
supported as20 orly.
ADDQ add.S &Q,EA Add Quick.
addq.S &Q,EA Second form is PMMU-
supported as20 only.
ADDX addx.S %dy,%dx Add Extended
~{%ay),—{%ax)
AND and.$ EA,%dn AND Logical
%dn,EA
ANDI and.S &LEA AND Immediate
andl.S &LEA Second form is PMMU-
supported as20 only.
ANDI and.b &l,%cc AND Immediate
to CCR to Condition Codes
ANDI and.w &), %sr AND Immediate
to SR to the Status Register
ASL asl.S %dx,%dy Arithmetic Shift (Left)
&Q,%dy
aslw &1,EA
ASR asr.$ %dx,%dy Arithmetic Shift (Right)
&Q,%dy
asr.w &1,EA

19-23

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
Bce bCC L Branch Conditionally
(16-bit Displacement)
bCC.b L Branch Conditionally (Short)
(8-bit Displacement)
bCC.I L Branch Conditionally (Long)
(32-bit Displacement)
(MC68020/MC68030 Only)
BCHG bchg %dn,EA Test a Bit and Change
&ILEA
Note: bechg should be written
with no suffix. If the second
operand is a data register, .|
is assumed; otherwise, .b is.
BCLR belr %dn,EA Test a Bit and Clear
&LEA
Note: belr should be written
with no suffix. If the second
operand is a data register, .}
is assumed; otherwise, .b is.
BFCHG bfchg EA{offset:width} Complement Bit Field
(MC68020/MC68030 Only)
BFCLR biclr EA{offset:width} Clear Bit Field
(MC68020/MC68030 Only)
BFEXTS bfexis EA{offset:width},%dn Extract Bit Field (Signed)
(MC68020/MC68030 Only)
BFEXTU bfextu EA{offset:width},%dn Extract Bit Field (Unsigned)
(MC68020/MC68030 Only)
BFFFO bfffo EA{offset:width},%dn Find First One in Bit Field
(MC68020/MC68030 Only)
BFINS bfins %dn,EA{offset:width} Insert Bit Field
(MC68020/MC68030 Only)
BFSET bfset EA{offset:width} Set Bit Field
(MC68020/MC68030 Only)

19-24

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION
BFTST bftst EA{offset:width} Test Bit Field
(MC68020/MC68030 Only)
BKPT bkpt &l Breakpoint
(MC68020/MC68030 Only)
BRA bra L Branch Always
(16-bit Displacement)
bra.b L Branch Always (Short)
(8-bit Displacement)
br.l L Branch Always (Long)
(32-bit Displacement)
(MC68020/MC68030 Only)
br L Same as bra
br.b L Same as bra.b
BSET bset %dn,EA Test a Bit and Set
&IL,EA

Note: bset should be written
with no suffix. If the second
operand is a data register, .}
is assumed; otherwise, .b is.

BSR bsr L Branch to Subroutine
(16-bit Displacement)
bsr.b L Branch to Subroutine (Short)
(8-bit Displacement)
bsr.l L Branch to Subroutine (Long)
(32-bit Displacement)
(MC68020/MC68030 Only)
BTST btst %dn,EA Test a Bit and Set
&LEA

Note: bist should be written with
no suffix. If the second operand
is a data register, .| is assumed;
otherwise, .b is.

CALLM callm &LEA Call Module
(MC68020 Only)

19-25

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
CAS cas %dx,%dy,EA Compare and Swap Operands
(MC68020/MC68030 Only)
CAS2 cas2 %dx:%dy,%dx:%dy,%rx:%ry | Compare and Swap Dual
Operands (MC68020/MC68030 Only)
CHK chk.w EA,%dn Check Register Against
Bounds
chk.! EA,%dn Check Register Against
Bounds (Long)
(MC68020/MC68030 Only)
CHK2 chk2.8 EA,%rn Check Register Against
Bounds
(MC68020/MC68030 Only)
CLR cir.S EA Clear an Operand
cmp cmp.S %dn,EA Compare
CMPA cmp.A %an,EA Compare Address.
cmpa.A %an,EA Second form is PMMU-
supported as20 only.
CMPI cmp.S EA,&I Compare Immediate.
cmpi.S EA,&l Second form is PMMU- .
supported as20 only.
CMPM cmp.S (%ax)+,(%ay)+ Compare Memory.
cmpm.S (%ax)+,(%ay)+ Second form is PMMU-
supported as20 only.
CMP2 cmp.S %rn,EA Compare Register Against
cmp2.A %rn,EA Bounds (MC68020/MC68030 Only).!
Second form is PMMU-
supported as20 only.
DBcc dbCC %dn,L Test Condition, Decrement,
and Branch
dbra %dn,L Decrement and Branch
Always
dbr %dn,L Same as dbra

1. Note: The order of operands in as is the reverse of that in the M68000
Programmer’s Reference Manual.

19-26

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
DIVS divs.w EA,%dx Signed Divide
32/16-> 32
tdivs.| EA,%dx Signed Divide (Long)
divs.l EA,%dx 32/32 -> 32
(MC68020/MC68030 Only)
tdivs.l EA,%dx:%dy Signed Divide (Long)
divsll EA,%dx:%dy 3232 -> 32r:32¢?
(MC68020/MC68030 Only).
Second form is PMMU-
supported as20 only.
divs.l EA,%dx:%dy Signed Divide (Long)
64/32 —> 32r:32¢°
(MC68020/MC68030 Only)
DIVU divu.w EA,%dn Unsigned Divide
32/16 —> 32
tdivu.l EA,%dx Unsigned Divide (Long)
divu.l EA,%dx 32/32 > 32
(MC68020/MC68030 Only)
tdivu.l EA,%dx:%dy Unsigned Divide (Long)
divul.l EA,%dx:%dy 32/32 -> 32r:32q
(MC68020/MC68030 Only)*
Second form is PMMU-supported
as20 only.
divu.l EA,%dx:%dy Unsigned Divide (Long)
64/32 > 32r:32q
{MC68020/MC68030 Only)*

. Whenever %dx and %dy are the same register, the form is equivalent to the
tdivs.l EA,%dx form (PMMU-supported asZ0 only).

. Whenever %dx and %dy are the same register, the form is equivalent to the
divs.] EA,%dx form (Pl\'f‘;vIU-supported as20 only).

. Whenever %dx and %dy are the same register, then the form is equivalent to
the tdivu.! EA,%dx form.

. Whenever %dx and %dy are the same register, then the form is equivalent to
the divu.l EA,%dx form.

