Kernel Reference Manual AEG

_ REAL/IX® Operating System
. Open Architecture Systems

-863001-—-000 MODCOMP

MANUAL HISTORY

Manual Order Number: 211-863001-000

. Title: REAL/IX Operating System for Open Architecture Systems, Kernel Reference Manual
Revision Level Date Issued Description
000 06/91 Initial Issue (Release C.0).

Contents subject to change without notice.

MODCOMP, REAL/IX, Tri-Dimensional, Tri-D, and GLS are registered trademarks of
Modular Computer Systems, Inc.
REAL/VU is a trademark of Modular Computer Systems, Inc.
. Windows is a registered trademark of Microsoft Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
88open is a registered trademark of 88open Consortium Ltd.
Ethernet is a trademark of Xerox Corporation.
TeleSoft is a registered trademark of TeleSoft.
TeleVideo is a registered trademark of Televideo Systems, Inc.
Jetroff is a trademark of PC Research, Inc.
DEC, DECnet, PDP, VAX, and VMS are trademarks of Digital Equipment Corporation.
X Window System is a trademark of the Massachusetts Institute of Technology.
OSF, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc.
Centronics is a trademark of Data Computer Corporation.
Documenter’s Workbench is a trademark of AT&T.
System V/68 and System V/88 are trademarks of Motorola, Inc.
HP is a trademark of Hewlett-Packard, Inc.

Copyright © 1991, by Modular Computer Systems, Inc.
All Rights Reserved.
Printed in the United States of America.

. Portions of this document are based on or reprinted from copyrighted documents
by permission of Motorola, Inc. and AT&T.

REAL/IX Kernel Reference Manual

PROPRIETARY NOTICE

THE INFORMATION AND DESIGNS DISCLOSED HEREIN WERE ORIGINATED BY AND ARE THE PROPERTY OF
MODULAR COMPUTER SYSTEMS, INC. (MODCOMP). MODCOMP RESERVES ALL PATENT, PROPRIETARY
DESIGN, MANUFACTURING, SOFTWARE PROPERTY, REPRODUCTION, LISE, AND SALES RIGHTS THERETO,
AND RIGHTS TO ANY ARTICLE DISCLOSED THEREIN. THIS INFORMATION IS MADE AVAILABLE UPON THE
CONDITION THAT THE PROPRIETARY DESIGNS AND PRODUCTS DESCRIBED HEREIN WILL BE HELD IN
ABSOLUTE CONFIDENCE AND MAY NCT BE DISCLOSED IN WHOLE OR IN PART TO OTHERS WITHOUT THE
FRIOR WRITTEN PEAMISSION OF MODULAR COMPUTER SYSTEMS, ING. THE FOREGOING DOES NOT APPLY
TO VENDOR PROPRIETARY PRODUCTS.

SPECIFICATIONS REMAIN SUBJECT TO CHANGE IN ORDER TO ALLOW THE INTRODUCTION OF DESIGN
IMPROVEMENTS.

FOR GOVERNMENT USE THE FOLLOWING SHALL APPLY:
RESTRICTED RIGHTS LEGEND

USE, DUPLICATION, OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH
IN RIGHTS IN DATA CLAUSES DOE 952.227-75, DOD §2.227-7013, AND NASA 18-52.227~74 (AS THEY APPLY
TO APPROPRIATE AGENCIES).

MODULAR COMPUTER SYSTEMS, INC.
1650 WEST McNAB ROAD

P.O. BOX 6099

FORT LAUDERDALE, FL 33340-6099

THIS MANUAL IS SUPPLIED WITHOUT REPRESENTATION OR WARRANTY OF ANY KIND. MODULAR
COMPUTER SYSTEMS, INC. THEREFORE ASSUMES NO RESPONSIBILITY AND SHALL HAVE NO LIABILITY OF
ANY KIND ARISING FROM THE SUPPLY OR USE OF THIS PUBLICATION OR ANY MATERIAL CONTAINED
HEREIN.

THE PRODUCT DESCRIBED HEREIN IS BASED ON COPYRIGHTED SOFTWARE FROM MOTOROLA, INC. AND
AT&T. THE SOFTWARE IS FURNISHED UNDER A LICENSE AGREEMENT AND MAY BE USED ONLY IN
ACCORDANCE WITH THE TERMS OF SUCH AGREEMENT.

REAL/IX Kernel Reference Manual

PREFACE

The Kernel Reference Manual provides reference material about the driver entry-point routines,
kernel functions, and kernel data structures used to write device drivers and system calls for the
REAL/IX Operating System. This manual should be used in conjunction with other books in the
documentation set, especially the Kernel Programming Guide and the Driver Development Guide.

Open Architecture Systems Defined

The term "open architecture system”, in its simplest form, implies that a user may add a variety of
vendors’ components to a single system. This is possible when certain industry-accepted standards
have been implemented in the system. MODCOMP open architecture systems are based on such
software and hardware standards as the UNIX System V operating system, VMEbus and SCSI bus
interfaces, and CPUs built around standard microprocessors. By building on these standards, open
architecture systems provide computer solutions that are portable and compatible.

The REAL/IX Operating System!, which runs on all MODCOMP open architecture system hard-
ware platforms, allows applications to be ported easily between traditional UNIX systems and
MODCOMP open architecture systems. Furthermore, by using VMEbus and SCSI bus interfaces,
MODCOMP open architecture systems ensure compatibility among a wide range of peripheral and
I/O devices and the ability to expand as needs dictate. MODCOMP open architecture systems meet
networking and communications needs with such industry standards as Ethernet and TCP/IP and
have the flexibility to accommodate new standards as they are developed.

Related Publications

Refer to the following publications for additional information. When ordering, use the order
number shown in parentheses. The most current revision level (REV) will be shipped.

The numbers shown in this list and on the front covers of manuals are the
NOTE numbers for the text pages of the books only. See your MODCOMP sales
representative for order numbers that include binders and tabs.

Books for All System Users
Concepts and Characteristics (205-863001-REV).

Gives an overview of the internals of the REAL/IX Operating System and an introduc-
tion to the tools and facilities that are available.

1The REAL/IX Operating System, featuring realtime and multiprocessing capabilities, is the MODCOMP
implementation of the UNIX System Laboratories UNIX System V operating system.

REAL/IX Kernel Reference Manual

POSIX Conformance Guide (206—-863001-REV).
Describes conformance to IEEE Std 1003.1-1988. This document describes only those
areas where the specification allows implementation-defined behavior, or where the
behavior of an implementation may vary.

Contains manual pages for user commands (Section 1), administrative commands (Sec-

Reference Manual, Sections 1, IM, and IR (211~-863002-REV). .
tion 1M), and realtime commands (Section 1R).

Reference Manual, Sections 2, 3, and 5 (211-863003—-REV).
Contains manual pages for system calls (Section 2), library routines (Sections 3C, 3M,
3N, 38, and 3X), and miscellaneous information (Section 5).

Reference Manual, Sections 4, 7, and 7A (211-863004-REV).
Contains manual pages for system files (Section 4), special device files for standard
devices (Section 7), and special device files for add-on packages (Section TA).

User's Guide (240-100295-000).
Discusses basic user procedures including the login procedure and getting around the file
system. Information is included about general user tools; for example, the vi and ed text
editors, electronic mail, the shell programming language, and the Korn shell.

Using UUCP and Usenet (240-100217-001).
Introduces UUCP communications, describes how to transfer files and execute remote
commands over UUCP, how to check on UUCP requests, and how to access the Usenet

electronic bulletin board. .

Books for System Administrators

System Guide (213-730003—-REV).
Gives an overview of MODCOMP open architecture systems VMEbus-based computers
and contains instructions for the installation and maintenance of these systems.

Guide to VME Modules, MVMEI188 RISC Board Set (200-730004~REV).
Provides installation, hardware setup information, and firmware-level initialization infor-
mation for VMEbus-based systems.

Software Installation Guide (214—-863001-REV).

Gives instructions for installing the operating system (either for the first time or as an
upgrade) and initially setting up the system.

vi REAL/IX Kernel Reference Manual

System Administrator's Guide (232—-863001-REV).

Gives instructions and background information about administering the REAL/IX Oper-
ating System. Topics covered include ensuring system security; creating and maintaining
user and group IDs; working with file systems (creating, repairing, backing up); setting
up terminals and printers; using the sysgen(1M) utility to modify tunable parameters and
to configure or deconfigure standard system devices; and setting up and using the Job
Accounting System. Appendixes discuss the system files that control system operations
and the file naming conventions for special device files.

Trouble Analysis Guide (213—-863001-REV).
Gives guidelines for avoiding system problems and lists some common system problems
with suggestions for solving them.

Software Engineering Release Notes (117-661991-010).
Gives an overview of the new features in this release of the REAL/IX Operating System
and provides usage notes for the system.

Managing UUCP and Usener (240-100220-001).
Provides background information about UUCP for administrators and gives instructions
for setting up a UUCP link, verifying that the link works, administering UUCP commu-
nications, and setting up and administering the Usenet access. This information is
supplemented by the System Administrator's Guide, which includes information for ad-
ministering UUCP over the TCP/IP protocol, and the Software Installation Guide.

Books for Programmers

Languages and Support Tools Guide (211-863006—-REV).
Provides tutorials for many of the special purpose languages and the programming
support tools available on the REAL/IX Operating System.

Languages and Support Tools Guide Supplement (211-863x06—REV).
Contains information that is specific to the released system as it operates in the native
microprocessor environment of your hardware platform. Note that the "x” in the manual
number represents a number specific to the supplement shipped with your system.

Programmer's Guide (211-863005-REV).
Gives an overview of the REAL/IX Operating System and realtime computing, describes
the REAL/IX programming environment and the operating system interface, and pro-
vides programming examples for using the realtime extensions of the REAL/IX Operat-
ing System as well as the standard UNIX operating system features.

GLS Programming Guide Host and Cross Development Environments (216—856001-REV).
Describes how to install and execute each GLS compiler (C, FORTRAN, Pascal) in the
host and cross environments.

The C Programming Language, First Edition (240-100221-001).
Describes the traditional UNIX C language compatible with the GLS C compiler.

REAL/IX Kernel Reference Manual

vii

The C Programming Language, Second Edition (240-100271-000).
Describes the ANSI C language compatible with the GLS C compiler.

Books for Kernel Programmers

Driver Development Guide (230-863001-REV).
Introduces the process of writing device drivers for the REAL/IX Operating System,
including detailed information about porting and installing drivers.

Driver Development Guide Supplement (230-863x01-REV).
Contains information that is specific to the released system as it operates in the native
microprocessor environment of your hardware platform. Note that the "x” in the manual
number represents a number specific to the supplement shipped with your system.

Kernel Programming Guide (234—863001-REV).
Gives background information about topics of interest to programmers writing device
drivers and system calls. Topics discussed include how drivers and system calls execute
and how various types of I/O operations are implemented.

Kemnel Programming Guide Supplement (234-863x06—REV).
Contains information that is specific to the released system as it operates in the native
microprocessor environment of your hardware platform. Note that the "x” in the manual
number represents a number specific to the supplement shipped with your system.

Kemnel Reference Manual (211-863001-REV).
Contains reference pages for driver entry-point routines (Section D2X), kernel functions
and macros (Section D3X), and kernel data structures (Section D4X) used for coding
system calls and device drivers.

Industry Standard Publications

The REAL/IX Operating System and its supported C programming language comply with the
industry standards listed below. These standards are commercially available and can be obtained
from the following sources. While an effort was made to ensure that the ordering information was
complete and up-to-date at time of printing, we cannot guarantee its accuracy.

ANSI X3.159-1989 Programming Language C Standard
American National Standards Institute, Inc.
Sales Department
1430 Broadway
New York, NY 10018
Phone: (212) 642-4900
Fax: (212) 302-1286

wiil REAL/IX Kernel Reference Manual

IEEE Std 1003.1-1988 Standard Portable Operating System Interface for Computer Environments
(POSIX)
The Institute of Electrical and Electronics Engineers, Inc.
Publications Sales, IEEE Service Center
P.O. Box 1331
445 Hoes Lane
Piscataway, NJ 08855-1331
Phone: 1-800-678-1EEE
Fax: (201) 981-9677

88open Binary Compatibility Standard (BCS)
88open Consortium Ltd.
Marketing Department
100 Homeland Court, Suite 800
San Jose, CA 95112
Phone: (408) 436-6600
Fax: (408) 436—-0725

Documentation Conventions

The following table gives the textual conventions used in this book. Note that commands, library
routines, system calls, kernel functions, driver entry points, files, and data structures are sometimes
followed by a number enclosed in parentheses (for instance, "cat(1)”). This denotes the reference
section in which they are located; Sections D2X, D3X, and D4X are in the Kemel Reference
Manual; all others are in the Reference Manual volumes and available online through the man(1)
command. Commands followed by empty parentheses (for instance, "false()") are available through
the man command, but do not have their own manual page.

REAL/IX Kernel Reference Manual

Style

Item

Example

bold Shell commands cat or cat(1)
bold Library routines printf or printf(3s)
bold System call names open or open(2)
bold Kernel function names copyin or copyin(D3X)
bold Driver entry point names strategy or strategy(D2X)
bold Script names MOUNTFSYS or SOBMOUNTFSYS
italics File names /etc/passwd
monofont | Data structures user or user(D4X)
bold Data structure members u_count or u.u_count
bold Literal text in example
cat filename
italics Variable text in example
monofont | Code representations if size <= 0 return NULL;
monofont | Screen representations
Enter a number or q to quit: 2
monobold | Operator input
? Single character wildcard /dev/m332xt??
* Multi-character wildcard /dev/r40*
The WARNING icon highlights information that, if not observed, could cause a
system failure or could damage existing data on the system.
The CAUTION icon highlights information that could cause a procedure or
practice to fail but is not likely to cause a system failure or damage existing
data.
CAUTION
"C}E The NOTE icon highlights relevant information that does not require a caution or
NOTE warning.
The HINT icon identifies material that is indirectly related to the subject matter
. being discussed. For instance, a procedure may specify one way of doing the
HINT task, and the HINT would explain why it is done this way or optional ways of
accomplishing the same task.

REAL/IX Kernel Reference Manual

MODCOMP Service and Assistance

MODCOMP offers a variety of programs and services that demonstrate our commitment to
customer satisfaction. Our Technical Education department provides comprehensive hands-on in-

. struction either at our facilities or at customer-designated sites. Our worldwide field service organi-
zation is ready to give installation assistance, free service during the warranty period, and flexible
service programs tailored to your requirements.

Questions and Suggestions

Your MODCOMP sales and service representatives can help you with any questions, problems, or
suggestions you may have for our products and services. For your convenience, MODCOMP
maintains toll-free telephone numbers at which we can be reached for questions, problems, and
suggestions. Numbers you may find useful are listed here.

For Call From
Questlons, sales 1-800-255-2066 U.S.A. and Canada
Information, or 1-305-974-1380 extension 1800 outside the U.S.A. and Canada

suggestions
or please call your regional support office

Service 1-800-327-8928 U.S.A.
. 1-416-890-0666 Canada
Outside the U.S.A. and Canada, please call your regional
service/support office.
Technical 1-305-977-1708 U.S.A.
Education
information Outslde the U.S.A., please call your regional support office.

For comments about documentation, please use the response form at the back of this manual.