19-27

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION
EOR eor.S %dn,EA Exclusive OR Logical
EOR! eor.S &1,EA Exclusive OR Immediate.
eorl.S &L,EA Second form is PMMU-
supported as20 only.
EORI eor.b &l,%cc Exclusive OR Immediate to
to CCR eorl.b &1,%cc Condition Code Register.
eorl.b &1,%ccr Second and third forms PMMU-
supported as20 only.
EORI
to SR eor.w &l,%sr Exclusive OR Immediate
eorl.w &l,%sr to the Status Register.
Second form is PMMU-
supported as20 only.
EXG exg YorX,%ry Exchange Registers
EXT ext.w %dn Sign-Extend Low-Order
Byte of Data to Word
ext.l %dn Sign-Extend Low-Order
Word of Data to Long
extb.l %dn Sign-Extend Low-Order ‘
Byte of Data to Long
(MC68020/MC68030 Only)
extw.] %dn Same as ext.|
(MC68020/MC68030 Only)
JMP jmp EA Jump
JSR jsr EA Jump to Subroutine
LEA lea.l EA,%an Load Effective Address
LINK link Y%an, &l Link and Allocate

19-28

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION
LSL Isl.S %dx,%dy Logical Shift (Left)
&Q,%dy
Isl.w &,EA
LSR lsr.S %dx,%dy Logical Shift (Right)
&Q,&dy
Isr.w &LEA
MOVE mov.S EAEA Move Data from Source
move.S EA,EA to Destination.
move.S form is PMMU-
supported as20 only.
Note: If the destination is an
address register, the instruc-
tion generated is MOVEA.
MOVE mov.w EA,%cc Move to Condition Codes.
to CCR move.w EA,%ccr move.w form is PMMU-
supported as20 only.
MOVE mov.w %cc,EA Move from Condition
from CCR move.w %ccr,EA Codes.
(MC68010/MC68020/MC68030 Only)
move.w form is PMMU-
supported as20 only.
MOVE mov.w EA,%sr Move to the Status Register.
to SR move.w EA,%sr move.w form is PMMU-
supported as20 only.
MOVE mov.w %sr,EA Move from the Status Register.
from SR move.w %sr,EA move.w form is PMMU-
supported as20 only.
MOVE mov.| %usp,%an Move User Stack Pointer.
USP %an,%usp move.l form is PMMU-
move.l %usp,%an supported as20 only.
%an,%usp

19-29

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
MOVEA mov.A EA,%an Move Address.
mova.A EA,%an movea.A and movea.A PMMU-
movea.A EA,%an supported as20 only.
MOVEC mov.| &l,EA Move to Control Register.
to CR movc.l %rn,%rc (MC68010/MC68020/MC68030 Only)
movec.| %rn,%tc movec.l and movec.] PMMU-
%rn,%rc supported as20 only.
MOVEC mov.l %rc,%rn Move from Control Register.
from CR move.| %re,%rn (MC68010/MC68020/MC68030 Only)
movec.! %rc,%rn move.] and movec.] PMMU-
supported as20 only.
MOVEM movm.A EA,&I Move Multiple Registers®
(See footnote).
movem.A &L,EA movem.A form is PMMU-
EA,&! supported as20 only.
MOVEP movp.A %dx,d(%ay) Move Peripheral Data.
d(%ay),%dx movep.A form is PMMU-
movep.A %dx,d(%ay) supported as20 only.
d(%ay),%dx
Move Quick.
MOVEQ mov.l &!1,%dn movq.l and moveq.l forms
movaq.l &1,%dn PMMU-supported as20 only.
moveq.l &l,%dn
Move to/from Address
MOVES movs.S %rn,EA Space
movs.S EA,%rn (MC68010/MC68020/MC68030 Only).
moves.S %rn,EA moves.S forms PMMU-
moves.S EA,%rn supported as20 only.

s. The immediate operand is a mask designating which registers are to be moved
to memory or which are to receive memory data. Not all addressing modes are
permitted, and the correspondence between mask bits and register numbers

depends on the addressing mode.

Unlike the other M68000 family of

assemblers, only a mask is allowed for the as assembler (PMMU-supported as20

only).

19-30

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX QOPERATION
MULS muls.w EA,%dx Signed Multiply
16*16 —> 32
. tmuls.} EA,%dx Signed Multiply (Long)
muls.| EA,%dx 32*32 -> 32
(MC68020/MC68030 Only)
muls.l EA,%dx:%dy Signed Multiply (Long)
3232 -> 64
(MC68020/MC68030 Only)’
MULU mulu.w EA,%dx Unsigned Multiply
16*16 —> 32
tmulu.l EA,%dx Unsigned Multiply (Long)
mulu.l EA,%dx 3232 —> 32
(MC68020/MC68030 Only)
mulu.l EA,%dx:%dy Unsigned Multiply (Long)
32*32 -> 64
(MC68020/MC68030 Only)®
NBCD nbcd.b EA Negate Decimal with Extend
NEG neg.S EA Negate
NEGX negx.$ EA Negate with Extend
. NOP nop No Operation
NOT not.S EA Logical Complement
OR or.S EA,%dn Inclusive OR Logical
%dn,EA
ORI or.S &IL,EA Inclusive OR Immediate.
orl.S &IL,EA ori.S form is PMMU-
supported as20 only.
ORI orb &, %cc Inclusive OR Immediate
to CCR orl.b &l,%cc to Condition Codes.
ori.b &l,%cer ori.b forms are PMMU-
supported as20 only.
. 7. Whenever %dx and %dy are the same register, the form is equivalent to the
muls.l EA,%dx form (PMMU-supported as20 only).
s. Whenever %dx and %dy are the same register, the form is equivalent to the
mulu.l DA,%dx form (P -supported as20 only).

19-31

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
ORI or.w &l,%sr Inclusive OR Immediate
to SR ori.w &1,%sr to the Status Register.
ori.w form is PMMU- .
supported 2520 only.
PACK pack —(%ax),~(%ay),&l Pack BCD
pack %dx,%dy,&| (MC68020/MC68030 Only)
PEA pea.l EA Push Effective Address
RESET reset Reset External Devices
ROL rol.S %dx,%dy Rotate (without Extend)
&Q,%dy (Left)
rol.w &LEA
ROR ror.S %dx,%dy Rotate (without Extend)
&Q,%dy (Right)
ror.w &LEA
ROXL roxl.S %dx,%dy Rotate with Extend (Left)
&Q,%dy
roxl.w &LEA
ROXR roxr.S %dx,%dy Rotate with Extend (Right) .
&Q,%dy
roxr.w &LEA
RTD rtd &l Return and Deallocate
Parameters
(MC68010/MC68020/MC68030 Only)
RTE rte Retum from Exception
RTM rtm %tn Return from Module
(MC68020 Only)
RTR rtr Return and Restore
Condition Codes
RTS ris Return from Subroutine

19-32

SYSTEM ASSEMBLER
MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
SBCD sbecd.b %dy,%dx Subtract Decimal with Extend
—(%ay),—{%ax)
Sce sCC.b EA Set According to Condition
STOP stop &l Load Status Register and Stop
SuUB sub.S EA,%dn Subtract Binary
%dn,EA
SUBA sub.A EA,%an Subtract Address.
suba.A EA,%an suba.A form is PMMU-
supported as20 only.
SuUBI sub.S &I,EA Subtract Immediate.
subi.$ &LEA subi.S form is PMMU-
supported as20 only.
sSuBQ sub.S &Q,EA Subtract Quick.
subq.S) &Q,EA subq.S form is PMMU-
supported as20 only.
sSuBX subx.S %dy,%dx Subtract with Extend
—{(%ay),~{%ax)
SWAP swap.w %dn Swap Register Halves
TAS tas.b EA Test and Set an Operand
TRAP trap &l Trap
TRAPV trapv Trap on Overflow
TRAPcc tCC trapCC Trap on Condition
tpCC.A (MC68020/MC68030 Only)
trapCC.A &l
&l
TST tst.S EA Test an Operand
UNLK unik %an Unlink
UNPK unpk —(%ax),~(%ay),&l Unpack BCD
%dx,%dy,&| (MC68020/MC68030 Only)

19-33

SYSTEM ASSEMBLER

Instructions For The MC68881

The following table shows how the floating point co-processor (MC68881)
instructions should be written to be understood by the as assembler.