REAL/IX Kernel Reference Manual xi/(xii Blank)

TABLE OF CONTENTS

Chapter 1 Introduction

Organization of This Book o o o000
Porting Driver Code 0 L e e e e e e e e
Compatibility Modes L Lo e e e e e e e e e e e e e

Chapter 2 Driver Routines (D2X)

Overview of Driver Routines v vt v v v v o o o v v e e
Porting Issues ittt e e e e e e e e e e e e e e e e e e
aioD2X) . . . e
close(D2X) L .o e e e e e e e e e e e e e e
dump(D2X)o o e
mitD2X) L L L e e e e e e e e e e e e e e e e e e e
Intr(D2X) L L e

Ioctl(D2X) . . . L e e e e e e e e e e e e e e e e e e e
mbstrategy(D2X) L e e e e e e e e e e e e e e e e e e

select(D2X)00 e~ PR T T
serv(D2X) . . . L L L e e e e e e e e e e e e e e e e e e e
strategy(D2X) L L L L e e e e e e e e e e e e e e e e e e e
write(D2X) L L L L e e e e e e e e e e e e e e e e e

Chapter 3 Kernel Functions and Macros (D3X)

Function Categories Lot e e e e e
Summary of Kernel Functions
Portability Issues L e e e e e e
atpanic(D3X) L e e e e e e e
atpfail(D3X) L e e e e e e e e
beopy(D3X) L e e e e e e e e e e e e e e e
bmemalloc(D3X) e e e e e e e e e e
bmemfree(D3X) L e e e e e e e e e e e e
bprobe(D3X) L e e e e e e e e e e e e e e e
brelse(D3X) L e e e e e e e e e e e e e
btoc/btoct(D3X) L e e e e e e e e e e e e
bzero(D3X) e e e e e e e e e e e e e e e e
canon(D3X) Rt . . . 3. ... it e e ..
cintretlD3X) L e e e e e e e e e e e e e
cintrelse(D3X) L L L e e e e e e e e e e e e e e

REAL/IX Kernel Reference Manual

Page

xiii

Page

Chapter 3 Kernel Functions and Macros (D3X) [continued]

cintrget(D3X) L L. e e e, 3-30
cintrnotify(D3X)o 3-31
CrbufD3X) « « « v e e e e e e e e e 3-32
emn_err(D3X) oL, 3-33
comp_aio(D3X) e 3-38
comp_cancel aio(D3X) L. 3-39
copyin(D3X) L. .o e e e 3-40
copyout(D3X) e, 3-42
cpass(D3X) e e e s 3-44
cpsema(D3X) L L Ll e e e 3-45
ctob(D3X) e e e e 3-47
cvsema(D3X) Lo 3-48
deachelr(D3X) Lo e e e e, 3-50
decsema(D3X)o e, 3-51
DELAY(D3X)ot e e e e e 3-52
delay/delayfs(D3X)o, 3~53
disable(D3X) 3-55
disjointio(D3X) Lo, 3-57
dintfree(D3X) L 3-59
dintget(D3X)o e e e e e e, 3-60
dma breakup(D3X) 3-62
driinvoke(D3X) L e e e 3-65
drilock, driunlock(D3X)o 3-66
enable(D3X) e e e 3-68
etimeout(D3X), 3-69
freecpages(D3X) e e 3-7n
freepbp(D3X), 3-73
freephysbuf(D3X) L, 3-74
fubyte(D3X) L, 3-75
fuaword(D3X) L L Lo oo e e s s, 3-76
gete(D3X) L, 3-78
geteb(D3X)o, 3-80
getef(D3X) e 3-82
getcpages(D3X) L. L, 3-83
geteblk(D3X), 3-85
getnblk(D3X) 3-88
getpbp(D3X) L e, 3-90
getphysbuf(D3X), 3-92
get_timer(D3X) Lo 3-93
inesema(D3X), 3-94
mitlock(D3X) .« .+« . . e e e e e 3-95
initsema(D3X) L 3-97
iodone(D3X)o 3-100

xiv REAL/IX Kernel Reference Manual

Chapter 3 Kernel Functions and Macros (D3X) [continued]

jomove(D3X) L v e
fowait(D3X) L L e
Kongimp(D3X) ¢ L L e e e e e e e e e e e e e e e e e e e
kmap(3X) ¥ e e e v e e e e e e e e e e ol AGs
ksetimp@®3X). L e :

kunmap{D3X) it

max(D3X) e e e e e e e e e e e e e e e e

nodev(D3X) L e
NOT_ALIGNED(D3X)+« v v v v et e e ettt e e e e e e e e e e e
nulldev(D3X) L L e
olongimp(D3X)o o e e e e e e e e e e e e
osetimp(D3X) L . L e
passc(D3X) e e e e e e e e e e e e e e e e e
pegetaddr(D3X) L L L Lo e e e e
physck(D3X) e e e e e e e e e e e e e e e e e e e
physio(D3X) L L L e
poff(D3X) e e e e e e e e e e e e e
preiowait(D3X) L . e e e e e e e e e e e e e e e e
psema(D3X) L L e e e e e e e e e e e e e

psignal(D3X) L L. e e e e e e e e
psignalcur(D3X) L L o e e e e e e e e e e e e e e

psignalval(D3X) L L e e e e e e e e e
putc(D3X) e e e e e e e e e e e e e e e e
putcb(D3X) L L L L e e e e e e e e e e e e e e e e e e
putcf(D3X) e e e e e e e e e e e e e e e
reltimer(D3X) L L e e e e e e e e e e e
rtuser(D3X) L L e e e e e e e e e e e e e e
selwakeup(D3X) L L oL oL e e e e e
send_event(D3X) L. L L e e e e e e e e e e e e e e
set_timer(D3X) L L L e e e e e e e e e e e e e e e e
signal(D3X) L L e e e e e e e e e e e
sleep(D3X) L e e e e e e e e e e e e e e e e e

spI*(D3X) . . . L e e e e e e e e e e e e e e e e e e
spsema(D3X) L L L e e e e e e e e e

sptalloc(D3X) L e e e e e e e e e e e e e e e e e
sptiree(D3X) L L o e e e e e e e e e e e e e e

REAL/IX Kernel Reference Manual

Page

xv

Page

Chapter 3 Kernel Functions and Macros {D3X) [continued]

strcmp, strncmp(D3X) L L L Lo oL B e I}
strepy, strnepy(D3X) L L L L L ... L3175
strlen(D3X) L. L e e e e e e e e e . 3-176
subyte(D3X) e e e e e e 3-177
suser(D3X) oL e, 3~179
suword(D3X) L L L e e, 3-180
svsema(D3X) L. L oL e e 3-182
timeout/timeoutpri/timeoutfs/timeoutfspri(D3X) 3-183
ttclose(D3X) L L L e 3-136
HND3X) . .. e e e e e 3-188
RItD3X) . . . e e e e e e e e e e e 3-191
tiocom(D3X) L 3-193
ttioctl(D3X) L e 3-196
ttopen(D3X)o e, 3-198
ttout(D3X) e, 3-200
ttread(D3X) oL e 3-201
trstrt(D3X) . . L L L L e e e e, 3-203
tHmMeo(D3X) e e e e e e e e e 3-205
HWIite(D3X) e e e e e e e e e e e e 3-207
txput(D3X) L e e 3-209
tyflush(D3X) .« . v o e e e e e e e e 3-211
ttywait(D3X) © . . v e e e e e e e 3-212
undma(D3X) oL L0 L e e .. .3-213
untimeout(D3X) L. Lo 3-214
upath(D3X) 3-217
userace(D3X) oL 3-219
userdma(D3X) Lo 3-222
usshmetiD3X) oL 3-224
usyscallD3X) L 3-225
uvtopde(D3X) L L L Lo e e s e s, 3-227
valulock(D3X) Lo s, 3-228
valusema(D3X) L.l 3-229
vme_a24_mem_valid(D3X) 3-230
vsema(D3X) L0, e e 3-231
wakeup(D3X) L, 3-233

Chapter 4 Data Structures (D4X)

Overview of Kernel Data Structures e e e e L. 41
areg(D4X) e Coe. . 44
bdevsw(D4X) 47
buf(D4X), R S U}
cblock(D4X) oL, L4-1

xvi REAL/IX Kernel Reference Manual

Page

Chapter 4 Data Structures (D4X) [continued]

ceblock(D4X) L e 4-18
cdevsw(D4X) L L L e e e e e e e e e e e e e e e e 4-19
cfreelist(D4X) L e e e e e e e e e e e e e e 4-22
cntr(D4X) . . L L L L e e e e e e e e e e e e e e e e e 4-23
cistaX) e e e e e e e e e e e e e e e e e e e 4-24
dintio(D4X) L e 4-26
fobuf(D4X) L e e e e e e e e e e e e e e e e e 4-27
linesw(D4X) L L L o e 4-29
proc(D4X) L L e e e e e e e e e e e e e e e e 4-32
semdrivs(D4X) oL L L L e e e e e e e e e e e e e e e e 4-34
ty(D4X) © . . L e 4-36
user(D4X) o e o L e 4-41
Index L L e e e e e Index-1

REAL/IX Kernel Reference Manual xvli

LIST OF TABLES

Page
2-1 Driver Routine Types0 e e e e 2-3
2-2 REAL/IXDriver EntryPoints 2-4
2-3 System-Defined I/0 Control Commands 2-29
3-1 FunctionCategories e 3-2
3-2 Kernel Function Summary 3-5
3-3 AT&T Kernel Functions Not Supported 3-10
3-4 REAL/IX-Only Kernel Functions 3-11

xviii REAL/IX Kerne! Reference Manual

Chapter 1

Introduction

The Kernel Reference Manual for the REAL/IX® Operating System provides information needed by
programmers who wish to add system calls and device drivers to the REAL/IX Operating System.
It is based on the AT&T Block and Character Interface (BCI) Driver Reference Manual.

Note that the programming code samples in the Kernel Reference Manual are code fragments that
are intended to demonstrate the use of the entry point, function, data structure, or library function
being described. These code fragments are not intended to be compiled into drivers.

The kernel programming documentation for the REAL/IX Operating System defines the terms
routine and kernel function as follows:

routine Code segment written by a driver developer. Driver code consists of entry-point
routines and subordinate routines. The entry-point routines are accessed through
system tables and must be named according to very specific rules that are
explained in the introduction to Section 2 of this book. Subordinate driver
routines are called by driver entry-point routines.

function A kernel utility used in a driver or system call. The use of functions in kernel-
level code is analogous to the use of system calls and library routines in user-
level code.

Organization of This Book

This book uses the AT&T format, a format similar to that used in the standard UNIX® reference
manuals. After this introduction, the book contains three sections:

D2X contains manual pages for the entry-point routines that form the skeleton of any driver
code. Each page discusses what the entry-point routine does, identifies any configuration
dependencies associated with the routine, and gives guidelines for writing the routine. A
table in the introduction compares the supported entry-point routines to those docu-
mented by AT&T.

REAL/IX Kernel Reference Manual

Introduction

D3X contains manual pages for the kernel functions that are used instead of library functions
in device drivers and system calls. Each page gives a synopsis of the function (including
any header files that must be called when using it), describes the return codes for the
function, specifies any semaphoring ramifications, tells whether the routine can be used
from base or interrupt level, and identifies the file in which the source for the function
is located (customers with binary licenses may not have all the source files referenced).
Tables in the introduction to the section summarize all documented kernel functions and
compare the function set to that documented by AT&T.

D4X contains manual pages for the kernel data structures that may be accessed by drivers
and system calls. Each page describes the use of the structure, defines the structure
members that may be accessed, and identifies the file in which the structure is defined
(in most cases, the structure is defined in a header file located in the lusr/include/sys
directory; these files are included in the binary release).

This book should be used in conjunction with two other books in the documentation set for the
REAL/IX Operating System:

Q Kemel Programming Guide provides background information covering a number of topics
involved in writing device drivers and system calls.

Q Driver Development Guide introduces the specific tasks involved in writing and porting device
drivers for the REAL/IX Operating System.

Refer to the Preface of this book for a list of other books in the documentation set.

Porting Driver Code

When discussing the portability of kernel-level code, it is important to remember that there is no
standard on kernel code: neither SVID nor POSIX addresses anything below the system-call level,
and all that is standardized for system calls is a basic set to be included, not the lower-level kernel
functions used to implement system calls. Consequently, each kernel has a number of variations
from other kernels. In addition to modifications made to provide performance that is acceptable for
realtime applications, the REAL/IX kernel includes some modifications to the UNIX System V
kernel made when the operating system was ported to the hardware platform on which your
machine is based.

As a starting point, the tables at the beginning of Sections 2 and 3 compare the REAL/IX kernel to
that documented in the AT&T UNIX System V Release 3 Driver Reference Manual. If the kernel
code you are porting ran on a different variation of the operating system, you may find additional
inconsistencies. At worst, these changes could be a minor aggravation. If you have code to port, a
simple grep(1) should enable you to identify all UNIX System V entry-point routines and kernel
functions that are not supported. To identify other variations, you can carefully compare the code
to the routines and functions listed in the beginning of Sections 2 and 3, or you can attempt to
compile the driver code; the linker will flag unsupported functions as unresolved references.

1-2 REAL/IX Kernel Reference Manual

Introduction

For more information about porting issues, refer to Porrable C and UNIX System Programming
(Lapin 1987). Lapin explains the relationships between the various UNIX dialects, points out
common pitfalls when porting code, and provides some helpful insight into writing portable C code.
Of particular interest is the section describing a portable interface to the version-dependent features

. of TTY drivers.

Compatibility Modes

The REAL/IX kernel uses kernel semaphores and spin locks to synchronize processes in the
preemptive kernel. Compatibility modes are provided to enable you to port existing drivers to the
REAL/IX Operating System without having to rewrite the drivers to use the REAL/IX synchroni-
zation facilities. These compatibility modes are specified to sysgen(1M) when you install the driver.!

O CPU affinity — Preemption is turned off whenever the driver is executing. Synchronization is
done using spI*(D3X) and sleep(D3X)/wakeup(D3X) functions, just as on UNIX System V.

O major device semaphoring — a semaphore is locked for the major number itself. Synchroniza-
tion is done using sleep/wakeup calls; spl® calls that protect data structures used only by this
driver can be removed.

O minor device semaphoring — a semaphore is locked for each minor number (subdevice)
controlled by the driver. sleep/wakeup calls are used for synchronization; spl* calls that
protect data structures used only by the driver can be removed. The interrupt-handling code

. must be rewritten so that the intr(D2X) routine determines whether the interrupt can be
handled and, if not, queues it up for servicing at a later time. The serv(D2X) routine contains
the actual interrupt-handling functionality.

One driver cannot mix sleep/wakeup calls with kernel functions for semaphores (such as
psema/vsema). Some D3X kernel functions have different forms if they are used in drivers installed
under compatibility modes rather than being used in fully-semaphored drivers and system calls.
Special ramifications for compatibility modes are discussed on each manual page.

All user-installed system calls must be written as fully semaphored.
Refer to the Kemel Programming Guide for a more complete discussion of synchronization facilities
for fully-semaphored kernel code versus compatibility mode driver code. The Driver Development

Guide includes instructions for installing drivers under the compatibility modes and rewriting ported
drivers to be fully semaphored.

INot all compatibility modes are supported on all machines. Refer to the Release Notes shipped with your
system.

REAL/IX Kernel Reference Manual 1-3/(1-4 Blank)

RECEIVED APR 2 8 1993

Chapter 2

Driver Routines (D2X)

Section D2X describes the system entry-point routines! a driver developer uses to create a driver,
plus the proc routine that is required for TTY drivers. The routines are presented on separate
pages. All manual pages for driver routines have the (D2X) cross reference code.

Each driver is organized into two parts: the base level and the interrupt level. The base level
interacts with the kernel and the user program; the interrupt level interacts with the device.

Each driver has a prefix that is defined in its configuration file. This prefix is prepended to the
routine name to form the name of the actual routine in the driver. For a driver with the "pre_”
prefix, for example, the driver code may contain routines named pre_open, pre_close, pre_init,
pre_intr, and so forth.

Driver routines can call subroutines that are assigned names by the driver writer. Subroutines can
be type static, in which case no rules apply for naming subroutines.2 However, using the prefix in
subroutine names enhances code readability.

Because subroutines are variable, the planning, writing, and execution of these routines is the
responsibility of the developer.

Manual pages in this section contain the following headings:
NAME summarizes the routine’s purpose
SYNOPSIS describes the routine’s entry point in the source code. Note that the
#include lines listed for the routines do not include the header files that are
required for every driver; refer to the Driver Development Guide for informa-
tion about these standard header files.

ARGUMENTS describes arguments required to invoke the routine

DESCRIPTION provides general information about the routine

1System entry-point routines are called from the switch tables (bdevsw(D4X) and cdevsw(D4X)) during system
initialization when a user-level process issues a call that activates the driver, and when a device generates an

interrupt.

Note that static symbols are not stored in the symbol table and so are not accessible to debugging tools such as

crash(1M) and db(1M).

REAL/IX Kernel Reference Manual

RETURN VALUE

DEPENDENCIES

SEE ALSO

describes the return values and messages that may result from invoking the
routine

lists possible dependent routine conditions
lists sources of additional information. The following abbreviations are used:

KPG for the Kemnel Programming Guide
DDG for the Driver Development Guide

REAL/IX Kernel Reference Manual

Overview of Driver Routines

Table 2-1 lists the driver routines presented in this section. Refer to individual manual pages in this
section for details about each routine.

Table 2-1. Driver Routine Types

Base-Level Routines

System Defined Name Routines

Subordinate Driver Routines

Initialization

Switch Table Accessed

Support Routines

proc Routine

name must be:

Character Block
Driver Driver
open open
copen bopen
close close
cclose bclose
read strategy
write mbstrategy
loctl print
aio dump
select

name is developer
selected

prefix is not needed
If the routine is
declared static; all
static routines are
local to the driver
so cannot conflict
with other drivers

Routines Routines
Form: Form: Form: Form:
prefixinit() prefixname(args) prefixname(args) prefixproc(args)

required for TTY
drivers doing
canonical
processing

interrupt-Level Routines

Interrupt Envelope
Accessed Routines

Support Routines

Form:
Block or character driver

prefixintr{arg)
prefixserv(arg)

Form: prefixname(args)
name is developer selected

prefix is not needed if the routine is declared static

REAL/IX Kernel Reference Manual

Porting Issues

Table 2-2 summarizes the differences between UNIX System V entry points and REAL/IX
Operating System entry points. If you are porting from a different operating system, you may find
other variations of names, especially for the initialization and interrupt-handling routines.