In the table, cc represents any of the following floating point condition code

designations:

TRAP ON UNORDERED
cc MEANING
ge greater than or equal
gl greater or less than
gle greater or less than or equal
gt greater than
le less than or equal
It less than
ngt not greater than
nge not (greater than or equal)
nlt not less than
ngl not (greater or less than)
nle not (less than or equal)
ngle not (greater or less than or equal)
sneq signaling not equal
sf signaling false
seq signaling equal
st signaling true

19-34

SYSTEM ASSEMBLER

NO TRAP ON UNORDERED
cc MEANING
eq equal
oge ordered greater than or equal
ogl ordered greater or less than
ogt ordered greater than
ole ordered less than or equal
olt ordered less than
or ordered
t true
ule unordered or less or equal
ult unordered or less than
uge unordered or greater than or equal
ueq unordered or equal
ugt unordered or greater than
un unordered
neq not equal
f false

The designation ccc represents a group of constants in MC68881 constant ROM
which have the following values:

ccc VALUE ccc VALUE
00 pi 35 10*4

0B logl0(2) 36 108

0C e 37 10*16
0D log2(e) 38 10%32
0D loglO(e) 39 10*64
OF 0.0 3A 10**128
10 In(2) 3B 10*256
11 In(10) 3C 10"512
32. 100 3D 10**1024
33 101 3E 10**2048
34 10%2 3F 10**4096

19-35

SYSTEM ASSEMBLER

Additional abbreviations used in the table are:

EA
L

I

%dn
%fpm,%fpn, %fpq
% control

%fpcr

%status

%fpsr

%iaddr
% fpiar

SF

A
B

represents an effective addresss

a label reference or any expression representing a memory
address in the current segment

represents an absolute expression, used as an immediate operand
represents data register

represent floating point data registers

represents floating point control register

represents floating point control register
(PMMU-supported as20 only)

represents floating point status register

represents floating point status register
(PMMU-supported as20 only)

represents floating point instruction address register

represents floating point instruction address register
(PMMU-supported as20 only)

represents source format letters:

b byte integer

w word integer

1 long word integer

s single precision

d double precision

X extended precision

p packed binary code decimal

represents source format letters w or 1

represents source format letters b, w, 1, s, or p

Note: The source format must be specified if more than one source format is
permitted or a default source format x is assumed. Source format need not be
specified if only one format is permitted by the operation.

19-36

SYSTEM ASSEMBLER

MC68881 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION

FABS fabs.SF EA,%fpn absolute value function
fabs.x %tpm,%1pn
fabs.x %fpn

FACOS facos.SF EA,%fpn arccosine function
facos.x %fpm,%fpn
facos.x %fpn

FADD fadd.SF EA,%fpn floating point add
fadd.x %fpm,%fpn

ftst form.sp

FASIN fasin.SF EA,%fpn arcsine function
fasin.x %fpm,%fpn
fasin.x %fpn

FATAN fatan.SF EA,%fpn arctangent function
fatan.x %ftpm,%fpn
fatan.x %fpn

FATANH fatanh.SF EA,%fpn hyperbolic arctangent
fatanh.x %tpm,%fpn function
fatanh.x %1pn

FBcc fbcec.A L co-processor branch

conditionally

FCMP fcmp.SF %fpn,EA floating point compare
femp.x %fpn,%fpm

FCOS fcos.SF EA,%fpn cosine function
fcos.x %tpm,%fpn
fcos.x %fpn

FCOSH fcosh.SF EA,%fpn hyperbolic cosine
fcosh.x %fpm,%fpn function
fcosh.x %fpn

FDBcc fdbce.w %dn,L decrement and branch

on condition

FDIV fdiv.SF EA,%fpn floating point divide

fdiv.x %fpm,%fpn
19-37

SYSTEM ASSEMBLER

MC68881 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
FETOX fetox.SF EA,%fpn e**x function
fetox.x %tpm,%fpn
fetox.x %fpn
FETOXM1 fetoxm1.SF EA,%fpn e**x(x-1) function
fetoxm1.x %tpm,%fpn
fetoxm1.x %fpn
FGETEXP fgetexp.SF EA,%fpn get the exponent
fgetexp.x %fpm,%ftpn function
fgetexp.x %fpn
FGETMAN fgetman.SF EA,%fpn get the mantissa
fgetman.x %fpm,%fpn function
fgetman.x %fpn
FINT fint.SF EA,%fpn integer part function
fint.x %tpm,%fpn
fint.x %fpn
FINTRZ fintrz.SF EA,%fpn integer part, round-to-zero
fintrz.x %fpm,%fpn function
fintrz.x %fpn .
FLOG2 flog2.SF EA,%fpn binary log function
flog2.x %fpm,%fpn
flog2.x %fpn
FLOG10 flog10.SF EA,%fpn common log function
flog10.x %fpm,%fpn
flog10.x %fpn

19-38

SYSTEM ASSEMBLER

MC68881 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION

FLOGN flogn.SF EA,%fpn natural log function
flogn.x %ipm,%fpn
flogn.x %fpn

FLOGNP1 flognp1.SF EA,%fpn natural log (x+1)
flognp1.x %fpm,%fpn function
flognp1.x %fpn

FMOD tmod.SF EA,%fpn floating point module
fmod.x %fpm,%fpn

FMOVE fmov.SF EA,%fpn move to floating point
fmov.x %fpm,%fpn register (fmove.SF and
fmove.SF EA,%fpn fmove.x forms PMMU-
fmove.x %fpm,%fpn supported as20 only)
fmov.SF %fpn,EA move from floating point
fmov.p %fpn,EA{&I} register to memory (fmove.SF
fmov.p %fpn,EA{%dn} and fmove.p forms PMMU-
fmove.SF %fpn,EA supported as20 only)
fmove.p %fpn,EA{&I}
fmove.p %fpn,EA{%dn}

move from memory to
fmov.l EA,%control special register (fmove.l
fmov.l EA, %status forms PMMU-supported
fmov.l EA,%laddr as20 only)
fmove.! EA,%control
fmove.l EA,%status
fmove.l EA,%laddr move to memory from
special register (fmove.l

fmov.l %control,EA forms PMMU-supported
fmov.l %status,EA as20 only)
fmov.l %iaddr,EA
fmove.l %conirol,EA
fmove.l %status,EA
fmove.l %laddr,EA