Table 2—2. REAL/IX Driver Entry Points

AT&T UNIX System V Release 3

REAL/IX Release C.0 and Later

prefstart()

alternate initiatization
entry point

Not supported; use prefixinit() for all driver Iinitialization.

prefopen()

one open for block or
character device

prefopen()

Used for devices that code same
functionality for open as a block or
character device.

prefcopen()

prefbopen()

Optlonal entry points to allow driver
to distinguish between open as block
or character device.

prefclose()

one close for block or
character device

prefclose()

Used for devices that code same
functionality for close as a block or
character device.

prefeclose()

prefbelose()

Optional entry points to allow driver
to distinguish between close as

block or character device. The close
routine must match the open routine
used (i.e., open-close,

P » copen—c).

prefstrategy()

handles block I/0
operations

prefstrategy()

Used as for AT&T systems.

Drivers for disk devices may also
include this routine, to provide the

prefmbstrategy() multi-block clustering feature for
more efficient file access.
Provides asynchronous read and write
= - prefaio() operations for block and character

devices.

prefdump()

Saves kernel memory images to
supported block devices.

prefselect()

Check whether a character 1/Q
operation started at this time will
block.

prefint() interrupt handler
- . One interrupt-handling routine is
prefrint() handle receive interrupt prefintr() supported. P g
prefxint() handle transmit interrupt
_ . prefserv() Required with drivers that are

semaphored on the minor device.

REAL/IX Kernel Reference Manual

aio(D2X) aio(D2X)

NAME aio - initiate asynchronous I/0 operation

SYNOPSIS #include “sys/aio.h”

prefixaio(cmd, areq)
int omd;
struct areq *areq;

ARGUMENTS cmd an operation that the aio routine performs. Typically, the driver
encodes a case statement for each command with code to per-
form the operations that are described below. Refer to the Kernel
Programming Guide for information about how these commands
are coded.

AQUEUE
enqueue an asynchronous read or write operation
(called by aread(2) or awrite(2))

AQUEUE_INIT
prepare an asynchronous read or write operation for
enqueuing (called by arinit(2) or awinit(2))

ACANCEL
cancel a pending asynchronous read or write opera-
tion (called by acancel(2), exec(2), and exit(2))

AQUEUE_TERM
free up resources that were used for a previous asyn-
chronous read or write operation (called by
arwfree(2), when the areq(D4X) structure is being
reused for a new asynchronous I/O operation, when
process exits, etc.)

areq pointer to the areq(D4X) structure for this operation

DESCRIPTION The aio routine is used to initiate asynchronous read and write operations
for character devices. Most control for an asynchronous I/O transfer comes
from the user-level process; the driver's aio routine is coded to accept the
information passed by the user-level program.

RETURN VALUES The value returned from the alo routine varies with the value of the cmd
argument:

AQUEUE_INIT © successful initialization
EAGAIN insufficient resources
ENODEV asynchronous I/O not supported for this
particular device or transfer parameters
ENXIO illegal request

REAL/IX Kernel Reference Manual 2-5

aio(D2X)

DEPENDENCIES

SEE ALSO

aio(D2X)

AQUEUE 0 successful queuing
EAGAIN insufficient resources
ENODEV asynchronous I/Q not supported for this
particular device or transfer parameters
(will cause synchronous emulation if fentl(2)
set the F_SETAIOEMUL flag on the file

descriptor)
ENXIO device error before transfer starts
-1 the operation has been terminated by the

driver with a call to comp_aio(D3X)

ACANCEL ACANYES request has been canceled
ACANNOT request is in progress; cannot be canceled
ACANNIP request has finished; cannot be canceled

The aio routine returns values that the generic asynchronous I/O code in the
kernel uses to determine whether or not the I/O transfer was queued
successfully. For the AQUEUE_INIT and ACANCEL commands, any error
code is returned to the system call that initiated the 1/0O request (arinit(2),
awinit(2), or acancel(2)).

For the AQUEUE command, the base-level routine has already committed
to making an asynchronous return to the user. An error code from the
driver is used by the base level of the driver to perform a comp_aio(D3X) to
pass the error code back to the user by writing it to the rt_error member of
the aiocb(4) structure.

O If the driver returns a 0, it indicates that the driver has accepted the
operation and will call comp_aio itself when the transfer is completed.

O When aio is called through the file system, the driver may have
already called comp_aio before returning to the base level. In this

case, the -1 return is used to notify the base level that the operation is
no longer in progress.

O The -1 return is also used by the file system code if the offset is at
end-of-file; in this case, comp_aio will have been called to indicate
that there was no error and the byte count will have been set to zero.

Drivers using the aio routine must be configured as character special devices
and identified as having an asynchronous I/O handler.

KPG, "Miscellaneous I/0 Operations”
intr(D2X), ecomp_aio(D3X), comp_cancel_aio(D3X), areq(D4X)
aread(2), awrite(2), aiocb(4)

REAL/IX Kernel Reference Manual

close(D2X)

NAME

SYNOPSIS

ARGUMENTS

close(D2X)

close, bclose, cclose — cease access to a device

#include “sys/file.h”
#include “sys/open.h”

prefixclose(dev, flag, otyp)
dev_t dev;

int flag;

int otyp;

The synopses of belose and cclose are the same as for close.
dev device number

flag the flag with which the file was opened. The value does not
instruct the driver how to close the file; rather, it is a reference
to be used as needed. The flag is taken from the f_flag member
of the file structure, which is in file.h. Refer to open(D2X) for
a listing of the possible flags.

otyp parameter supplied so that the driver can determine how many
times a device was opened and for what reasons. For drivers
installed with full semaphoring, the close routine is called in
response to every close of the device; for drivers installed under
one of the compatibility modes, the close routine is called only
on the last close of the device, except when close is called with
otyp set to OTYP_LYR. All flags are defined in open.k unless
otherwise noted.

OTYP_BLK make last close for a block special file
OTYP_CHAR make last close for a character special file

OTYP_LYR close a layered process. This flag is used when
one driver calls another’s open or close routine.
In this case, there is exactly one close for each
open called. This permits software drivers to exist
above hardware drivers and removes any ambigu-
ity from the hardware driver regarding how a
device is used. This flag applies to both block and
character devices.

OTYP_MNT close (unmount) a file system

OTYP_SWP close a swapping device

REAL/IX Kernel Reference Manual 2-7

close(D2X) close(D2X)

DESCRIPTION The close routine ends the connection between the user process and the
previously opened device and prepares the device (hardware and software) so
that it is ready to be opened again. Every driver should have a close routine,
although the routine may be empty. If the device was opened with a bopen
or copen routine, then the corresponding belose or cclose routine must be
used to close the connection.

A device may be opened simultaneously by several processes and the open
driver routine called for each open. In drivers installed under the compatibil-
ity modes, the kernel calls the driver close routine when the last process
using the device issues a close(2) call or exits. In drivers installed as fully
semaphored, the kernel calls close(D2X) for every close(2) system call.

The close routine may perform the following activities:
Q deallocate buffers for private buffering scheme
O unlock an unsharable device (that was locked in the open routine)
Q flush buffers
Q notify device of the close
O issue cintrelse(D3X) to release connected interrupt structure

If an error occurs during close, close should test the u.u_error member of
the user(D4X) structure to ensure that its value is zero (i.e., it does not
already contain an error message); if it is empty, set it to indicate the error,
but do not change the value if it already contains an error message. See the
open.h file for more information.

A close routine should use the flag parameters specified on the close(2)
manual page when applicable. It should also make the device available for
later use by deallocating resources and cleaning up data structures, as
appropriate.

close in Fully—-Semaphored Drivers

In drivers installed as fully semaphored, close(D2X) is called in response to
every close(2) system call issued against the device, in order to avoid race
conditions between open and close operations. If the driver needs to per-
form some tasks only on the last close, the driver should use a counter, as
in the following example.

2-8 REAL/IX Kernel Reference Manual

close(D2X)

close(D2X)

/* There is an iobuf structure for each device */
/* in this driver. Other drivers may use different */
/* data structures. */

extern struct iobuf xx iobuftabl];
#define opnent io_s8

xx_init()

initsema(xx_opn_sema, 1, 0);
for (dp = xx_iobuftab;
dp < &xx_iobuftab[xx_max dev]; dp*™) {
dp—>opnent = 0;
}

1

xx_open(dev, flag, otyp)

dev_t dev;

int flag;

int otyp;

{
set up dp to point to the iobuf for this device
psema(&xx_opn_sema, 0);
dp—Yopncnt++;
vsema(&xx_opn_sema, 0, 0);

}

xx_close(dev, flag, otyp)

dev_t dev;

int flag;

int otyp:;

{

code to be performed on every close
set up dp to point to the iobuf for this device

psema(&xx_opn_sema, 0);
if (-—-dp->opnent) = 0) {
vsema (&xx_opn_sema, 0, 0);
return; /* not last close */

cac.ie to be performed orly on last close

vsema(&xx_opn_sema, 0, 0);

REAL/IX Kernel Reference Manual 2-9

close(D2X)

close in TTY Drivers

close(D2X)

After calling ttelose for a tty(D4X) driver, the driver close routine should
disconnect the link to the terminal and return to the caller.

REAL/IX Kernel Reference Manual

dump(D2X) dump(D2X)

NAME dump ~ save core image after a system panic

SYNOPSIS prefixdump()

DESCRIPTION The dump routine is the driver interface for saving kernel memory images to
supported block devices. dump is called by unixcore, which determines the

dump device's major and minor numbers with dumpinit(), then invokes the
correct driver though the bdevsw(D4X) table with interrupts disabled (in
other words, dump polis). The dump routine should dump physmem pages
of memory starting at firstmem to dumpdev.

The dump routine should include emn_err(D3X) statements for error condi-
tions that may arise, such as the inability to find the controller or device or
too little space available on the dump device. The dump routine should also
include the ability to reset and reinitialize the device and/or its associated
controller following a double bus fault or any other condition that may leave
the controller in a nonfunctional state.

DEPENDENCIES Drivers supplying the dump routine must be configured as block special
devices with a dump handler.

The device number for the dump special device file, /dev/dump, must
correctly specify the intended dump device specified by the system devices
entry in sysgen(1M); this device is usually the system swap device. During
system initialization, a script in /etc/rc2.d copies the core image and associ-
ated bootable kernel image to the /usr/dumps directory.

REAL/IX Kernel Reference Manual 2-11

init(D2X) init(D2X)

NAME init ~ initialize a device
SYNOPSIS prefixinit()
DESCRIPTION Every driver should have an init(D2X) routine, although some have nothing

to initialize and others defer initialization to the open(D2X), bopen, copen,
or ioctl(D2X) routine. In most cases, it does not matter if variables are
zeroed in an init or an open routine. On the other hand, the system should
be informed at the time of initialization if, for example, a disk drive is
offline. Drivers that use kernel semaphores and spin locks should initialize
them in an init routine so that the semaphores are associated with the
appropriate data structures and initialized to the appropriate value when the
system is booted.

Use init to exccute functions when the computer is first brought up; use
open, bopen, copen, or ioctl to execute functions after the operating system
is started, file systems are mounted, and interrupts are enabled. The choice
of routines to use for initialization should be made in consideration of the
following:

Q init cannot be used for any initialization that requires interrupts to be
enabled because interrupts are disabled at the time the init routines
execute.

U init must be used to initialize driver-specific kernel structures, in other
words, structures other than the standard structures documented in
Section 4.

O Driver initialization takes time. Often it is preferable to slow the
system initialization time to avoid having the first user-level process
that tries to access the device absorb the initialization overhead. If the
driver uses the init routine or if a process called by /erc/inittab calls
the ioctl or open routine, all initialization will be done when the first
application program attempts to access the device.

O Once memory is allocated for the driver, it is unavailable to other
system processes, even if the driver is not using it. For infrequently
used devices that do not require optimum performance, it may make
sense to allocate kernel resources only when the device is actually
being used. In this case, resources can be allocated in the open(D2X)
routine and freed in the close(D2X) routine.

Q Drivers for local bus boot devices must use the init routine.

2-12 REAL/IX Kernel Reference Manual

init(D2X) 4 init(D2X)

In the following psendocode for a software driver, the initialization proc-
essing required is minimal. Some memory must be allocated and initialized,
and a warning must be issued if the allocation fails. The pseudocode example
is listed in three sections, which are referenced by the section headers below
to indicate the lines that are being explained.

(1) init(dev)
if (memory can be allocated)
allocate memory
initialize memory

(2) initialize semaphores (initsema(D3X))
semaphores for exclusive access of resources
semaphores for sleep/wakeup functionality
initialize spin locks (initlock(D3X))

(3) if initialization is successful
print informational message
else
print warning message

Memory Allocation (1)

The function used to allocate memory is sptalloc(D3X). The manual page
shows that sptalloc accepts as an argument the number of pages to be
allocated (up to 64), and that the pages are segment-aligned and cannot be
swapped out. The sptalloc manual page also tells you the conditions that
must exist for the allocation to succeed, how different types of failures are
handled, and the header files that must be used.

Semaphore Initialization (2)

The initialization routine for the driver must initialize all driver-specific
kernel semaphores and spin locks:

O use initlock(D3X) to initialize a spin lock to 0 (unlocked)

O use initsema(D3X) to initialize a blocking semaphore to 0 (the first
will decrement the value to -1 (blocked))

O use initsema to initialize an exclusionary semaphore to the number of
resources available

Remember that all psema(D3X), epsema(D3X), and some vsema(D3X) calls
to a particular semaphore must use the same flags. So, if your driver must
sometimes block in an interruptible state and sometimes in an uninter-
ruptible state, you must initialize two blocking semaphores. Refer to the
Kernel Programming Guide for more discussion about using kernel sema-
phores and spin locks.

REAL/IX Kernel Reference Manual 2-13

init(D2X)

Messages (3)

CAVEATS

init(D2X)

If the driver encounters any problems during initialization, it should issue a
message identifying the problem. The printf(3X) library function cannot be
used in driver code; instead, the function cmn_err(D3X) is used for all types
of messages, from the merely informational to those reporting severe errors.
The first argument to this function is a constant to indicate the severity
level, the second is the text of the message, and the third is an optional
variable. For example, the following statement could be used to report why
the initialization failed:

cmn_err(CE_WARN,"prefix_init: sptalloc cannot allocate %d buffers”, BUFS);

The cmn_err function can also be used to shut down or panic the system
when serious errors are detected. For example, if a hardware driver is
unable to allocate private buffer space, there is probably sufficient reason to
halt system initialization. When this condition is detected, the next statement
should be:

cmn_err(CE_PANIC,"prefix_init: Buffer space unavailable”);

A working driver for a hardware device (for example, a disk drive) often
requires a more complicated init routine than the one shown in the
pseudocode above. The additional processing required may include some of
the following:

O Confirm that the devices under the control of the driver are online.
Q Check for the correct number of subdevices.

Q Set each device's interrupt vector to correspond to the system'’s inter-
rupt vector table.

O Set the virtual-to-physical address translation.

O Set device-specific parameters to default values. These parameters
include values for the number of tracks, cylinders, and sectors.

QO Download executable code to the controller. Controllers for many
devices have their own processors and memory and are referred to as
intelligent devices. The executable code downloaded to the controller
is sometimes called pumpcode.

init must never call kernel functions that issue the sleep(D3X),
psema(D3X), or vsema(D3X) functions or functions that access the
user(D4X) or proc(D4X) structure. Initialization activities that require ac-
cess to these functions should be done in an open(D2X) or foctl(D2X)
routine.

REAL/IX Kernel Reference Manual

intr(D2X) intr(D2X)

NAME intr — process a device interrupt
SYNOPSIS void prefixintr (subvec)
int subvec;
. int prefixintx (subvec)

int subvec;

void prefixintr()
int prefixintx()

ARGUMENTS subvec indicates which controller associated with the driver generated
the interrupt. This parameter can be omitted if only one device
can generate the interrupt; refer to page 2-18. 3

DESCRIPTION The intr routine is the standard interrupt-handling entry-point routine. It is
used to handle interrupts that are generated by devices that have only one
function and allow a unique vector to be assigned for the device. This
assignment can be made through hardware (such as selecting a jumper) or
through software (in which case, the REAL/IX Operating System handler
sets up the hardware appropriately).

The intr routine is entered when a hardware interrupt is received from a

driver-controlled device. It processes job completions, errors, changes in

device status, and unexpected interrupts for both block and character
. drivers. The contents of the routine depend on the device it controls.

Devices with different interrupt capabilities and requirements can be imple-
mented on the REAL/IX Operating System by implementing alien handlers
and multiple handlers. For instructions about how to use these alternative
interrupt-handling mechanisms, refer to the Kemnel Programming Guide and
the Driver Development Guide.

Devices that Generate One Interrupt

Simple interrupt-generating devices generate only one interrupt. The
REAL/IX Operating System takes this style as its basic model of how
devices work, but allows extensions to this model to allow for the many
possible alternatives.

The intr routine is the normal interrupt routine for a driver. Because many
similar devices, each of which generates just one interrupt, may be config-
ured, a parameter is passed to the intr routine. This parameter allows the
intr routine to determine the device that caused the interrupt. Refer to "The
Interrupt Routine Argument” on page 2-18 for more information. Normally

. the intr routine is of type void, so there is no need to return a value to the
interrupt envelope routine.

REAL/IX Kernel Reference Manual 2-15

intr(D2X) intr(D2X)

When an interrupt occurs, control is passed to an envelope routine that
performs any necessary housekeeping (such as saving CPU registers or
passing the appropriate parameter to the intr routine) and performs any
actions required for the driver’s synchronization method. Each synchroniza-
tion method requires some different considerations in the interrupt routine;
these are discussed later.

The system automatically generates the interrupt envelope for the device.
When using alien handlers, you can write your own interrupt envelope; refer
to the Kernel Programming Guide for more information.

The specific content of the intr routine is determined by the needs of the
device, but it usually contains some combination of the following
functionality:

O If an argument is supplied, interpret it to determine the source of the
interrupt.

O Determine the cause of the interrupt.

O If appropriate, notify associated user-level processes of the condition
signaled by the interrupt. Refer to page 2-18 for information about
handling job completion interrupts, and page 2-19 for information
about using connected interrupts to notify the user-level process.

The send_event(D3X) kernel function can be used to post an event to .
the associated user-level process. It may also be appropriate to post a

signal with psignal(D3X), psignalcur(D3X), psignalval(D3X), or

signal(D3X).

O If the interrupt reflects a change in device status, record any necessary
details.

Q If the interrupt is due to some intermediate stage in a sequence,
perform whatever action is required to continue. For example, certain
I/0 devices require that characters be sent to the device individually,
in which case an interrupt may request the next character from an
output buffer.

O If the condition signaled by the interrupt allows another operation to
start, search the driver queues for a queued operation and start it.

Q If the interrupt indicates a device error, process it appropriately.

2-16 REAL/IX Kernel Reference Manual

intr(D2X) intr(D2X)

| Q Handle stray or spurious interrupts gracefully. Diagnostics may be
kept, but the system should not be halted for stray interrupts except
during debugging.

. O If necessary, update statistics as required by the driver.

Devices that Generate More Than One Interrupt

The basic interrupt-handling model of the REAL/IX Operating System must
be extended when a device generates more than one interrupt. The usual
method is to use the intr routine to handle whichever interrupt is most likely
to report I/0 completions and to use alien handler routines to deal with the
remaining interrupts. Refer to the Kemel Programming Guide for details.

If a device generates several different interrupts that form a contiguous
range, it is possible to route all of these interrupts to the intr routine. The
interrupt vectors size field in the driver screen must be set to the number of
contiguous vectors multiplied by 4. Refer to the Driver Development Guide
for details.

The following guidelines can help you decide whether to route all of a range
of contiguous interrupts to a single intr routine:

because the subvec parameter will be identical for all interrupts within
the range. Consequently, additional processing must be done at the
interrupt level, thus degrading the system'’s interrupt latency.

. O The fintr routine cannot readily distinguish the source of the interrupt,

Q Drivers installed under the compatibility modes cannot support alien
handlers, although they can support an intr routine that handles a
range of contiguous interrupts.

Interrupt Routine Restrictions

Keep the following restrictions in mind when developing an interrupt
routine:

O Interrupt routines must not set any fields in the user(D4X) structure,
because the process running when the interrupt occurs may not be the
process that initiated the I/0 operation.

O For the same reason, interrupt routines must not call any functiens
that block (such as sleep(D3X) or psema(D3X) or functions that call

sleep or psema). The D3X manual pages identify the functions that
. can be called from the interrupt level.

REAL/IX Kernel Reference Manual 2-17

intr(D2X)

intr(D2X)

O For drivers installed under one of the compatibility modes, spl*(D3X)
functions must not drop the processor execution level below the level
set for the interrupt routine. Doing so can corrupt the stack.

QO There may be cache coherency considerations. Refer to the Kemel
Programming Guide for information about memory management.

The Interrupt Routine Argument

The intr routine takes one (optional) argument, which indicates the control-
ler that generated the interrupt. By passing an argument, one interrupt
routine can handle the many different interrupt vectors associated with the
many devices that may be controlled by the one driver. The argument,
subvec, is the result of the controller number multiplied by the number of
devices per controller. It usually indicates the minor number of the first
subdevice on the controller. For instance, if a subdevice on controller 0
issues an interrupt, and the controller supports two subdevices, subvec
would be 0 (controller 0 times 2 subdevices equals 0). If controller 1 (with
the same configuration) issues an interrupt, subvec would be 2.1

Note that not all interrupt handlers receive or need parameters. If it is
certain that a driver will never support more than one device, the subvec
argument is redundant (it will always have the value 0). In this case, the
driver can be sysgened so that no argument is passed, which saves a couple
of machine instructions per interrupt.

Handling Job Completion Interrupts

For job completion interrupts, service depends on the requirements of the
application:

O For I/O operations initiated by the read(D2X), write(D2X),
strategy(D2X), or mbstrategy(D2X) entry-point routines, the interrupt
handler routine unblocks any base-level process waiting on the inter-
rupt completion. For example, when a disk drive has transferred
information to the host to satisfy a read request, the disk drive
generates an interrupt. The CPU acknowledges the interrupt and calls
the disk driver’s interrupt routine. The driver interrupt routine then
unblocks the process waiting for data, which conveys the data to the
user.

The order in which the subvec number is assigned is determined by the alphabetical order in which the devices
are listed on the sysgen(1M) item screens. This is determined by the contents of the left column on that screen

(i.e., the board description).

2-18

REAL/IX Kernel Reference Manual

intr(D2X) intr(D2X)

The function issued to unblock is determined by the function used to

block:

If the driver blocked with: intr unblocks with:
psema(D3X) vsema(D3X)
towait(D3X) iodone(D3
preiowait(D3X) iodone(D3X
sleep(D3X) wakeup(D3X)

O For I/O operations initiated by the alo(D2X) entry-point routine, the
base level of the driver is not blocked awaiting completion of the I/O
operation. Rather than unblock a process, the interrupt routine issues
a function that updates the areq(D4X) structure:

® comp_aio(D3X) is used if the I/O operation completed.

s comp_cancel_aio(D3X) is used if the I/O operation was canceled
with an acancel(2) issued by the user-level process.

Refer to the Kemnel Programming Guide for more detailed information
about coding the driver to use asynchronous I/0.

The following pseudocode illustrates how the interrupt routine is coded to
handle job completion interrupts for a block device:

drivintr(dev)
{
identify the subdevice that interrupted
find the buffer associated with that device and remove it from queue

if (some_error_condition) {
set error indicators in the buffer header
}

iodone(bp);

if (entries_remain_on_device queue) {
start up next request on queue

}

Servicing Interrupts with Connected Interrupts

A number of devices used for such realtime applications as process moni-
toring and control receive interrupts intended to notify the appropriate user-
level process of an external event rather than to signal the completion of an

. operation requested by the base level of the driver. Rather than notifying the
base level of the driver of the interrupt, the interrupt-handling routines of
such drivers use the connected interrupt mechanism to notify the user-level
process of the interrupt.

REAL/IX Kernel Reference Manual 2-19

intr(D2X)

intr(D2X)

The following gives an overview of the coding required to use the connected
interrupt mechanism.

1. The user-level process populates a cintrio(4) structure that deter-
mines how connected interrupts will be handled, then uses the
CI_CONNECT command to ioctl(2) to connect the driver.

2. The driver executes the cintrget(D3X) function to establish a cid
(connected interrupt ID) that is used to identify this connected inter-
rupt in all subsequent connected interrupt kernel functions. cintrget
also populates the cintr(D4X) structure with information passed
through the driver from the cintrio structure.

3. If the interrupt is the type to be handled with a connected interrupt,
the driver's intr routine calls the cintrnotify(D3X) function or the
CINTRNOTIFY() macro. If desired, cintrnotify can also pass a 32-bit
data item, which will be posted to the user-level process with the
event. The operating system checks the appropriate cintr structure
for the notification method:

® If the method is CINTR_EVENTS, the system posts an event to
the user process.

® If the method is CINTR_POLL, the interrupt handler increments
the location pointed to by *ci_polloc; the user-level program will
poll that location and learn of the interrupt. Note that the
*ci_polloc pointer can also be used to return a 32-bit data item to
the user.

The connected interrupt mechanism also includes facilities to allow the user-
level process to change the notification method as well as to determine
whether more than one connected interrupt for the structure/process can be
processed at a time. Also, the cintrio structure includes one member that
can be customized for the needs of the driver.

Refer to the Kernel Programming Guide for a code example of a driver that
uses connected interrupts and the associated user-level process that accesses
it. Additional examples are in the /usr/examples/pio directory.

Writing Interrupt Routines for Intelligent Boards

Intelligent boards provide the facility to share a queue with the interrupt
handling routine and can take on some responsibility for moving data to and
from the device. By using queues in memory, the number of interrupts that
need to be requested by the device can be reduced. In contrast, devices
controlled by unintelligent boards, frequently TTY devices, must interrupt
the CPU each time a character is sent or received. The exact method

REAL/IX Kernel Reference Manual

intr(D2X) intr(D2X)

whereby the host talks to an intelligent board will be determined by the
board itself, but the following steps are typical:

1. The driver's init routine formats an area of memory as a queue with
. pointers to the beginning and end of the queue. The type of queue is
defined by the controller.

2. When this queue is set up, init notifies the board by writing a startup
message directly into the hardware. Typically, until this is done, the
board waits for "standalone” commands sent by the driver that poll an
area on its internal memory.

3. The driver first formats a command buffer, then writes one word into
the board memory to indicate that a command has been issued. That
command contains pointers to the places in memory where the board
should look for jobs that are associated with this device, such as the
job request queue and the job completion queue.

4. The driver writes a job in this buffer, updates the load pointer to
indicate that there is a job waiting, and signals the hardware by either
a control status request (CSR) bit or through some mechanism on the
board that causes it to look at the job queue.

5. The interrupt handler must also update the status information,
. set/clear flags, set/clear error indicators, and so forth to complete the
handling of a job.
6. When the routine finishes, it should advance the unload pointer to the
next entry in the completion queue.

The advantage of this protocol is that it avoids memory contention between
the hardware and the software because the driver updates the load poiater
and the hardware updates the unload pointer when it gets the job. When the
job is completed, the hardware puts a job in the queue (assuming there is
room), updates the load pointer, and sends an interrupt to indicate that the
job is completed. The driver's Intr routine checks the data structures to
determine which of the devices interrupted and how many jobs are in the
queue.

Shared Driver/Device Structures

Structures shared between a driver and a device present some specific
difficulties that must be addressed by the interrupt routine:

. O Information in the shared structure may be updated at any time by the

device. The structure must be monitored by the interrupt routine.
spI*(D3X) functions cannot be used to prevent the device from chang-

REAL/IX Kernel Reference Manual 2-21

intr(D2X)

intr(D2X)

ing a structure shared between a driver and hardware, even if the
driver is installed under CPU affinity. The type of protection depends
on the controller firmware, but is usually accomplished in one of three
ways:

® Define a scheme so the driver and controller access different por-
tions of the structure.

® Use an interrupt to "lock out” the controller until the driver indi-
cates that it is done.

® If the hardware is smart enough to examine a flag in the control
register or memory location to determine if it is safe to update the
structure, set up a protocol on which the driver and hardware agree.
(The protocol is usually defined by the hardware.)

Additional interrupts may occur, signaling the completion of jobs
previously passed to the hardware while the interrupt routine is proc-
essing a previous interrupt. The most efficient way of handling this is
to have a loop that compares the load and unload pointers on the
completion queue.

A job placed on the queue cannot be seen or acknowledged by the
driver code when the driver is in the interrupt routine. What the
driver can see is that the load pointer has moved. Using this indicator,
the driver can handle the new job. This presents an additional prob-
lem: the driver interrupt routine must be prepared to unload more
than one job from the queue.

An interrupt is normally requested after the last request is processed.
Because this interrupt is issued by the last request, the last job may
have already been unloaded. This interrupt has no job associated with
it, and the interrupt routine must recognized that this interrupt is not
an error condition.

One way to ensure that the last interrupt is a holdover with no work
attached to it is to keep a count of the number of jobs outstanding.
The counter is incremented when the job is put on the request queue
and decremented in the interrupt routine when the job is removed
from the queue. Generally, this information may be kept in a separate
data structure used for job status for each device or controller.

Interrupt Handlers for Major Device Semaphoring

Interrupt routines for drivers that are semaphored on the major device
number usually do not need to be rewritten to run on the REAL/IX
Operating System, although the interrupts are handled a bit differently than

REAL/IX Kernel Reference Manual

intr(D2X) intr(D2X)

for fully semaphored drivers. When a driver is installed with major device

semaphoring, a semaphore is assigned to the driver code itself. When a

device interrupt is received, the interrupt entry code issues a cpsema(D3X)
I function call to see if it can lock the semaphore.

O If cpsema finds the semaphore locked, a flag bit! is set to defer the
interrupt. This flag is checked when the semaphore is unlocked to
determine if the interrupt routine needs to be called.

Q If cpsema is successful, the flag in the switch table for the subdevice
is cleared and the intr routine is called to service the interrupt. On
return from the driver, the interrupt envelope code releases the
semaphore.

Major-device semaphoring prevents a base-level routine from being preempt-
ed by another instance of itself executing on a different processor and
ensures that an interrupt-handling routine will not occur during execution of
the base-level routine. Depending on the number of subdevices serviced by
the driver, it may be possible to improve driver performance by using minor
device semaphoring or rewriting the driver to use the kernel semaphoring
functions, both of which reduce contention for the device semaphore.

Note that interrupts are delayed by setting a single flag. If multiple inter-
rupts happen asynchronously, they may result in a single call to the
interrupt-handling routine. The flag bit that is set is determined by the
parameter that is to be passed to the imtr routine. There are 32 flags,
numbered from 0. Therefore, an interrupt handler using major device sema-
phoring is limited to configurations that do not require parameter settings of
32 or greater.

Major-device semaphoring assumes that an interrupt can be "ignored” until
the base-level routine exits. Drivers for devices that continue to assert the
interrupt even after the hardware interrupt acknowledge cycle may not be
able to defer the interrupt. The easiest way to determine whether this option
can be used is to install the driver on an otherwise quiet system and try it. If
the system does not hang, the device supports the functionality required to
use major device semaphoring; if the system hangs, the driver must be
rewritten to use the kernel semaphore functions or to be hard-assigned to
one CPU.2

1A bit in the d_unit field of the semdrivs(D4X) structure pointed to by the d_sems member of the switch table.

2This is the CPU affinity compatibility mode, which is not supported on all machines. Refer to the Release
Notes shipped with your system.

REAL/IX Kernel Reference Manual 2-23

intr(D2X) intr(D2X)

Interrupt Handlers for Minor Device Semaphoring

The interrupt portion of the driver for devices semaphored on the minor
number must be written differently than interrupt routines for drivers in-
stalled under any other kind of semaphoring. The interrupt handling func-
tionality is put into the serv(D2X) routine, and the intr routine is written to
determine the subdevice that caused the interrupt, as in the following
example.

02 extern struct semdrivs xxsems[];

03 xxxxintr(minor_ dev)
04 int minor_dev;

05 {

06 struct semdrivs *sp;

07 dev = some_function_of(minor_dev, device status ...);
08 sp = &xxsems[dev];

09 spsema(&sp—>d_lock);

10 if (rcpsema(s&sp->d sema, SEMRTBOOST)) {
11 sp—>d_unit = 0;

12 svsema (&sp—>d_lock);

13 *++c.c_istk_ndx = &sp->d sema;

14 xxserv(dev);

15 ——¢.c_istk_ndx;

16 vsema(&sp->d_sema, 0, SEMRTBOOST);
17 } else [

18 sp->d_unit = 1;

19 svsema (&sp->d_lock);

20 }

21 }

22

The intr routine does a cpsema(D3X) to try to lock the subdevice. If
cpsema is successful, it calls the serv(D3X) routine to service the interrupt;
otherwise, it sets the d_units bit in the semdrivs structure to mark that an
interrupt is deferred and waits to service the interrupt until the base level of
the driver exits (with, for instance, sleep or delay), at which point the intr
routine calls serv lo handle the interrupt. Interrupts are handled similarly
for minor-device semaphoring and major-device semaphoring; the recoding
of the interrupt handler for minor-device semaphoring is necessary to deter-
mine the subdevice that caused the interrupt so the system knows which
semaphore to lock.

2-24 REAL/IX Kernel Reference Manual

intr(D2X) intr(D2X)

In addition, you must add spin locks (with spsema(D3X) and svsema(D3X))
in the interrupt-level routines to protect any data structures or device
registers that are shared by two or more subdevices.