FMOVECR fmover.x &cce,%fpn move a ROM-stored to a

floating point register

19-39

SYSTEM ASSEMBLER
MC68881 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
FMOVEM fmovm.x EA,&! move to multiple float-
fmovem.x EA&I ing point register (fmovem.x
form PMMU-supported as20
only)
fmovm.x &LEA move from multiple
fmovem.x &LEA registers to memory
(fmovem.x PMMU-supported
as20 only)
fmovm.x EA,%dn move to a data register
fmovem.x EA,%dn (fmovem.x form PMMU-
supported as20 only)
fmovm.x %dn,EA move a data register
fmovem.x %dn,EA to memory (fmovem.x
PMMU-supported as20 only)
move to special
fmovm.| EA,%control/%sta- registers (fmovem.l form
tus/%laddr PMMU-supported as20 only)
tmovem.| EA,%control/%sta-
tus/%laddr move from special
registers (fmovem.l form
fmovm.! %control/%status/ PMMU-supported 4520 only)
fmovem.l %laddr,EA
%control/%status/
%laddr,EA
FMUL tmul.SF EA,%fpn floating point multiply
fmul.x %tpm,%fpn
FNEG fneg.SF EA,%tpn negate function
fneg.x %tpm,%fipn
fnea.x %fon

NOTE: The immediate operand is a mask designating which registers are to be
moved to memory or which registers are to receive memory data. Not all
addressing modes are permitted and the correspondence between mask bits and
register numbers depends on the addressing mode used.

19-40

SYSTEM ASSEMBLER

MC68881 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION
FNOP fnop floating point no-op
FREM frem.SF EA,%fpn floating point remainder

frem.x %fpm,%fpn
FRESTORE frestore EA restore internal state
of co-processor
FSAVE tsave EA CO-processor save
FSCALE fscale.SF EA,%fpn floating point scale
fscale.x %tpm,%fpn exponent
FScec fscc.b EA set on condition
FSGLDIV fsgidiv.B EA,%fpn floating point single
fsgidiv.s %tpm,%fpn precision divide
FSGLMUL 1sgimul.B EA,%fpn floating point single
fsgimul.s %ftpm,%fpn precision multiply
FSIN fsin.SF EA,%fpn sine function
fsin.x %ipm,%fpn
fsin.x %fpn
FSINCOS 1sincos.SF EA,%fpn:%1ipq sine/cosine function
fsincos.x %tpm,%fpn:%Ipq
FSINH fsinh.SF EA,%fpn hyperbolic sine
fsinh.x %tpm,%fpn function
fsinh.x %fpn
FSQRT fsqrt.SF EA,%fpn square root function
fsqrt.x %fpm,%fpn
tsqrt.x %tpn
FSUB fsub.SF EA,%fpn square root function
fsub.x %fpm,%fpn

19-41

SYSTEM ASSEMBLER

MC68881 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION

FTAN ftan.SF EA, %fpn tangent function
ftan.x %fpm,%fpn
ftan.x %tpn

FTANH ftanh.SF EA,%fpn hyperbolic tangent
ftanh.x %fpm,%fpn function
ftanh.x %fpn

FTENTOX ftentox.SF EA,%fpn 10**x function
ftentox.x %fpm,%fpn
ftentox.x %fpn

FTce ficc trap on condition

without a parameter’

FTRAPcc ftrapcec trap on condition
without a parameter
(PMMU-supported as20

only)
FTPcc ftpcc.A &l trap on condition with
a parameter .
FTRAPcc firapcc.A &l trap on condition with
a parameter (PMMU-
supported 2520 only)
FTST fiest.SF EA floating point test
ftest.x %fpm an operand (ftst.SF
ftst.SF EA and ftst.x forms PMMU-
fist.x Y%fpm supported as20 only)
FTWOTOX ftwotox.SF EA,%fpn 2**x function
ftwotox.x %fpm,%fpn
fiwotox.x %ftpn

5. The ftst form (floating point trap on signal true) is no longer supported due to a

conflict with the FTST (floating point test and operand instruction) - PMMU-
supported as20 only.

19-42

SYSTEM ASSEMBLER

Instructions For The MC68851

The following table shows how the paged memory management unit (PMMU)
(MC68851) instructions should be written to be understood by the as assembler.
Instructions that are MC68030-only or MC68851-only are noted as such in the
“OPERATION” column. Additional MC68030 instructions which do not deal
with memory management are listed separately with the MC68000 instructions.

In the table, cc represents any of the following floating point condition code
designations:

SET PSR BIT
¢cc/CC MEANING

bs bus error

Is limit violation

ss supervisor violation

as access level violation

ws write protected

is invalid

8s gate

cs globally shared
CLEAR PSR BIT

cc/CC MEANING

bc bus error

Ic limit violation

sC supervisor violation

ac access level violation

wce write protected

ic invalid

gC gate

cc globally shared

Additional abbreviations used in the table are:

EA represents an effective addresss

L a label reference or any expression representing a memory
address in the current segment

I represents an absolute expression, used as an immediate operand

19-43

SYSTEM ASSEMBLER

FC

M
D

PMRn
MRn
%dn
% an
%ac
J%bac

%bad

%cal
%crp
%drp
Jommusr
% pcsr

% psr
Poscc
Josrp
%tc

% tt

%val

represents one of the following function codes:
I represents an absolute expression used as an immediate operand
%dn represents a data register
%sfc represents the source function code register
%sfcr represents the source function code register
%dfc represents the destination function code register
%dfcr represents the destination function code register
represents an absolute expression used as an immediate operand mask
in the PFLUSH/PFLUSHS instructions where 0 < M =< 15
represents an absolute expression used as an immediate operand depth
level in the PTESTR/PTESTW instructions where 0 =< D <7
represents any of the MC68881 registers
represents any of the MC68030 memory management registers
represents a data register 0 through 7
represents an address register 0 through 7
represents pmmu access control register (MC68851 only)
represents pmmu breakpoint acknowledge control

register 0 through 7 (MC68851 only)
represents pmmu breakpoint acknowledge data

register 0 through 7 (MC68851 only)
represents pmmu current access level register (MC68851 only)
represents pmmu CPU root pointer register
represents pmmu DMA root pointer register (MC68851 only)
represents pmmu status register
represents pmmu cache status register (MC68851 only)
represents pmmu status register
represents pmmu stack change control register (MC68851 only)
represents pmmu supervisor root pointer register
represents pmmu translation control register
represents pmmu transparent translation control

registers 0 or 1 (MC68030 only)
represents pmmu validate access level register (MC68851 only)

Note: The source format must be specified if more than one source format is
permitted or a default source format w is assumed. Source format need not be
specified if only one format is permitted by the operation.