. SEE ALSO KPG, "Interrupts”
DDG, "Porting Drivers”

serv(D2X), semdrivs(D4X)

REAL/IX Kernel Reference Manual 2-25

ioctl(D2X)

NAME

SYNOPSIS

ARGUMENTS

ioctl(D2X)

ioctl - control a character device

prefixioctl(dev, cmd, arg, mode)
dev_t dev;
int cmd, arg, mode;

dev device number

cmd command argument the driver ioctl routine interprets as the
operation to be performed. The command types vary according
to the device. The kernel does not interpret the command type,
so a driver is free to define its own commands (within the
limitations defined in "REAL/IX 1/0 Control Commands” on
page 2-29).

termio(7) specifies the command types that must work for AT&T
terminal drivers.

cintrio(7) specifies the command types used with the connected
interrupt mechanism.

Create a unique identifying command so your driver can ascer-
tain that a correct command has been received. This should be
done to guard against misuse by users. Be sure to comment the
commands you create.

arg passes parameters between a user-level program and the driver.

When used with terminals, the argument is the address of a user
program structure containing driver or hardware settings. Alter-
natively, the argument may be an integer that has meaning only
to the driver. The interpretation of the argument is driver-
dependent and usually depends on the command type; the kernel
does not interpret the argument.

mode contains values set when the device was opened.

This mode is optional. However, the driver uses it to determine
if the device was opened for reading or writing. The driver makes
this determination by checking the FREAD or FWRITE setting
(values are in file.h).

Refer to the flag argument description of the open(D2X) routine
for other values for the ioetl routine’s mode argument.

REAL/IX Kernel Reference Manual

ioctl(D2X) ioctl(D2X)

DESCRIPTION The ioctl routine provides character-access drivers with an alternative entry
point that can be used for almost any operation other than a simple transfer
of characters in and out of buffers. Most often, an I/O control command is
used to control device hardware parameters and to establish the protocol
used by the driver for processing data.

After the user-level program opens a special device file, it can pass 1I/0
control command arguments. The kernel looks up the device's file table
entry, determines that this is a character device, and looks up the entry-
point routines in cdevsw(D4X). The kernel then packages the user request
and arguments as integers and passes them to the driver's ioctl routine. The
kernel itself does no processing of an I/0 control command, so it is up to
the user program and the driver to agree on what the arguments mean.

1/0 control commands can be used to do many things, including:
O implement terminal settings passed from getty(1M) and stty(1)
O format disk drivers
O implement a trace driver for debugging network drivers
Q clean up character queues
Q recalibrate a robotic device

Q control process I/0 equipment (analog-to-digital, digital-to-analog,
digital 1/0)

Because the kernel does not interpret a command that defines an operation,
a driver is free to define its own commands. Note that both connected
interrupts and asynchronous 1/0 use I/O control commands; applications
using either of these mechanisms must use different /0 control commands
for application-specific purposes.

Drivers that use an ioctl routine typically have a command to read the
current 1I/O control command settings and at least one other command that
sets new settings. If necessary, you can use the mode argument to determine
if the device unit was opened for reading or writing by checking the FREAD
or FWRITE setting.

The foctl routine can be used for transferring large chunks of data, such as
when you need to download data into the driver itself (not through the driver
to the hardware). In this case, the operation argument is a pointer to a
buffer of an appropriate size that contains the data. The buffer itself should
be set up by a user-level process or daemon.

REAL/IX Kernel Reference Manual 2-27

ioctl(D2X)

ioctl(D2X)

Two steps are required to implement 1/O control commands for a driver:

1. Define the I/O control commands and the associated values in the
driver’'s header file.

2. Code the driver ioctl routine to define the functionality for each I/Q
control command in the header file.

It is critical that I/O control command definitions and routines be com-
mented thoroughly. Because there is so much flexibility in how I/O control
commands are used, uncommented I/O control commands can be very diffi-
cult to interpret at a later time.

Defining 170 Control Command Names and Values

The 1/0 control command name is passed as the second argument (cmd) to
the driver ioctl routine. It should be defined, along with an integer value that
is actually passed, in the driver's header file.

The 1/0 control command name and value can be defined in the driver code
itself, but this is not recommended. If I/O control commands are defined in
a header file, the user program and the driver can both access the same
definitions to ensure that they agree about what each 1/0Q control command
value represents.

The 1/O control command name is traditionally an uppercase alphabetic
string. This alphabetic name can be a mnemonic. You should try to keep the
values for your I/O control commands distinct from other I/Q control
command values on the system. Each driver’s I/0 control commands are
discrete, but it is possible for user-level code to access a driver with an I/0
control command that is intended for another driver, which can lead to
serious consequences, such as if it meant to pass "drop carrier on a commu-
nication line,"” but instead sends the argument to a disk where it is inter-
preted as "reformat driver.” Permissions can be set to prevent most such
events, but the more unique your I/O control command values are, the safer
you are. Each driver has up to 2% values that can be passed as an integer, so
it is quite possible to avoid using numbers that are already in use.

Various schemes are legal for assigning values to I/O control command
names. The most straightforward is to use decimal values. For example:

#define COMMAND1 01
#define COMMAND2 02

Similarly, you can assign hexadecimal numbers as values:

#define COMMANDA 0x0a
#define COMMANDFF Oxff

REAL/IX Kernel Reference Manual

The drawback to these methods is that one quickly gets an operating system
that contains several instances of each I/O control command value, with the
inherent risks discussed above.

ioctl(D2X) ioctl(D2X)

‘ A common method for assigning I/0 control command values that are less
| apt to be duplicated is to use a shift-left-8 scheme. For instance:
i

#define COMMAND1O (°Q°‘<<8]|10)
#define COMMAND1l ('Q'<<8l11)
#define COMMAND12 ('Q°<<8|12)

Alternatively, the shift-left-8 scheme can be defined as a constant, which is
then used for the I/0 control command definitions. For example:

#define ROTA ('q’<<8)
#define COMMAND23 (ROTA|234)
#define COMMAND25 (ROTA|254)

An alternative coding style is to use enumerations for the command argu-
ment, which allows the compiler to do additional type checking, as in the
following:

typedef enum {

XX_COMMAND10O = ‘Q'<<8 | 10,
XX _COMMAND11l = 'Q’'<<8 | 11,
XX_COMMAND12 = ‘Q°<<8 | 12,

. } xx_cmds_t;

REAL/IX 1/0 Control Commands

Before defining I/O control commands, check any system header files you
#include to ensure that the I/O control command values you are defining
are not already used. In particular, the connected interrupt and asynchro-
nous I/O mechanisms use the I/O control commands listed Table 2~3.

Table 2-3. System~-Defined 1/0 Control Commands

Command Value H:?I:er Description
AIOGETREQ "A°<<8|0x00 | aio.h get information
CI_CONNECT ‘I°¢<8]1 cintrio.h | connect to device interrupt
CI_UCONNECT ‘I°<<8|2 cintrio.h | disconnect from device interrupt
CI_SETMODE ‘1°¢<8]|3 cintrio.h | set modes of device interrupt
. CI_STAT "I°¢<8|4 cintrio.h | get status of device interrupt
CI_ACK "I <<8|5 cintrio.h | acknowledge device interrupt

REAL/IX Kernel Reference Manual 2-29

ioctl(D2X) iocti(D2X)

For an example of how an foctl routine is coded to support connected
interrupts, see the avme9510 driver supplied under the /usr/examples/pio
directory. This same routine illustrates how to implement "peek and poke”
functionality using an ioctl routine.

Coding the ioct! Routine

The header file for the driver should define all I/O control commands and
structures used. While this information can be included in the driver itself,
this is not recommended. The general shape of the header file that defines
the I/0 control commands and an ioctl routine is illustrated below.

#define EXAM ("B’'<<8)
#define COMMAND1 (EXAM|01)
#define COMMAND2 (EXAM|02)
#define COMMAND3 (EXAM|04)

struct send _to_device
{
int flags;
char setup[64];

i
struct receive_from_device

int flags;
char current_status{64];
};

Sample 1/0 Control Command Header File

The ioctl routine is coded with instructions on the proper action to take for
each I/O control command. Generally, a driver’s ioctl routine consists of a
case statement for each I/O control command that identifies the required
action. The command passed to a driver by a user process is an integer value
that is associated with an I/O control command name in the header file.

The case statement should have a default case to return an error value if the
driver is called with an unknown I/0O control command.

2-30 REAL/IX Kernel Reference Manual

ioctl(D2X)

ioctl(D2X)

The ioctl routine that is associated with the header file in the previous
example looks like the following:

#include example.h

xxioctl(dev, cmd, val, flag)
int dev;

int cmd;

caddr_t val;

int flag;

{

switch(cmd)

case COMMANDI;

/* send new status setup to device */
senddev((struct send to_device *) val);
return;

case COMMAND2:

/* get current status from device */
recdev((struct receive from device *) val);
return;

case COMMAND3:

/* return number of devices */
*val = SUBDEVICES;
return;

default:
u.u_errxor = EINVAL;
break;

Sample 1/0 Control Command Routine

DEPENDENCIES Drivers using the ioctl routine must be configured as character special
devices with an ioct]l handler.

Drivers that support asynchronous I/O must supply an interface to the
system-defined AIOGETREQ I/0O control command (refer to Table 2-3).
The ioctl routine associated with such a driver should include a case
statement for AIOGETREQ similar to the case statements shown in the
example above.

REAL/IX Kernel Reference Manual

mbstrategy(D2X) mbstrategy(D2X)

NAME mbstrategy — handle multiple block device input and output
SYNOPSIS prefixmbstrategy(bp)
struct buf *bp;
ARGUMENTS bp pointer to the address of an instance of the buffer header data .
structure defined in the system header file buf.h (refer to
buf(D4X))
DESCRIPTION mbstrategy(D2X) is very similar to the strategy(D2X) routine. The major

difference between them is that mbstrategy uses a chain of buffer headers to
take advantage of any contiguity of disk blocks, using one operation to
accomplish a data transfer instead of multiple calls to the strategy routine.
The code controlling the buffer cache looks to see if the driver for a
particular device supports multiple block I/0. If so, it combines what would
have been several calls to the normal strategy routine into a single call to the
mbstrategy routine.

The mbstrategy(D2X) entry-point routine is unique to the REAL/IX Operat-
ing System. Block drivers for disk devices or other devices that can be
mounted as block special devices may optionally provide an mbstrategy
routine to support multiple block I/O transfers.! This can, in many cases,
improve overall system throughput.

mbstrategy routines must either perform the entire transfer specified or
report an error. Error recovery is performed at a higher level in the kernel,

where the failed mbstrategy call is transformed into a number of calls to the

traditional strategy routine. The philosophy is to simplify the error-handling

requirements on calls to mbstrategy on the assumption that they are infre-

quent and can be passed on to existing error-handling code.

As a result, there is no use of the residual byte count field to report partial
transfers. If, for example, an mbstrategy routine is called with a buffer
indicating a read at end of medium, the entire transfer is returned with
B_ERROR set in the b_flags field. Contrast this with strategy(D2X) where
the residual byte count is set to the initial transfer request but no error is
reported.

. |
1At present, all SCSI devices are configured by default to support multiple block I/O. This feature can be

enabled and disabled through sysgen(1M) on a system-wide basis or for individual devices. Tunable parameters |
are used to adjust the performance of the multi-block tramsfers. Refer to the Kernel Programming Guide for

more information.

2-32 REAL/IX Kernel Reference Manual

mbstrategy(D2X) mbstrategy(D2X)

The buffer header bp is the first in a singly linked list of buffer headers. The
b_chnnxt field is the pointer to the next buffer in sequence or is null when
the last buffer header in the list is encountered. All information about the
data transfer is contained in the fields of the buffer headers. Note that the
data transfer specified by the buffer headers in the list will be for sequential
blocks.

mbstrategy uses the following fields in the buf(D4X) structure of the first
buffer header:

b_dev contains the major and minor number of the device where
I/0 is to occur.

b_blkno the block number on the device where the I/0 is to occur.
b_bcount the number of bytes in the first data buffer.
b_un.b_addr a pointer to the first data buffer.

b_flags B_READ if set, this is an input operation. If not set,
this is an output operation.

B_CHAINED should always be set, marking this buf
structure as an element in a list.

B_CHNHEAD should always be set, marking this buf
structure as the head of the list.

B_ASYNC if set, indicates that the transfer is taking
place asynchronously. There is no process
that will be waiting specifically for the
transfer to complete. This information is
typically of no interest to the mbstrategy
routine, only to the iodone(D3X) routine
called when the operation is completed.

B_PHYS should always be reset for this version of
the REAL/IX Operating System.
b_error used to report any errors.
b_chnnxt a pointer to the next buffer header in a singly linked list.
b_start may be used to time ¥/O operations.

REAL/IX Kernel Reference Manual 2-33

mbstrategy(D2X)

2-34

mbstrategy(D2X)

b_drivwksp a pointer to a workspace area that the driver may use. The
workspace can be used to construct an array of djntio(D4X)
structures to control the data transfer. The workspace size is
given by the external variable mbdjni_size. This is the number
of djntio structures that can be contained in the work-
space, minus one. Thus, the count is the number of useful
structures that can be fitted in the area, assuming that an
additional null entry is required to terminate the list. Include
the file sys/disjointio.h for appropriate declarations.

mbstrategy will typically use the following fields in the buf(D4X) structure
of buffer headers that are in the linked list:

b_bcount the number of bytes in the data buffer. Note that all buffers
in the list will have the same size.

b_un.b_addr a pointer to the data buffer.

b_chnnxt a pointer to the next buffer header in the singly linked list. A
null pointer implies that this buffer header is the last in the
list.

In addition to those listed above, additional fields in the linked list of buffer
headers will be set. Note that the system guarantees the settings of these
fields; they do not need to be checked on a routine basis. If there is any
consistency checking in the mbstrategy routine, any detected error will
indicate a serious system fault that justifies the use of a system panic. The
additional fields are:

b_chnhead points to the first buffer in the list.

b_flags B_READ should be consistent with that of the equiva-
lent flag in the first buffer.

B_CHAINED should always be set.
B_CHNHEAD should always be reset.
b_dev identical to b_dev in the initial buffer header.

b_blkno the b_blkno fields should always be sequentially ascending.
Note that b_blkno is given in terms of physical block
number, not logical block number. The physical and logical
block numbers are related in a manner that depends on the
block size. Each block is assigned a logical block number.
The physical block number is equal to the logical block
number multiplied by the block size and divided by 512,

REAL/IX Kernel Reference Manual

mbstrategy(D2X) mbstrategy(D2X)

All buffer headers in the list except for the first one will have the b_chnhead
field set up to point to the first buffer header.

the process on whose behalf the transfer is to take place may not be the

mbstrategy routines should not access the user(D4X) data structure because
. currently active process.

SEMAPHORE RAMIFICATIONS

Drivers providing an mbstrategy routine must be fully semaphored.
DEPENDENCIES Drivers providing an mbstrategy routine must be configured as having both

block and character special devices and identified in sysgen(1M) as having a

multi-block strategy handler. ‘

SEE ALSO KPG, "Synchronized I/0 Operations”
strategy(D2X), intr(D2X), buf(D4X), djntio(D4X)

REAL/IX Kernel Reference Manual 2-35

open(D2X) open(D2X)

NAME open, bopen, copen — start access to a device

SYNOPSIS #include “sys/file.h”
#include “sys/open.h”

prefixopen(dev, flag, otyp)

dev_t dev;
int flag, otyp;

The synopses of bopen and copen are the same as for open.

ARGUMENTS dev device number (the unit number of the physical device being
opened).
flag information passed from the user program open(2) or creat(2)

system instructs the driver on how to open the file.

The values for the flag are found in file.h associated with the
f_flag member of the file structure. Valid values are;

FAPPEND open an existing file and set file pointer to end of
file

FCREAT open a new file (ignore if the file already exists)

FEXCL open a new file, but fail open if the file already
exists (used with FCREAT)

FNDELAY open the file with no delay (do not block the open
even if there is a problem)

FREAD open the file for read-only permission (if ORed
with FWRITE, then allow both read and write
access)

FSYNC grant synchronous write permission to a user for

file access

FTRUNC open an existing file and truncate its length to
Zero

FWRITE open a file with write-only permission (if ORed
with FREAD, then allow both read and write
access)

2-36 REAL/IX Kernel Reference Manual

open(D2X) open(D2X)

otyp parameter supplied so that drivers keep an accurate record of
how many times a device is open and for what reasons.

OTYP_BLK open a block special file for the first time
OTYP_CHAR open a character special file for the first time
OTYP_MNT open (mount) a file system

OTYP_SWP open a swapping device

OTYP_LYR open a layered process. The OTYP_LYR flag is
used when one driver calls another’'s open or
close(D2X) routine. In this case, there is exactly
one close for each open called. This permits
software drivers to exist above hardware drivers
in such a way as to remove any ambiguity from
the hardware driver regarding how a device is
being used. This flag applies to both block and
character devices.

DESCRIPTION The open routine should perform the following activities:

O validate the minor portion of the device number accessed by the
minor(D3X) macro

Q set up device for subsequent data transfer

Q specify whether or not to wait for a hardware connection. Follow the
specifications for the O_NDELAY flag given on the open(2) manual
page. If this flag is set, the open will return without waiting for a
hardware connection; this is used primarily for software drivers. If it
is clear, the open will "block” until the hardware establishes a
connection.

O verify that, if this is an unsharable device, no other processes are
using or sleeping on the device, then lock the device. An unsharable
device is one that should be opened by one process at a time.

The kernel calls the driver open routine as a result of an open(2) or
mount(2) system call for the device file. The open routine establishes a
connection between the user process issuing the open call and the device
being opened.

The parameters of the driver open routine are the device number of the

device file and the flags supplied in the oflag member of the open(2) system
call (which map to flag values in the file.h header file).

REAL/IX Kernel Reference Manual 2-37

open(D2X)

open(D2X)

An open routine should use the flag parameter as specified in the open(2)
manual page when applicable. It should also set the device for subsequent
data transfer. When a device is opened simultaneously by multiple processes,
the operating system calls the open routine for each open.

If an error occurs, the routine sets w.u_error. Read and write parameters
are defined in user.h.

An incorrect special device file could cause the driver open routine to be
passed an incorrect device number. Through verification, the minor device
number is compared to a variable containing the number of devices associ-
ated with a controller. This variable is assigned in the driver's initialization
routine or through sysgen(1M).

Additional open routine operation is dependent upon the device being
opened. For example, the open routine for a removable media disk driver
could lock the disk drive door and cause the disk controller to select the
drive. Or the open routine for a terminal interface controller could wait on
data terminal ready (DTR).

open is an entry-point routine for both block and character access. If you
need separate functionality for block opens and character opens, use the
bopen and copen entry points instead.

REAL/IX Kernel Reference Manual

print(D2X) print(D2X)

NAME print - display a message on the system console during a block I/0
operation
SYNOPSIS prefixprint (dev, str)
dev_t dev;
char *str;
ARGUMENTS dev device number
str character string describing the problem. The nature of the prob-

lem contained in str should be included in the driver output.

DESCRIPTION Block drivers must provide a print routine to send warning messages from
the driver to the console when abnormal situations are detected by the
kernel during execution of the strategy(D2X) routine. An example of an
abnormal situation would be when a disk drive has no more room on the
disk. The print routine permits the driver to expand device-dependent in-
formation (such as the device number) into meaningful error messages.

The print routine is used only for the block I/O transfers done by the
strategy routine. In other cases, use the emn_err(D3X) function to send

messages to the console. '

DEPENDENCIES A driver using the print routine must be configured as a block device.

REAL/IX Kernel Reference Manual 2-39

proc(D2X)

NAME

SYNOPSIS

ARGUMENTS

proc(D2X)

proc — process character device-dependent operations

prefixproc(tp, cmd)
struct tty *tp;

int cmd;

p

cmd

pointer to the tty(D4X) structure

an operation that the proec routine performs. Typically, the
driver encodes a case statement for each command with code to
perform the operations that are described as follows.

T_BLOCK send command to the terminal controller to pro-
hibit further input because the input queue has
reached the high water mark (buffer is full). This
case should OR (enable) the TBLOCK flag into
the t_state member of the tty structure.

T_BREAK send a break to a TTY device.

T_DISCONNECT
send a command to the terminal controller to
request that it disconnect a terminal device (tell it
to drop the carrier).

T_INPUT prepare a TTY device to receive input.

T_OUTPUT initiate output to the device if the device is not
busy or output has not been suspended.

T_PARM change parameters in the tty structure of a par-
ticular device. For intelligent terminals that use
the tty structure, the driver proc routine is
called to update the device to the new parame-
ters. The shell layers sxt device driver ioctl rou-
tine calls the proc routine of the device with
T_PARM when the tty structure has been
changed.

T_RESUME send command to the terminal controller to indi-
cate that terminal output should be resumed be-
cause an XON character has been received. The
TTSTOP bit in the t_state member of the tty
structure should be cleared.

REAL/IX Kernel Reference Manual

proc(D2X) proc(D2X)

Note that, if IXANY is set in the c_iflag of the
termio structure, any character can cause the
terminal to resume. Refer to termio(7) for more
information.

. T_RFLUSH send command to terminal controller to flush
terminal input queue. If t_state is set to
TBLOCK, call the T_UNBLOCK section of the
proc routine.

T_SUSPEND suspend output to the terminal because an XOFF
character has been received. The driver proc
routine should set the TTSTOP bit in t_state in
the tty structure, and flush any input queues
maintained by the driver.

T_SWTCH switch between context layers on the shi(1)
driver. This case is used only in conjunction with
the sxt.c driver. Typically, this section of code
changes control to channel 0 and wakes up this
process, which is sleeping:

&t_link->chans[0]

when the SWTCH character (t_cc[VSWTCH]) is
input by the terminal device. The line discipline
ttin routine checks to see if an input character is
equal to t_cc[VSWTCH] (normally CTRL-z) and,
if so, calls ttyflush to flush the input and output
buffers (if NOFLSH is not true in t_lflag), and
then calls the device driver proc routine with the
command flag T_SWTCH.

T_TIME notify the driver that delay timing for a break,
carriage return, and so on, has completed.

T_UNBLOCK allow further input when the input queue has
gone below the low water mark. The driver de-
veloper resets TTXOFF and TBLOCK in t_state
when T_UNBLOCK is used.

T_WFLUSH clear the transmit buffer and output queue(s) of

characters, and performs an implicit XON
(T_RESUME).

REAL/IX Kernel Reference Manual 2-41

proc(D2X) proc(D2X)

DESCRIPTION The proc routine is called by the TTY subsystem to process various device-
dependent operations. This routine is required for a character driver that
accesses the tty or the linesw structures.

Note that spl6(D3X) is set when these flags are set.

DEPENDENCIES This routine is used only by character drivers written in the TTY subsystem,
which must be installed under one of the compatibility modes (CPU affinity,
major-device semaphoring, or minor-device semaphoring).!

SEE ALSO KPG, "Drivers in the TTY Subsystem”
tty(D4X)

Not all compatibility modes are supported on all machines. Refer to the Release Notes shipped with your
system.

2-42 REAL/IX Kernel Reference Manua/

read(D2X) read(D2X)

NAME read — read data synchronously from a character-access device

SYNOPSIS prefixread(dev)
dev_t dev;

ARGUMENTS dev device number

The following members of the user(D4X) structure are implicit arguments
to the read routine:

u.u_base address of the buffer in user virtual memory where the read data
is to be found

u.u_count byte count for the data transfer
u.u_ap points to the original parameters of the read(2) system call
u.u_segflg set to 0

u.u_fmode copy of the f_flag member of the file structure (defined in
file.n). The flag propagates the modes set in the open(2) request.

u.u_offset current offset in the file
DESCRIPTION When read(2) is executed, the driver initiates and supervises the data trans-
fer from the device to the user data area. read is accessed through the char-
acter device switch table, cdevsw(D4X).
The read routine typically does the following:
Q validate the device number; if invalid, set u.u_error to ENODEV
Q Initiate the data transfer:
a For TTY drivers, use the ttread(D3X) function to do the transfer
using the tty(D4X) structure to get a cblock(D4X) for buffering

the transfer and update the user(D4X) structure. This is generally
used for low-speed character devices.

For raw I/0 on a block device, use the physck(D3X) and
physio(D3X) functions to initiate the transfer. physio handles mem-
ory page locking to ensure that the pages impacted by the I/O are
not swapped out and does the unbuffered I/0O while maintaining the
buffer header as the interface structure.

® For other character drivers, use the copyin(D3X) function to move

the data from the user area to the kernel buffer area and from the
kernel buffer area to the device. This transfer is done by pointing to

REAL/IX Kernel Reference Manual 2-43

read(D2X)

Return Values

read(D2X)

the u.u_base, u.u_count, and u.u_segflg members of the user(D4X)
structure. If not using one of the system-supplied buffering
schemes, the driver must set up its own buffering scheme; this is
generally used with high-speed character devices such as network
interface boards.

O Block on a semaphore with psema(D3X) to suspend execution until
the I/O operation is complete. If the driver is installed under CPU
affinity, major-device semaphoring, or minor-device semaphoring, you
block with sleep(D3X).

Q After the intr(D2X) routine unblocks the semaphore with a vsema (or
wakeup if the driver blocked with sleep) signaling that the 1/0O opera-
tion is complete, the read routine must initiate a transfer of data from
the kernel buffer area to user address space.

On return from the driver, the following members of the user(D4X)
structure are used to generate the return values for the read(2) system call:

u.u_error set if an error occurred during the I/O operation.

u.u_count set to the residual byte count (in other words, the amount, if
any, of the requested transfer that could not be transferred). Set
to 0 if all data was transferred.

In addition, the byte count parameter supplied by the user (pointed to, along
with other parameters, by the w.u_ap member) may have been changed. The
read(2) system call calculates the number of bytes transferred as the differ-
ence between the byte count parameter and the residual byte count in
u.u_count. If, for example, the read is going to a block device and would
extend beyond the limits of the device, the driver may scale down the
request before passing it to a strategy(D2X) routine. There is no residual
byte count from the scaled down request, but the transfer count returned
from the system call has to reflect the reduced transfer size. This can be
achieved by setting the byte count parameter to the lower value.

Read Routines that use physio(D3X)

Most devices that use block access also support raw or character 1/0.
Character I/O for a block device is also referred to as physical I/O because
data bypasses the system buffer cache and is transferred directly from the
device to in-core user memory space. The advantage of physical I/0 is that
data can be transferred more quickly and in larger quantities than with the
system buffer cache, and kernel overhead is reduced by eliminating buffer
handling. However, because physical 1/0 actually locks down portions of
user memory and prevents it form being paged, overall system performance
may be degraded. For this reason, physical 1/O is used primarily for admin-

REAL/IX Kernel Reference Manual

read(D2X) read(D2X)

istrative and realtime functions where the speed of the specific operation is
more important than overall system performance.!

write(D2X) routines. The character special device file for a block device
indicates that the device supports physical 1/0. The driver’s read and write
routines are then entered through the cdevsw(D4X) table. The read and
write routines typically use the physio function to lock down the user
memory and to call the driver’s strategy(D2X) routine. The strategy routine
controls the actual I/O operation. Note that, in this case, the driver's
strategy routine is called as a subordinate routine and not as an entry-point
routine.

. A driver implements physical I/0O for a block device through read(D2X) and

If the data transfer is less than one page, physio can do the transfer directly
between user address space and the device, avoiding the intermediary trans-
fer into the kernel. Because I/O operations to devices must be made from
physically contiguous pages (which are not guaranteed in user address
space), for larger transfers, the driver must first call dma_breakup(D3X) to
allocate a free buffer header from a pool of physical I/O buffer headers set
by the tunable parameters NPBUF. These buffer headers are defined by the
buf structure, but do not point to a specific address in the system buffer
cache. Instead, the data pointer is assigned the location in user memory
where the data transfer should come from or go to. This location is deter-
mined from the w.u_base member of the user structure. The strategy rou-
. tine then uses this buffer header to control the I/O operations.

The following is typical job sequence for a physical I/O read operation. A
write operation is similar, except that the b_flags member of the buf
structure is set to B_WRITE instead of B_READ. The code that follows is
an example read routine for a disk driver using physical I/O. The line
numbers included in the following job sequence refer to the sample read
routine.

1. The user program issues a read(2) system call to the kernel of the
form "read 10,240 bytes from character-special-file to virtual-address-
N". The virtual address is a portion of user memory used to store
user process data.

2. The kernel read routine started by the read(2) system call accesses
the cdevsw(D4X) table to call the driver's read(D2X) routine.

3. The driver's read routine calls the physck(D3X) function to check
that the range of blocks being read is legal, and returns a 1 if it is

I (lines 9 through 15).

IFor example, when backing up a file system, completing the backup quickly is usually of greater concern than
maintaining optimal system performance during the time allotted for backup operations.

REAL/IX Kernel Reference Manual

read(D2X) read(D2X)

4. The driver’s read routine then calls the physio function to set up the
1/O transfer (line 16). The physio function passes the address of the
strategy routine, allocates a buffer header from the PBUF pool of
buffer headers, and passes the buffer header the device number and
the B_READ flag.

5. The physio function checks that all of the user pages in question are
valid and have the appropriate read permissions, then locks the pages
in user memory so they will not be paged out.

6. The physio function then calls the strategy routine and issues a
psema(D3X) to block! until the I/0 operation is completed.

7. The strategy routine now controls the I/0. It checks the requests,
queues it up, and does various conversions if necessary.

8. The strategy routine then starts the actual I/0O operation. For ex-
ample, it might put the read request into the control registers for the
disk controller.

9. When the transfer is complete, the controller interrupts and the
driver’s intr(D2X) routine is entered. The intr routine uses the
iodone(D3X) function to unblock the process that called the physio
routine.? The physio function then updates information about the
user(D4X) data structure, releases the buffer header, and eventually
returns to the driver’s read routine, which in turn returns to the
kernel's read routine.

!psema is used only in drivers that are fully semaphored. Drivers installed under CPU affinity, major-device
semaphoring, or minor-device semaphoring go to sleep (using the sleep(D3X) or iowalt(D3X) function) on the
address of the buffer header. Note that CPU affinity is not supported on all machines; refer to the Release
Notes shipped with your system.

jodone is used for all block drivers, whether or not they are fully semaphored. The function issues either a
vsema(D3X) or a wakeup(D3X) function call as appropriate.

2-46 REAL/IX Kernel Reference Manual

read(D2X) read(D2X)

The following code example illustrates a read routine from a sample disk
driver:

1 dskread(dev)
2 register dev_t dev;
3 {
4 register unit /* disk controller ID */
5 register unsigned char drv; /* disk drive ID */
6 register struct dskc *dskcp; /* disk controller pointer */
7 register struct dskpart *partpt; /* pointer to partition info */
8 register unsigned char part; /* drive partition */
9
10 unit = minor(dev);
11 dskcp = &dsk _dskc[unit>>5};
12 part = unit&07;
13 drv = (dev &030)>>3;
14 if ((partpt = dskcp—>dsk_part[drv]) == NULL)
15 u.u_error = ENXIO;
16 else if (physck(partpt([part].nblock, B_READ))
17 physio(dskstrategy, 0, dev, B_READ);
18 }
Disk read Routine Using Physical 1/0
. DEPENDENCIES Drivers using the read routine must be configured as character devices.
SEE ALSO KPG, "Synchronized I/0 Operations”

copyin(D3X), iomove(D3X), physck(D3X), physio(D3X), user(D4X)

REAL/IX Kernel Reference Manual 2-47

select(D2X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

Data Structure Used

TTY Drivers

RETURN VALUE

select(D2X)

select — check whether I/0 operation is possible at this time

prefixselect(dev, rw)
unsigned dev;
int rw;

dev device number
™w indicates whether this is for a read or write operation

The select routine checks whether an I/O operation (type specified by the
rw flag) issued at this time will block. If the operation would block, it
returns a 0; if the operation would not block, select returns a 1.

The select routine is usually written as a switch statement, with separate
cases for read and write operations. These case statements are coded to
determine if the operation would block. For example, the code could check
if the queue is empty, check the status of a device, or, for fully-semaphored
drivers, check if the value of a semaphore is 0 or less.

Drivers that support seleet must initialize a driver-specific data structure (as
shown in the example on page 2-49) that has:

O separate read-select and write-select members into which the
proc(D4X) address of the user-level process trying to access the
device is written.

O a flags member with separate flags to indicate that a collision oc-
curred on a read or write operation. This flag is passed to the
interrupt routine when data arrives, or when the output queue reaches
the low water mark and calls selwakeup(D3X).

For TTY drivers that use line discipline 0, do not include code for a select
entry point; rather, select functionality is provided through ttselect. The
operating system populates cdevsw with ttselect if you configure the driver
as a TTY driver with a select handler. Once populated, a select(2) call
against that device calls ttselect, which checks whether t_outq is below the
low water mark (for write operations) or whether there are any characters
available in the canonical queue (for read operations).

select returns a 0 (zero) if the operation would block, or a 1 (one) if the
operation would not block.

REAL/IX Kernel Reference Manual

select(D2X) select(D2X)

DEPENDENCIES Drivers using the select routine must be configured as character special
devices that have a select handler.
Ported drivers that have a select routine must have the following modifica-
. tions in order to work under the compatibility modes:
Q The p2_wchan member of the proc(D4X) structure must be tested for
the value sselwait to determine if a process is still attempting to

execute a select routine on a device; on other systems, p_wchan is
tested instead.