19-44

SYSTEM ASSEMBLER

MC68851 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION
PBcc pbCC.A L Branch on PMMU Condition
(MC68851 only)
PDBcc pdbCC.w %dn,L Test, decrement, branch
(MC68851 only)
PFLUSH pflush FC,&M Invalidate entries in ATC
pflush FC,&M,EA
PFLUSHA pflusha Invalidate all ATC entries
PFLUSHS pflushs FC,&M Invalidate entries in ATC
pflushs FC,&M,EA including shared entries
(MC68851 only)
PFLUSHR pflushr EA Invalidate ATC and
RPT entries
PLOADR ploadr FC,EA Load an entry into ATC
PLOADW ploadw FC,EA Load an entry into ATC
PMOVE Move to/from MMU register
pmove EA,PMRn (MC68851 only)
pmove PMRn,EA (MC68851 only)™®
pmove EA,MRn (MC68030 only)
pmove MRn,EA (MC68030 only)
pmove.d %crp,EA
pmove.d EA,%crp
pmove.d %srp,EA
pmove.d EA,%srp
pmove.d %drp,EA (MC68881 only)
pmove.d EA,%drp (MCé68881 only)
pmove.l %tc,EA
pmove.l EA,%tc
pmove.l %tt,EA (MC68881 only)
pmove.l EA,%tt (MC68881 only)
pmove.w %bac,EA (MC68881 only)
pmove.w EA,%bac (MCé68881 only)
pmove.w %bad,EA (MC68881 only)
pmove.w EA,%bad (MCé68881 only)
pmove.w %ac,EA
pmove.w EA,%ac
pmove.w %psr,EA (MC68881 only)
pmove.w EA,%psr
pmove.w %pcsr,EA

10.

Cannot move to %pcsr register.

19-45

SYSTEM ASSEMBLER

MC68851 INSTRUCTION FORMATS

MNEMONIC

ASSEMBLER SYNTAX

OPERATION

PMOVE (cont’d)

PMOVEFD

PRESTORE

PSAVE

PScc

PTESTR

PTRAPcc

PVALID

%cal,EA
EA,%cal
%val,EA
EA,%val
%scc,EA
EA,%scc

pmove.b
pmove.b
pmove.b
pmove.b
pmove.b
pmove.b

pmovefd EA,MRn

pmovefd.dEA,%crp
pmovefd.dEA,%srp

pmovefd.l EA,%tc
pmovefd.l EA,%tt

prestore EA

psave EA

psCC EA

ptestr FC,EA,&D
ptestr FC.,EA,&D,%an

FC,EA,&D
FC,EA,&D,%an

ptrapCC
ptrapCC.A &I

pvalid %val,EA

pvalid %an,EA

(MC68881 only)
(MC68881 only)
(MC68881 only)
(MC68881 only)
(MC68881 only)
(MCo68881 only)

Move to MMU register, flush disabled

(MC68030 only)
(MC68030 only)
(MC68030 only)
(MC68030 only)
(MC68030 only)

PMMU restore function
(MC68881 only)

PMMU save function
(MC68881 only)

Set on PMMU condition
(MC68881 only)

Get information about
logical address

Get information about
logical address

Trap on PMMU condition
(MCé68881 only)

Validate a pointer
(MC68881 only)

19-46

INDEX

When using this index, keep in mind that a page number indicates only where
referenced material begins; it may extend to the following page or pages.

#define directive 2-27
#define statements 5-14
#include directive 2-26
*buf 8-15

**sops declaration 8-56

A

a.out 10-2
access permissions 7-3
access routines 12-43
action
accept 6-12
error (yacc) 6-12
reduce 6-11
shift 6-11
values returned by 6-31
addch() 9-16
addr 11-11
addresses, physical and virtual 12-3
addstr() 9-18
advanced topics 11-39
advisory locking 7-2, 7-15
aouthdr declaration 12-8
application environment 1-7
application programming 3-1
ar command 2-60
archive libraries 14-12
arg argument 8-46
arg.array 8-48
arg.buf 847
arg.val 8-47
argument
arg 8-46

msgflg 8-21
msgp 8-21
msgsz 8-21
msqid 8-21
nsops 8-56
semid 8-56
semnum 8-45
shmaddr 8-81
shmid 8-81
sops 8-56
typedef 8-6
arrays 12-38
multi-dimensional(awk) 4-27
table entries for 12-38
asynchronous execution mode 11-40
attroff 9-35
attron 9-35
attron(), attrset(), and attroff() 9-35
attrs 9-35
auxiliary symbol table entry 12-41
awk 2-5
awk PROGRAMMING
LANGUAGE 4-1
array 4-25
break statement 4-25
built-in arithmetic functions 4-19
built-in string functions 4-20
built-in variables 4-7, 4-17
comparison operators 4-12
conversion characters 4-29
error messages 4-10
exit statement 4-25
for statement 4-25
Functions 4-8

IN-1

INDEX

getline function 4-32

if statement 4-24
multi-dimensional arrays 4-27
numeric value of a string 4-23
output field separator 4-28
pattern-action statement 4-4
printf statement 4-28
printing into a pipe 4-31
program structure 4-2

quotes 4-36

regular expressions 4-15
relational expressions 4-6
string constant 4-19
summary 4-39

user-defined variables 4-8
awk utility 3-4

while statement 4-24

basic capabilities (terminfo) 9-65

bc 2-6

beep() and flash() 9-37

beginning of blocks and functions
12-39

bells and flashing screens 9-37

Bessel functions 3-22

bitwise AND operator 18-16

bitwise exclusive OR operator 18-16

bitwise inclusive OR operator 18-16

blocking message operation 8-2

blocking semaphore operation 8-32

blocking/nonblocking operations 8-33

bss section 2-7

building windows and pads 9-43

bytes 8-14

c

C Declarators 18-21

C Declarators
enumeration declarations 18-26
implicit declarations 18-30

IN-2

meaning of 18-21
structure and union 18-23
typedef 18-30

union 18-23

C Programming Language 2-2, 18-1

additive operators 18-14

arithmetic conversions 18-8

assignment operators 18-17

break statement 18-34

characters and integers 18-7

comma operator 18-18

compiler control lines 18-39

compilers 1-2

compound statement or block
18-31

conditional compilation 18-40

conditional operator 18-17

conditional statement 18-32

constant expressions 18-45

constants 18-2

continue statement 18-34

declarations 18-19

declarators 18-21

do statement 18-32

equality operators 18-15

expression statement 18-31

expressions and operators 18-9

external definitions 18-35

file inclusion 18-40

float and double 18-7

floating and integral 18-7

for statement 18-32

goto statement 18-35

identifiers (names) 18-1

keywords 18-2

labeled statement 18-35

lexical conventions 18-1

lexical scope 18-37

line control 18-42

logical AND operator 18-16

logical OR operator 18-17

multiplicative operators 18-13

null statement 18-35

objects and lvalues 18-6
operator conversions 18-7
pointers and integers 18-8
portability considerations 18-46
primary expressions 18-10
relational operators 18-15
return statement 18-34
scope of externals 18-38
scope rules 18-37.
shift operators 18-15
standard I/O subroutines 2-17
statements 18-31
storage class and type 18-4
storage class specifiers 18-19
string literals 18-4
switch statement 18-33
syntax notation 184
syntax summary 18-47
token replacement 18-39
type specifiers 18-20
types revisited 18-42
unary operators 18-12
unsigned 18-8
version control 18-42
void 18-9
while statement 18-32

calls
ctl 3-14
get 3-14
op 3-14

captoinfo(1M) 9-5, 9-71

cbreak() and nocbreak() 9-42

cc command 2-8, 3-26

cflow command 2-44

channel between user and provider

11-5
character translation functions and
macros 2-20

chmod command 7-14

clear() and erase() 9-23

close 11-39

clrtoeol() and clrtobot() 9-24

code-deciphering 5-10

INDEX

COFF 3-17, 10-2
command conventions(SCCS) 15-8
command
admin (SCCS) 15-23
ar 2-60
cc 2-8, 3-26
cdc (SCCS) 15-29
cflow 2-44
chmod 7-14
comb (SCCS) 15-31
ctrace 2-47
cxref 2-50
egrep 4-33
help (SCCS) 15-27
ipcs 8-5
IPC_EXCL control 8-5, 8-9
IPC_RMID control 8-16
IPC_SET control 8-15
IPC_STAT control 8-15
Id 29
lint 2-55, 3-25
make 2-59, 3-26, 14-17
nm 2-61
prof 2-56
prs (SCCS) 15-25
rmdel (SCCS) 15-28
sact(SCCS) 15-27
SCCS 159
scesdiff (SCCS) 15-30
sdb 2-58
size 2-58
strip 2-58
val (SCCS) 15-32
ve (SCCS) 15-32
what (SCCS) 15-30
common local management state table
A-5
common object file format (COFF)
3-17, 121
common object file interface macros
3-21
compiling a curses program 9-9
compiling and running a terminfo

IN-3

INDEX

program 9-58

connection establishment 11-6, 11-17

connection establishment routines
11-7
connection mode data transfer
routines 11-8
connection release 11-8, 11-28
connection release routines 11-9
connection-mode client C-1
connection-mode server C-3
connection-mode service 11-10
connection-mode state table A-6
connectionless-mode data transfer
routines 11-10
connectionless-mode service 11-9,
11-30
connectionless-mode state table A-5
connectionless-mode transaction
server C-7
control command 8-15
control commands (flags) 8-8, 8-38,
8-67
controlled environment for program
testing (sdb) 16-7
controlling
message queues 8-12
output and input 9-32
semaphores 8-45
shared memory 8-72
converting a termcap description to a
terminfo description 9-71
creating an SCCS file via admin 15-2
ctl calls 3-14
ctrace command 2-47
curses 2-6, 9-2
curses features
using advanced 9-52
curses program
compiling 9-9
examples 9-71
running 9-10
what every needs 9-6
curses routines, working with 9-6

IN-4

curses(3X) 9-5
curses/terminfo 0-
cxref command 2-50
C_EFCN 12-24
C_EXTDEF 12-24
C_HIDDEN 12-24
C_LINE 12-24
C_ULABEL 12-24
C_USTATIC 12-24

D

data 2-7
data structure
ipc_perm 8-35
msg_gbytes member 8-21
msqid_ds 8-24
data transfer 11-7, 11-24, 11-32
datagram errors 11-35
DB 10-2
dc 2-6
deadlock detection/avoidance 7-13
declaration
**sops 8-56
key_t 8-6
symbol table entry 12-33
DEFAULT 14-19
derived types 12-30
discon 11-11
displaying the source file (sdb) 16-6
documentation 3-2
doupdate(), routines wnoutrefresh()
and 9-44

echo() and noecho() 9-41

editor program 9-72

Effective Address Modes (System
Assembler) 19-19

egrep command 4-33

end of block and function entries
12-39

end of structures 12-37
endwin(), purpose of in a program
9-8
endwin(), routines initscr(), refresh()
and 9-8
entries for structures, unions, and
enumerations 12-40
environment
application 1-7
single-user 1-6
systems 1-7
erase(), clear() and 9-23
errno 8-2, 8-14
error code 8-2
error names 8-9
etsdu 11-11
event handling 11-19
event-driven server C-11
examining variables (sdb) 16-3
example of sdb usage 16-12
exceeding SEMMNI, SEMMNS, or
SEMMSL 8-40
exec functions 2-34

F

file and record locking 3-11, 7-1
file header 12-4
file header
contents 12-4
declaration 12-6
flags 12-5
file
locking 7-4
typedes.h 8-6
filename, pass 2-14
flags 8-23, 12-5, 12-10
flash 9-37
fork system call 2-35
format for auxiliary table entries for
sections 12-36
format for beginning of block and
function 12-39

INDEX

format
object file 12-1
symbol table entry 12-21
FORTRAN 5-9
function 12-38
function
Bessel 3-22
exec 2-34
getline 4-34
Hyperbolic 3-22
lockf 7-11
symbols and 12-20
symbols for 12-20
system 2-34
Trigonometric 3-22
fundamental types 12-29

G

get calls 3-14

GETALL 8-46

getch() 9-27

getline function 4-34

GETNCNT 845

GETPID 8-45

getstr() 9-29

GETZCNT 8-46

gid 8-14

grammar rule 6-1

graphics, routines for drawing lines
and other 9-52

H

header files 2-26

highlight program 9-77

how curses and terminfo work
together 9-4

Hyperbolic Functions 3-22

IN-5

INDEX

VO routines 5-9
incremental link editing 13-21
infocmp(1M) 9-5
initscr(), refresh(), and endwin(),
purposes of in a program 9-8

inner blocks 12-18
input 9-26

getting simple 9-15

option settings for curses

programs 9-39

options 9-38
integer values 2-19
integers and strings 2-20
interface mechanisms 2-11
Interprocess Communications (IPC)

3-13, 8-1

ipcs command 8-5
IPC message 8-1
IPC_CREAT flag 8-4
IPC_EXCL 8-40
IPC_EXCL control command 8-5, 8-9
IPC_NOWAIT 8-57
ipc_perm data structure 8-35
IPC_PRIVATE 8-7
IPC_RMID 8-46
IPC_RMID control command 8-16
IPC_SET 8-46
IPC_SET control command 8-15
IPC_STAT 8-46
IPC_STAT control command 8-15
ISO Transport Service Definition 11-6