Q If a collision occurs (two processes attempting to select the same
device), the collision should be noted in the driver's data structures,
and the driver must set the SSELCOL flag in the proc structure field
p_flag (p->p_flag |= SSELCOL) of the process attempting to select

the device.
SEE ALSO selwakeup(D3X)
EXAMPLE The code on the following pages illustrates how a driver is coded to support
select.

The driver's header file initializes a data structure that includes read-select
and write-select members and a flags member with separate flags to indicate
. that a collision occurred on a read or write operation, as shown below.

01 struct xxdriver_ struct {

02

03 struct proc *xx_rsel
04 struct proc *xx_wsel
05 int xx_flags
06

07 }

08 #define XX RCOLL 1 /* collision during read select */
09 #define XX WCOLL 2 /* collision during write select */
10 #define XX READABLE 4 /* device is readable */
11 #define XX WRITABLE 8 /* device is writable */

. Driver’'s Header Flle

REAL/IX Kernel Reference Manual 2-49

select(D2X) select(D2X)

The code on page 2-52 illustrates how a select routine is written. Note the
following:

5 This is a pointer to the device-specific data structure defined in
the driver’s header file. It is set up with the appropriate structure

address based on the dev parameter. .

8 The driver code that calls selwakeup(D3X) is usually part of the
driver’s interrupt routine (refer to page 2-53). If selwakeup is
called after the driver determines that the device is not accessible
for the read/write operation but before the driver's data struc-
tures have been updated to indicate that a process is attempting
to select the device, the process could be blocked in the select
code when the device is accessible. Consequently, the selwakeup
call must be blocked until execution through this critical region
has completed.

The method of preventing the selwakeup call varies according to
the semaphoring method under which the driver is installed. For
fully-semaphored drivers (as shown in the example), set a spin
lock with spsema(D3X);! the spin lock must be initialized in the
driver’s init(D2X) routine.

If the driver is installed under major- or minor-device semaphor-
ing, it is not necessary to perform any blocking action because

the system locks a per-driver or per-device semaphore before
entering any driver routine.

If the driver is installed under CPU affinity, an spl(D3X) call to
block interrupts is usually sufficient.

17 - 18 Determine whether or not another process is already selecting on
this device. (If so, this is a collision.) A non-zero value for
ddsp—>xx_rsel indicates that a process may be trying to select.
We must also check that our address was not left around as stale
data from a previous select attempt (line 17), and we must check
that the process is really selecting (line 18). Stale data may be
left around because the process also selected on other devices
that became selectable before this one.

the driver or kernel code. This is seldom done. If the device can be accessed by more than one process at a
time, use tie SEMRTBOOST flag with psema. If the device can be accessed by only one process at a time, the
SEMRTBOOST flag should not be used. If the driver controls several devices or subdevices, we recommend
initializing a semaphore for every device, although a global lock that blocks all data structures controlled by the
driver can be used (although performance may be degraded).

1A kernel semaphore (set with psema(D3X)) can be used if the selwakeup call is issued only by the base level of .

2-50 REAL/IX Kernel Reference Manual

select(D2X) select(D2X)

19 - 24 If the checks described above determine that another process is
already selecting on this device, a collision has occurred. Set the
collision flag in the driver’s data structure and in the p_flag
member of the proc structure of the user-level process that

. called select.

26 — 41 The FWRITE case is similar to the FREAD case, except that it
checks that the device is writable rather than readable, and uses
different members of the driver’s data structure for the device's
write selects. Note that the SSELCOL flag in the proc(D4X) is
set for both read and write collisions during a select operation.

REAL/IX Kernel Reference Manual 2-51

select(D2X) select(D2X)

01 xxselect(dev, rw)

02 dev_t *dev; /* device major/minor number =*/
03 int rw; /* read/write flag */
04 {

05 lock_t xx_drivlock;
06 struct xxdriver_struct *ddsp;

07 if (error condition exists that would be caught by read/write)

08 return(l);

09 pspsema(&xx drivlock);

10 switch (rw) {

11 case FREAD:

12 if (ddsp->xx_flags & XX_READABLE) {

13 psvsema (&xx_drivlock);

14 return(l);

15 }

16 p = ddsp->xx_rsel;

17 if (p !'= 0) /* a process has selected */

18 &5 (p != u.u_procp) /* and it is not this process */
19 && (p—>p_w2chan == &selwait) /* other process is selecting */
20 {

21 ddsp->xx_flags |= XX RCOLL;

22 u.u_procp->p_flag |= SSELCOL;

23 } else {

24 ddsp—>xx_rsel = u.u_procp;

25 }

26 break;

27 case FWRITE:

28 if (ddsp—>xx_flags & XX_WRITABLE) {

29 psvsema(&xx_drivlock);

30 return(l);

31 }

32 p = ddsp->xx_wsel;

33 if (p '= 0) /* a process has selected */

34 && (p != u.u_procp) /* and it is not this process */
35 &8 (p-dp_w2chan == gselwait) /* other process is selecting */
36

37 ddsp->xx_flags |= XX_WCOLL;

38 u.u_procp—>p_flag |= SSELCOL;

39 } else {

40 ddsp->xx_wsel = u.u_procp;

41 }

42 break;

43 }

44 psvsema(&xx_drivlock);

45 return(0);

46

Sample select(D2X) Routine

2-52 REAL/IX Kernel Reference Manual

select(D2X) select(D2X)

The following code illustrates how the driver's intr(D2X) code is written to handle the
processing for the select operation. Note the following:

4 The driver would set ddsp to point to the appropriate data structure, based on
. the value of dev.

6 This is the same lock used in the select routine.

7-14 If the device is writable and a process(es) is selecting for writability, selwakeup

is invoked to unblock the process(es) and the flags are cleared to indicate no one
is selecting any longer. The select routine will be called again from the generic
system select code.

15 -22 Similar to the above, but for read operations.

23 The svsema is issued after all status and flags have been updated. This allows
the select routine to enter its critical region.

0l xxintr(dev)
02 dev_t dev;

03 {
04 struct xxdriver_ struct *ddsp;
. 05 :
06 spsema(&xx_drivlock);
07 if (the device has become writable) {
08 ddsp->xx_flags |= XX_WRITABLE;
09 if (ddsp—>xx wsel != NULL) {
10 selwakeup(ddsp->xx_wsel, ddsp->xx_flags & XX_WCOLL);
11 ddsp->xx_flags &= “XX WCOLL;
12 ddsp—>xx_wsel = NULL;
13 }
14 }
15 if (some data has been received that can be read) {
16 ddsp->xx_flags |= XX_READABLE;
17 if (ddsp—->xx rsel != NULL) {
18 selwakeup(ddsp->xx_rsel, ddsp->xx_flags & XX_RCOLL);
19 ddsp->xx_flags &= “XX_RCOLL;
20 ddsp->xx_rsel = NULL;
21 }
22 }
23 svsema(&xx_drivlock);
. select Processing in the intr(D2X) Routine

REAL/IX Kernel Reference Manual 2-53

serv(D2X) serv(D2X)

NAME serv — process a deferred interrupt

SYNOPSIS prefixserv(minor)

ARGUMENTS minor minor device number

DESCRIPTION serv is an entry point routine that is called to service deferred interrupts for

minor devices that use the minor device semaphoring feature. Interrupts for
such devices are factored into two portions:

Q the prefixintr portion that does not need to have the driver semaphore
locked

U the prefixserv portion that is called only when the driver semaphore is
locked

The serv routine is coded to handle the interrupt, as discussed on the
intr(D2X) manual page. For drivers that are semaphored on the minor-
device number, the intr routine is coded to defer the interrupt and call serv
to actually handle the interrupt.

DEPENDENCIES serv is accessed only if the driver's switch table entry is semaphored by
minor device

SEE ALSO DDG, "Porting Drivers”
intr(D2X), semdrivs(D4X)

2-54 REAL/IX Kernel Reference Manual

strategy(D2X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

Use of buf(D4X)

REAL/IX Kernel Reference Manual

strategy(D2X)

strategy — handle synchronized block device input and output

prefixstrategy(bp)
struct buf *bp;

bp pointer to the address of an instance of the buf(D4X) structure

Block drivers must provide a strategy routine to handle the data transfer.
All information to generate the job request is given in the buffer header
(buf(D4X)) that is passed as the input argument. When the operation is
complete, or is terminated because of an error condition, the buffer header
must be updated as necessary and returned with the iodone(D3X) function.

strategy entry-point routines should not access the user(D4X) data structure
because the process on whose behalf the transfer is to take place may not be
the currently active process. Remember that some kernel functions (such as
klongjmp(D3X), copyin(D3X) and suser(D3X)) access the user structure.

All information about the data transfer is contained in the buffer header:

b_dev contains the major and minor number of the device where
the 1/0 is to occur.

b_blkno the block number of the device where the I/0 is to occur.
Note that the block number is in terms of 512-byte physical
blocks, not logical file system blocks.

b_bcount the number of bytes to be transferred by the I/0 operation

b_un.b_addr the kernel physical address of the data buffer. Note that,
while all kernel addresses are technically virtual addresses,
much of the kernel is mapped one-to-one to physical ad-
dresses and called kernel physical memory.

b_flags the flags in the low-order 16 bits indicate the buffer status.
The value of these flags should be preserved (except for
B_ERROR). The high-order 16 bits are set to zero when
strategy is called; the driver may use them in any manner.
Refer to buf(D4X) for a complete list of flags; commonly
used flags are:

B_READ if set, this is an input operation. If not set,
this is an output operation.

B_ASYNC indicates that the transfer is taking place
asynchronously, meaning that no process is
blocked waiting specifically for the transfer to
complete.

2-55

strategy(D2X)

strategy(D2X)

B_PHYS if set, this is operation will use a physical
buffer

B_ERROR set by the driver in conjunction with b_error
if the 1I/0 operation fails

b_start can be used to time I/O operations.

The buffer header is also used to return status and error information to the
kernel and the user-level program:

b_flags B_ERROR set if error occurred
b_error set to appropriate error code if error occurred
b_resid set to the number of bytes not transferred (residual byte

count) if the transfer was not completed and no error was
reported. This happens when the end of a transfer is not
within the range of valid block numbers.

Structure of strategy Routines

The typical passage of a block device I/O operation is:

1. The strategy routine is called and performs initial validation checks.
If validation fails, then iodone(D3X) is called to complete the I/0
operation and strategy returns to the initiating process.

2. If validation is successful and the device is not busy, the operation is
started immediately. If the device is busy, the operation is queued for
later processing; when the device is ready to accept the request, the
operation begins.

3. When the operation is complete, the device typically posts an inter-
rupt, which is handled by the driver’s intr(D2X) routine. intr checks
the completion status, amends the b_flags and b_error members if an
error occurred, and returns the buffer header to the caller by issuing
the iodone(D3X) function.

The following validation checks typically are made:
O Check that the transfer count (bp->b_bcount) is for an integral
number of device blocks. If not, the driver can round the transfer
count down and set the resid member, or return the ENXIO error

code.

O Check that the given block number is valid. If not, return ENXIO.

REAL/IX Kernel Reference Manual

strategy(D2X) strategy(D2X)

Q Check that the given block number (expressed in terms of 512-byte
physical blocks) maps correctly to the device's block size. For in-
stance, if the device uses 1-Kbyte blocks (each device block contains
two physical blocks), the given block number must be a multiple of 2;
if the device uses 2-Kbyte blocks (each logical block contains four
physical blocks), the given block number must be a multiple of 4. If
the block number does not map to the device's block size correctly,
return ENXIO.

Q Check that the device is operational if necessary; usually this is done
in the open(D2X) routine.

Q Check if the transfer would start at or past the end of the partition.

= If the transfer is exactly at the end and a read operation is required,
set the residual byte count (b_resid) and call iodone(D3X).

» If it would start within partition bounds but go beyond it, set
b_resid for the amount not transferred and set up the read/write
operation for the portion of the transfer that is allowed.

When validation tests in the strategy routine fail, the driver:

Q sets the B_ERROR flag in b_flags (unless b_resid was set)

Q writes an appropriate error code (usually ENXIO) to b_error (unless
b_resid was set)

QO calls the todone(D3X) routine to terminate the operation. If a user-
level process is awaiting the results of the strategy routine, the kernel
propagates any error code in b_error via u.u_error to a system call
error return to the calling process.

The following code fragment illustrates this:

if (dp->b_bcount & (BSIZE-1)) {
bp->b_flags |= B_ERROR;
bp->b_error = ENXIO;
iodone(bp);
return;

The driver should be written so that strategy calls do not fail because of
resource constraints. If, for example, each strategy call requires an instance
of a control block, of which only a limited number are available, it must

REAL/IX Kernel Reference Manual 2-57

strategy(D2X) strategy(D2X)

block on a semaphore until the resource becomes available. This waiting is
undesirable; the driver should be configured so it is guaranteed to have
sufficient resources for the maximum possible number of outstanding strat-
egy calls. This maximum number can be calculated by adding:

O the number of buffers in the system buffer cache (viewable as the
v.buf field on the var output of crash(IM); this shows the total
number of buffers of all sizes)

O the number of buffers in the physical buffer cache (viewable as the
v_pbuf field in on the var output of crash)!

For example, if v_var is 760 and v_pbuf is set to 50, the maximum number
of simultaneous strategy routines that could be executing is 810.

If the buffer header is to be entered into a queue, the typical practice is to
use the av_forw and av_back pointers to enter it into a doubly-linked list.
Care should always be taken to ensure that any list manipulation be pro-
tected. Use spsema(D3X) to set a spin lock before executing the list ma-
nipulation code?, and svsema(D3X) to unlock the spin lock after queuing has
been performed. Other queuing methods are allowed.

strategy Routines in Character Drivers

In block drivers that also support character access, the read(D2X) and
write(D2X) routines (accessed through cdevsw(D4X)) may call strategy as a
subordinate routine. In this case, if b_un.b_addr is a user virtual address,
the strategy routine may examine the u.u_segflg member of user(D4X) to
determine the type of address passed in b_un.b_addr.

The B_PHYS flag must always be set when strategy is called as a subordi-
nate routine for character access, to indicate that the transfer is not going to
the kernel buffer cache. (The buf(D4X) header is used to control the
transfer, but is not associated with an actual kernel buffer). The buffer size
given in b_bcount may differ from the normal buffer size, and the address in
b_un.b_addr may not be a kernel address.

!The number of buffers in the system buffer cache and the physical buffer cache are determined by tunable
parameters. Refer to the System Administrator's Guide for more information.

2Drivers installed under CPU affinity use the spl*(D3X) functions to disable interrupts before sending the
request and splx_fast to reenable interrupts after the request is sent to the controller. For drivers installed under
major- or minor-device semaphoring, the operating system protects the code section from interrupts; spl*
functions are legal, but will unnecessarily impair the interrupt latency of the system. Note that not all machines
support CPU affinity; refer to the Release Notes shipped with your system.

2-58 REAL/IX Kernel Reference Manual

strategy(D2X) strategy(D2X)

If b_un.b_addr refers to an area of user virtual memory, then an additional
member of buf can be used:

b_proc contains a pointer to the proc(D4X) structure that strategy can
. use to perform a mapping of user address space to physical
addresses.
This mapping of user address space to physical addresses is not used in any
existing REAL/IX drivers, and customers who use it must take care to
ensure that the area is locked down through userdma(D3X) or some similar
function.

DEPENDENCIES Drivers using the strategy routine must be configured as block devices. If
the driver also supports character access, it must also be configured as a

character device.

SEE ALSO KPG, "Synchronized 1/0 Operations”
intr(D2X), mbstrategy(D2X), print(D2X), physio(D3X), buf(D4X)

REAL/IX Kernel Reference Manual 2-59

write(D2X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

write(D2X)

write — write data to a character-access device (synchronous 1/0)

prefixwrite (dev)
dev_t dev;

dev device number

The following members of the user(D4X) structure are implicit arguments
to the write routine:

u.u_base address of the buffer in user virtual memory where the write data
is to be found

u.u_count byte count for the data transfer
u.u_ap points to the original parameters of the write(2) system call
n.u_segflg set to 0
u.u_fmode copy of the f_flag member of the file structure (defined in
sys/file.h). The flag propagates the modes set in the open(2)
request.
u.u_offset current offset in the file
When write is executed, the driver initiates and supervises data transfer from
the user data area to the device. The write routine is accessed through the
character device switch table, cdevsw.
The write routine typically does the following:
Q validate device number; if invalid, set u.u_error to ENODEV
QO Initiate the data transfer:
® For TTY drivers, use the ttwrite(D3X) function to do the transfer
using the tty(D4X) structure to get a cblock(D4X) for buffering
the transfer and update the user(D4X) structure. This is generally
used for low-speed character devices.
= For raw I/O on a block device, use the physck(D3X) and
physio(D3X) functions to initiate the transfer. physio handles mem-
ory page locking to ensure that the pages impacted by the I/0 are

not swapped out and does the unbuffered I/O while maintaining the
buffer header as the interface structure.