K
key of zero value 8-5

keyboard-entered capabilities
(terminfo) 9-67

IN-6

L

labels, routines for using soft 9-53

language
awk 2-5
awk Programming 4-1
BASIC 2-4
C 22
choosing a programming 2-1
COBOL 2-3
FORTRAN 2-3
Pascal 2-3
selection 3-3
special-purpose 2-4
supported 2-2

ld command 2-9

lex 2-6, 5-1
#include statement 5-11
and yacc Utilities 3-5
definitions 5-11
nroff 5-9
rules 5-2
subroutines 5-12
usage 5-6

lexical analyzer 2-6, 5-1

library 3-17

library, object file 3-18

line number 12-14
declaration 12-15
entry declaration 12-15
grouping 12-14

link editor 2-9, 3-16, 13-1
addresses 13-2
aligning an output section 13-10
allocating a section into named

memory 13-15
allocation algorithm 13-20
assignment statements 13-4
binding 13-2
command language 13-3
COPY section 13-23
creating and defining symbols
13-13

lint

creating holes within output
sections 13-12

dealing with holes in physical
memory 13-20

DSECT section 13-23

DSECT, COPY, NOLOAD, INFO,
and OVERLAY sections 13-23

file specifications 13-8

grouping sections together 13-10

incremental 13-21

INFO section 13-23

initialized section holes or .bss
sections 13-16

memory configuration 13-1

NOLOAD section 13-23

nonrelocatable input files 13-24

notes and special considerations
13-17

object file 13-2

operator symbols 13-4

output file blocking 13-24

OVERLAY section 13-23

section definition directives 13-7

sections 13-2

specifying a memory
configuration 13-5

syntax diagram for input
directives 13-25

use of archive libraries 13-18

1741

assignments of longs to ints 17-7

command 2-55, 3-25

flow of control 174

function values 17-5

message types 17-3

multiple uses and side effects
17-10

nonportable character use 17-7

old syntax 17-9

pointer alignment 17-10

set/used information 174

strange constructions 17-8

type casts 17-7

INDEX

type checking 17-6
unused variables and functions
17-3
usage 17-1
listening and responding transport
endpoints 11-24
LO 10-2
local management 11-5, 11-11, 11-30
local management routines 11-6
lockf function 7-11
lockf subroutine 3-13
locking
advisory 7-2, 7-15
file 7-4
file and record 3-11, 7-1
mandatory 7-2
mandatory 7-13
locks
read (share) 7-2
write (exclusive) 7-2
low-level VO 2-31

M4 macroprocessor 2-6
Machine Instructions (System
Assembler) 19-21
machine language debugging (sdb)
16-10
macroprocessor, M4 2-6
macros and character translation
functions 2-20
magic numbers 12-4
make 14-1
basic features 14-2
command 2-59, 3-26, 14-17
command usage 14-17
description files and substitutions
14-6
dynamic dependency parameters
14-16
environment variables 14-19
executable commands 14-8

INDEX

extensions of $*, $@, and $§ 14-8
implicit rules 14-10
include files 14-16
internal rules 14-21
macro definitions 14-7
null suffix 14-15
output translations 14-9
recursive makefiles 14-9
SCCS makefiles 14-16
source code control system
filenames, the tilde 14-14
suffixes and transformation rules
14-10
suggestions and warnings 14-20
summary of default tansformation
path 14-11
management, local 11-5, 11-11, 11-30
mandatory locking 7-2, 7-13
math library 3-21
memory image file 10-2
memory management 3-9
memory, shared 8-61
message IPC 8-1
message queues
controlling 8-12
getting 8-6
identifier 8-2
messages 8-1
mode 8-14
move() 9-21
msgctl system call 8-1, 8-5, 8-16
msgflg 8-8, 8-24
msgget system call 8-1, 8-11
msgget, using 8-6
MSGMNI system tunable parameter
8-9
msgop 8-5, 8-20, 8-26
msgrcv 8-20, 8-25
msgsnd 8-21, 8-24
msgsnd(2) and msgrcv(2) system calls
8-20
msgsx 8-24
msgtyp 8-24

IN-8

msg_lrpid 8-26

msg_lspid 8-25

msg_gbytes data structure member
8-21

msg_qnum 8-25, 8-26

msg_rtime 8-26

msg_stime 8-25

msqid 8-2, 8-21

msqid_ds 8-14

msqid_ds data structure 8-24

msqud 8-24

multiple windows and pads mapped
to a terminal screen 9-14

MX 10-2

name field 12-21

named files 2-29

names related to structures, unions,
and enumerations 12-40

nested blocks 12-18

nm command 2-61

nocbreak() and cbreak() 9-42

noecho 9-41

nonblocking message operation 8-2

notation conventions 1-3

nsems 8-34

nsops argument 8-56

o)

object file format 12-1

object file library 3-18

op calls 3-14

open function 2-30

opening a file for record locking 7-3

operating system/language interface
2-11

operation permissions codes 8-7, 8-38,
8-66

operations

for messages 8-20

for shared memory 8-81
on semaphores 8-55
optional header
contents 12-7
declaration 12-7
information 12-6
options 11-11
OSI reference model 11-1
output and input, getting simple 9-15
output attributes 9-32

P

pads, building windows and 9-43
parameter string capabilities (terminfo)
9-67
parser 6-5
parsing
actions of error and accept 6-30
of arithmetic expressions 6-20
permissions 7-3
physical and virtual addresses 12-3
pipes 2-37
pnoutrefresh 9-44
popen 2-37
portability 3-2
precedences 6-20
PRECIOUS 14-19
print statement 4-28, 4-31
printf statement 4-29
printing terminfo descriptions,
comparing or 9-70
printw() 9-19
process identification (PID) 8-3
Process Status Display 2:33
prof command 2-56
program
editor 9-72
generator 5-1
highlight 9-77
scatter 9-79
show 9-81
window 9-84

INDEX

programming language, C 18-1
R

rcvbuf 8-23
read 11-38
read share locks 7-2
read/write
client C-9
interface 11-36
record locking, opening a file for 7-3
record separator 4-28
redirection of output 4-31
refresh(), and endwin(), purposes of
in a program 9-8
relocation
entry declaration 12-13
information 12-12
section contents 12-12
types 12-13
restricted storage classes 12-25
resynchronization routine 6-25
RO 10-2
rtrn 8-14, 8-24

]

S-record 10-2
SA 10-2
scanw() 9-31
scatter program 9-79
SCCS (Source Code Control System)
2-66, 3-27
SCCS files
auditing 15-35
formatting 15-34
protection 15-32
SCCS for beginners 15-1
screen-oriented (terminfo) capabilities
9-66
sdb - The Symbolic Debugger 2-7, 2-9
command 2-58
controlled environment for

INDEX

program testing 16-7
displaying the source file 16-6
examining variables 16-3
machine language debugging

16-10
printing a stack trace 16-2
source file display and

manipulation 16-5
using sdb 16-1

section header 12-8
contents 12-9
declaration 12-11
flags 12-10
section number and storage class
12-28
section number field 12-27
sections 12-3
sem.h 8-38
semaphores 8-1, 8-31
controlling 8-45
getting 8-36
operations on 8-55
using 8-33
sembuf 8-56
semctl() system call example 8-50
semctl, using 8-45
semget
system call 8-31, 8-35, 8-42
using 8-37
semid 8-34
semid argument 8-56
semid_ds 8-47
SEMMNI, SEMMNS, or SEMMSL,
exceeding 8-40
semnum argument 8-45
semop(2)
system call 8-32
system call example 8-59
sem_perm 8-35
SEM_UNDO 8-57
separator
output field 4-28
record 4-28

IN-10

server 11-14

service
connection-mode 11-5, 11-10
connectionless-mode 11-9

servtype 11-11

set flags 2-13

SETALL 8-46

SETVAL 8-45

shared memory 8-1, 8-61
controlling 8-72
data structure definition 8-63
getting segments 8-65
operations for 8-81
using 8-62

shell 1-5

shell script using terminfo routines

94

shift action 6-11

shmaddr argument 8-81

shmat 8-62, 8-81, 8-83

shmctl(2) system call example 8-76

shmctl, using 8-73

shmdt 8-62, 8-84

shmget 8-64, 8-70

shmget, using 8-65

shmid argument 8-81

shmop() system call example 8-84

shmop, using 8-81

shm_perm 8-63

show program 9-81

signal (2) system call 2-40

signal numbers 2-40

size command 2-58

slk_init 9-54

slk_noutrefresh 9-54

slk_set 9-54

sndbuf 8-23

soft labels, routines for using 9-53

sops argument 8-56

Source Code Control System (SCCS)

2-66, 3-27, 15-1

admin command 15-23
cdc command 15-29

comb command 15-31

command conventions 15-8

commands 15-9

concurrent edits of different SID
15-15

creating 15-2

creation of Files 15-23

delta command 15-20

delta numbering 15-6

determination of new SID 15-16

error messages 15-9

evolution of an SCCS file 15-6

extended branching concept 15-7

get command 15-10

help command 15-5, 15-27

ID keywords 15-11

initialization and modification of
file parameters 15-24

inserting commentary for the
initial delta 15-24

keyletters that affect output 15-18

prs command 15-25

recording changes via delta 15-3

retrieval of different versions
15-11

retrieval with intent to make a
delta 15-13

retrieving a file via get 15-2

rmdel command 15-28

sact command 15-27

scesdiff command 15-30

terminology 15-1

tree structure with branch deltas
15-7

undoing a get -e 15-14

val command 15-32

vc command 15-32

what command 15-30

source file display and manipulation
(sdb) 16-5
special symbols 12-17
storage class by 12-24
storage classes for 12-24

INDEX

special-purpose language 2-4
standard operating system a.out
header 12-6
standend 9-36
standout 9-36
state transitions 11-10, A-1
incoming events A-2
outgoing events A-1
state tables A-4
transport interface states A-1
transport user actions A-4
statement
print 4-31
printf 4-29
Status System Calls and Environment
2-31
stdin, stdout, and stderr 2-29
stdscr relationship with a terminal
screen 9-11
storage class
and value 12-26
by special symbols 12-24
C_EFCN 12-24
C_EXTDEF 12-24
C_LINE 12-24
C_ULABEL 12-24
C_USTATIC 12-24
for special symbols 12-24
restricted 12-25
section number and 12-28
type entries by 12-32
string
functions 4-20
integers and 2-20
operations 2-18
table 12-42
strip command 2-58
structure definition
associated data structure 8-3
C programming language data
8-3

IPC-perm data structure 8-4
shared memory data 8-63

IN-11

INDEX

structure for symbol table entries
12-33
structures, unions, and enumerations
entries for 12-40
names related to 12-40
subroutine 2-15
C language standard /O 2-17
lockf 3-13
subwin() 9-50
symbol names 12-21
symbol table 12-15
auxiliary table entries 12-34
COFF 12-15
entries 12-20
entries structure for 12-33
entry declaration 12-33
entry format 12-21
special symbols in the 12-17
type entry 12-28
symbol value field 12-25
Symbolic Debugger 3-24
symbols and functions 12-20
System Assembler 19-1
address mode syntax 19-17
comments 19-4
comparison instructions 19-2
constants 19-7
expressions 19-10
format of assembly language line
19-3
general syntax rules 19-3
identifiers 19-4
labels 19-8
location counters, and labels 19-8
Machine Instructions 19-21
MC68851 instructions 19-43
MCé68881 instructions 19-34
overloading of opcodes 19-2
pseudo-operations 19-11
register identifiers 19-5
segments, location counters, and
labels 19-8
span-dependent optimization

IN-12

19-16
types 19-9
use of the assembler 19-3
warnings 19-2
system call 2-15
msgctl 8-1
msgctl() 8-16
msgget 8-1
msgget(2) 8-11
msgrev() 8-5
msgrcv(2)" 8-20
msgsnd 8-5, 8-21
msgsnd(2) 8-20
msqid 8-14
semget 8-35
semget(2) 8-31
semop(2) 8-32
shmat 8-81
system function 2-34
systems environment 1-7

T

table entries
for end of structures 12-37
for functions 12-38
tag names 12-37
tabs(1l) 9-6
tag names 12-37
target machine 12-3
termcap description to a terminfo
description, converting 9-71
termhl 9-61
terminal
descriptions, writing 9-61
screens 3-15
working with more than one 9-55
terminfo 9-3, 9-6
data base 3-15
database, working with the 9-61
description, converting a termcap
description to 9-71
descriptions, comparing or

printing 9-70
program, compiling and running
a 9-58
program, typical framework of a
9-57
text 2-7
tic(IM) 9-6
token numbers 6-9
token
names 6-3
numbers 6-9
tput 9-6, 9-60
transport
connection 11-7
interface 11-1, 114
service data unit (TSDU) B-1
Trigonometric functions 3-22
tsdu 11-11
two program 9-82
type entries by storage class 12-32
type entry 12-28
types
derived 12-30

fundamental 12-29
t_alloc 11-16
T_CLTS 11-11
T_CONNECT 11-19
T_COTS 11-11
T_COTS_ORD 11-11
T_DATA 11-19
T_DISCONNECT 11-20
T_EXDATA 11-20
T_LISTEN 11-19
t_optmgmt 11-12
T_ORDREL 11-20
T_UDERR 11-20

u

uid 8-14
unary operators 6-21
using

msgop 8-20

INDEX

semaphores 8-33

semctl 8-45

semget 8-37

semop 8-56

shared memory 8-62

shmctl 8-73

shmget 8-65

shmop 8-81
utility

awk 3-4

lex 3-5

yacc 3-5

v

value field symbol 12-25
VERSAdos toolkit 10-1

w

what every program needs
curses 9-6
terminfo 9-57
window program 9-84
windows, new 9-49
wnoutrefresh 9-44
working
with curses routines 9-6
with more than one terminal 9-55
with terminfo routines 9-56
with the terminfo database 9-61
wrefresh 9-44
write 11-38
write (exclusive) locks 7-2
writing terminal descriptions 9-61

Y

yacc (Yet Another Compiler Compiler)
2-6
yacc 6-1
accept action 6-12
action statement 6-6

IN-13

INDEX

environment 6-26
error action 6-12
error handling 6-23
input syntax 6-33 .
lex Utilities, and 3-5

Lexical Analysis 6-9

parsers 6-10

reduce action 6-11

reduce-reduce conflict 6-17

shift action 6-11

shift reduce conflict 6-17

specification 6-36

token error 6-23

utility 6-10

IN-14