For other character drivers, use the copyout(D3X) function to move
the data from the user area to the kernel buffer area and from the

REAL/IX Kernel Reference Manual

write(D2X) write(D2X)

kernel buffer area to the device. If not using one of the system-
supplied buffering schemes, the driver must set up its own buffering
scheme; this is generally used with high-speed character devices
such as network interface boards.

. Q Block on a semaphore with psema(D3X) to suspend execution until
the I/O operation is complete. (If the driver entry in cdevsw is
semaphored, you can suspend execution with sleep(D3X).)

Q After the intr(D2X) routine unblocks the semaphore with a vsema (or
wakeup for drivers that blocked with sleep) signaling that the I/O
operation is complete, return back to the associated user-level
process.

Return Values On return from the driver, the following members of the user(D4X)
structure are used to generate the return values for the write(2) system call:

u.u_error set if an error occurred during the I/0O operation

u.u_count set to the residual byte count (in other words, the amount (if
any) of the requested transfer that could not be transferred. Set
to 0 if all data was transferred.

with other parameters, by the u.u_ap member) may have been changed. The
write(2) system call calculates the number of bytes transferred as the differ-
ence between the byte count parameter and the residual byte count in
uw.u_count. If, for example, the write is going to a block device and would
extend beyond the limits of the device, the driver may scale down the
request before passing it to a strategy(D2X) routine. There is no residual
byte count from the scaled down request, but the transfer count returned
from the system call has to reflect the reduced transfer size. This can be
achieved by setting the byte count parameter to the lower value.

I In addition, the byte count parameter supplied by the user (pointed to, along

REAL/IX Kernel Reference Manual 2-61

write(D2X) write(D2X)

write Routines that use physio(D3X)

Refer to read(D2X) for a discussion of read routines that use physical I/0.
A sample write(D2X) routine that uses physio(D3X) is:

1 dskwrite(dev)
2 register dev_t dev;
3 {
4 register unit /* disk controller ID */
5 register unsigned char drv; /* disk drive ID */
6 register struct dskc *dskcp; /* disk controller pointer */
7 register struct dskpart *partpt; /* pointer to partition info */
8 register unsigned char part; /* drive partition */
9
10 unit = minor(dev);
11 dskcp = &dsk_dske[unit)>>5];
12 part = unit & 07;
13 drv = (dev & 030)>>3;
14 if ((partpt = dskcp->dsk_part([drv]) == NULL)
15 u.u_error = ENXIO;
16 else if (physck(partpt{part].nblock, B_WRITE))
17 physio(dskstrategy, 0, dev, B _WRITE);
18]
Disk write(D2X) Routine Using Physical 1/0
DEPENDENCIES Drivers using the write routine must be configured as character devices.
SEE ALSO KPG, "Synchronized 1/0 Operations”
ajo(D2X), read(D2X), copyout(D3X), iomove(D3X), physck(D3X),
physio(D3X)
2-62 REAL/IX Kernel Reference Manual

RECEIVED +PR 7 8 1993

Chapter 3

Kernel Functions and Macros (D3X)

Section D3X describes the driver functions and macros that serve as library functions for device
drivers.! The functions are presented on separate pages. All manual pages for kernel functions and
macros have the (D3X) cross reference code.

Section D3X includes information about macros that we anticipate our customers will need. Macros
are defined in header files in the /usr/include/sys directory, and kernel programmers can look
through those files to locate other macros that may be required. Note especially 2 number of
memory conversion macros in immu.h and general macros in sysmacros.h.

Manual pages in this section contain the following headings:

NAME summarizes the function’s purpose
SYNOPSIS describes the function’s entry point in the source code. Note that the
| #include lines listed for each function do not include the header
| files that are required for every driver; refer to the Kenel Program-
ming Guide for information about these standard header files.
ARGUMENTS describes any arguments required to invoke the function
DESCRIPTION describes general information about the function

SEMAPHORE RAMIFICATIONS
explains whether or not spin locks and semaphores can be held when
calling the function, and identifies functions that can be used only in
a fully-semaphored driver or only in a driver installed under one of
the compatibility modes?

RETURN VALUE describes the return values and messages that may result from
invoking the function

LEVEL indicates from which driver level (base or interrupt) the function can
be called
. 1Some functions and macros described in this section may not be supported on your machine. Refer to the

Release Notes shipped with your system.

INot all compatibility modes are supported on all machines. Refer to the Release Notes shipped with your
system.

REAL/IX Kernel Reference Manual 3-1

indicates the file name where the function or macro is defined.
Kernel source files are located in the /usr/src/uts/realix directory.

SOURCE FILE

SEE ALSO indicates functions that are related by usage and lists sources of

additional information. The following abbreviations are used:

KPG for the Kemel Programming Guide
DDG for the Driver Development Guide

EXAMPLE provides an expansion of the information in a usable context

Function Categories

Table 3-1 groups the kernel functions by category. Refer to individual manual pages in this section
for details about each function.

In addition to the categories listed in Table 3-1, two functions — nodev and nulldev - are provided
for informational purposes, but are not used directly in a driver.

Table 3-1. Function Categories

Category Functionality Kernel Function Name
Initialize a semaphore initsema
Kernel Lock (decrement} a semaphore psema, cpsema
Semaphores Unlock (increment) a semaphore vsema, cvsema
Check the value of a semaphore valusema
Set a spin lock spsema
Spin Locks Release a spin lock svsema
Check the value of a spin lock valulock
' delayfs, timeoutfs, timeoutfspri
System calls and semaphored drivers untimeout ’
— . o delay, timeout, timeoutpri
;Lmnglgons Driver compatibility modes untimeout ’
Delay by spinning independent of clock DELAY
Get, set, and release interval timer get_timer, set_timer, rel_timer
Synchronization | Bjock and unblock a process sleep, wakeup
for Driver
Compatibility .
Modes Prevent/allow interrupts spl*

REAL/IX Kernel Reference Manual

Table 3-1. Function Categories (cont.)

Category Functionality Kernel Function Name

Connect the driver to a cintrio(4) cintrget
structure

Connected Implement connected interrupt IOCTLs cintreti

Interrupts

P ;qczjtéfvy' égeinat:f:)uc:tated user-level process of cintrnotify

Release the cintrio(4) structure cintrelse

Asynchronous Register completion of the 1/0 operation comp_aio

/0

Register cancellation of the /0O operation

comp_cancel_aio

Data Movement

Copy data from a driver to a user program

copyout, subyte, suword, iomove

Copy data from a user program to a driver

copyin, fubyte, fuword, iomove,
upath

Copy data in kernel space

bcopy

Allocate and deallocate buffers

geteblk, getnblk, brelse

Clear a buffer

cirbuf

Block 1/0 Suspend when 1/0 begins iowait, preiowait
Report when 1/0 transfer completes jodone
Read and write raw data for a block device | physck, physio, dma_breakup
Read data getc, getcb, getcf
Character I/0
Write data pute, putcb, putcf
Clear buffer ttyflush
Delay a process tttimeo, ttywait, ttrstrt
1/0 control ttiocom, ttioctl
TTY Subsystem
Open/close terminal ttopen, ttinit, ttclose
Read from a terminal canon, ttin, ttread
Write to a terminal ttout, ttwrite, ttxput
bmemalloc, bmemfree, sptalloc,
Allocate and deallocate memory sptfree
Clear memory bzero
Memory : .
Management Obtain real addresses of pages in user disjointio

buffer

Manage a private buffer scheme

malloc, mapinit, mfree

User-defined special shared memory

usshmetl

REAL/IX Kernel Reference Manual

Table 3—1. Function Categories (cont.)

Category Functionality Kernel Function Name
Lock and unlock semaphore on bdevsw or drilock, driuntock, driinvoke
cdevsw
Compare integers max, min
Convert between bytes and clicks btoc, ctob
Display message or panic the system cmn_err

Miscellaneous

Access device number

major, minor, makedev

Non-local goto, typically used to return
control to user program with error code set

klongjmp, olongjmp, ksetjmp,
osetjmp

Signal user-ievel process(es)

psignal, psignalcur, psignalval,
signal, send_event

Verify user access

rtuser, suser, useracc

REAL/IX Kernel Reference Manual

Summary of Kernel Functions

Table 3-2 lists the kernel functions and their descriptions in alphabetical order. The following

conventions are used in the "Type” column:

B Used only in block drivers E Only for compatibility-mode driver

C Used only in character drivers F Only for fully-semaphored driver

G Generic P Can be used with either fully-semaphored

(used in block and character drivers) or compatibility-mode driver
i Can be called from an interrupt routine T Semaphoring must match TTY subsystem
s Can be called from the strategy routine
Table 3-2. Kernel Function Summary
Routine Description Type

atpanic() system function called when system panics P
atpfail() system function called when AC power fails P
baopyam, to, booun
bmemalloc(siz) allocates siz number of bytes of memory GsP
bmemfree(vaddr, siz) frees memory allocated with bmemalloc GsP
bprobe(addr, val) tests for the presence of a device GsP
brelse(bp) returns buffer 1o the kernel BisP
btoc(bytes) returns .the numbeI: pf clicks {swappable memory GisP
btoct(bytes) pages) in the specitied number of bytes
bzero(addr, bytes) clears memory for a number of bytes GisP
canon(tp) performs canonical processing CET
cintretl{cid, command, arg) implements connected interrupt I0CTLs CP
cintrelse(cid) releases a cintrio structure CP
cintrget(key, arg, flag) connects driver to a cintrio structure CP
cintrnotify(cid, dataitem) notifies user-level process of interrupt CiP
cirbuf(bp) erases buffer contents BisP
cmn_err(/evel, format, args) displays message GisP
comp_aio(areq, byte_cnt, status) marks completion of asynchronous 1/0 CiF
comp_cancel_aio(areq) marks cancellation of asynchronous 1/0 CiF
copyin(userbuf, driverbuf, count) coples data from user space to the driver GP
copyout(driverbuf, userbuf, count) copies data from the driver to user space GP
cpass() gets next character from user’s write call CcP
cpsemal(sem_addr, flags) Lo‘;ﬁlsa;tl?aphore for a resource only if resource is GisF
ctob(cc) A e S
cvsemal(sem_adar) g?(l)gc;l;z ;ssen‘:;[iil'ilr?ée (makes resource available) if a GisF
decachcelr() clears virtual data cache GiP

REAL/IX Kernel Reference Manual

Table 3-2. Kernel Function Summary (cont.)

Routine Description Type
decsema(sem_addr) decrements semaphore by 1 (statistics only) GisF
DELAY(microseconds) delays by spinning independent of system clock GiP
delay(ticks) delays for ticks clock ticks GsE
delayfs(ticks) delays for ticks clock ticks GsF
disable() disables interrupts for the processor GP
disjointio(bp, djntprtr,szdjnt,maxtc) gets physical location of user virtual memory GP
djntfree(entryp) frees a disjoint I/0 structure GiP
djntget(s/pfig) allocates a disjoint 1/0 structure GP
dma_breakup(strat, bp, sectorsize) |sets up intermediate kernel butfering for physio CsP
driinvoke(sw, maj, min, rtne, parm) |fast locks on switch tables for driver semaphoring GF
drilock{switch, major, minor) locks a switch table entry GsF
driunlock(switch, major, minor) unltocks a switch table entry GsF
enable() reenables all interrupts GiP
freecpages(paddr, npgs) frees contiguous pages allocated with getcpages GiP
freepbp(bp) frees buffer header obtained with getpbp CisP
freephysbuf({buffp) releases physical buffer obtained with getphysbuf CisP
fubyte(userbuf) copies a byte from user to driver GP
fuword(userbuf) copies a word from user to driver GP
getc(cip) gets first byte from clist CIET
getcb(cip) gets first cblock on clist CiET
getcf() gets a free cblock CiET
getcpages(npgs, mode) gets physically contiguous pages GiP
geteblk() gets an empty buffer GsP
getnblk(bf, need) gets an empty buffer of specified size GsP
getpbp(s/pfig) gets physical 1/0 buffer pointer GisP
getphysbuf(size) gets physical buffer GsP
get_timer(type) gets an interval timer GisP
incsema increments a semaphore GisF
initlock({/ock_addr, lock_val, flags) initializes spin lock GF
::;ﬁ::;?éﬁg’;:fgg&iig;ﬁgI'ﬂ?,gsg‘)s) initializes or relnitializes semaphore for a resource gl’,::
jodone(bp) signals completion of I/0O after iowait BisP
iomove(cp, bytes, rwflag) moves bytes CcP
iowait(bp) blocks execution to wait for block /O to complete GP
klongjmp() jumps back to location of u.u_qsav GsP
kmap(base, count) :Ioi(r:ttsé'ursnegn\]/;rxlal memory and maps it to kernel GP
ksetjmp() saves registers and return location for ksetjmp GP
kunmap(base, count, kvaddr} Egm:?iif_{:glu:_:ggﬁyuser virtual memory from GP
major{dev) returns major number from device number GisP

REAL/IX Kernel Reference Manual

Table 3-2. Kernel Function Summary (cont.)

strncmp(s1, s2, n)

Routine Description Type
makedev(majnum, minnum) creates a device number GisP
malloc(mp, size, waitfig) allocates space from a map structure GsP
mapinit(map, mapsize, s1, s2) initializes map structure GisP
max(int1, int2} returns the larger integer GisP
mfree(mp, size, a) returns space to a map structure GisP
min(int1, int2) returns the smaller integer GisP
minor(dev) returns minor number from device number GisP
nodev() returns an error upon access See Note
NOT_ALIGNED Stracture that 1s not aligned o oot | ap
nulldev() performs no operation See Note
olongjmp(save_area) jumps back to location saved by osetimp GsP
osetjmp(save_area) saves registers and return location for olongjmp GP
passc(c) passes character to user-leve! process CP
pg_getaddr(p) gets page address GiP
physckinblocks, rwflag) verifies block exists GsP
physio(strat, bp, dev, rwflag) calls strategy routine for direct block 1/0 GsP
poff(adar) gets page offset GIP
preiowait(bp) blocks execution to wait for block 1/0 to complete GsP
psema(sermn_addr, flags) locks semaphore for a resource GIF
psignal(p, signal) sends signal to a process GIP
psignalcur(p, sigmask) sends signal to currently executing process GiP
psignalval(p, signum, sigmask) sends signal to specified process GIP
putc(c, cip) puts byte on clist CiET
putcb(cbp, cip) links a cblock to the ctist GisET
putcf(cbp) puts cbiock on free list GIET
rel_timer(tp) releases an Interval timer obtained with get_timer GisP
rtuser() verifies realtime permission mode GsP
selwakeup(proc, coll) notifies base level that device is selectable GIP
send_event(p, eid, type, ditem) posts an event to a user process GisP
set_timer(;ff;cgl;) @, wal; ovals funcs sets an interval timer obtained with get_timer GsP

9)
signal(pgrp, signal} sends signal to process group GlsP
sleep(addr, priority) suspends execution GsE
spl*() suspends or allows interrupts GisP
splx(o/dievel) or spix_fast(o/dievel) restores oldlevel of interrupts GisP
spsemallock_addr) sets a spin lock GisF
sptalloc(size, mode, base) allocates memory pages GP
sptfree(vaddr, size, mode) frees allocated memory pages GP
stremp(s?, s2) compares strings GiP

REAL/IX Kernel Reference Manual

Table 3—-2. Kernel Function Summary (cont.)

Routine Description Type
::::g:(ys(;ﬁ?z n copies string s2 to s7 GiP
strien(s) returns length of specified string GiP
subyte(userbuf, c) copies a byte from driver to user GP
suser() verifies superuser permission mode GsP
suword(userbuf, i) copies a word from driver to user GsP
svsema(/ock_addr) releases a spin lock GisF
timeout(func, arg, ticks) calls function in ticks clock ticks GiE
timeoutfs(func, arg, ticks) calls function In ticks clock ticks GiF

same as timeoutfs except allows the operating
timeoutfspri(func, arg, ticks) system to arrange for daemon of appropriate GF

priority level to handie timeout processing

same as timeout except allows the operating
timeoutpri(func, arg, ticks) system to arrange for daemon of appropriate GE

priority level to handle timeout processing
ttclose(tp) closes a TTY device CET
ttin(tp, code) moves character(s) to raw queue CiET
o) it sati o st oy Setre] ey
ttiocom(tp, cmd, arg, mode) changes device parameters CET
ttioctl(tp, cmd, arg, mode) sets device parameters CET
ttopen(tp) opens a TTY device CET
ttout(tp) mﬁ;ﬁf guzz character from user data space to an CIET
ttread(tp) :'\Soe\:es TTY characters from canonical queue to CET
ttrstrt(ip) restarts TTY output CIET
tttimeo(tp) times terminal read request CIiET
ttwrite(tp) gwl:)f\fleers TTY byte from output queue to transmit CET
ttxput(t, ucp, ncode) puts data in TTY output buffer CIsET
ttyflush(tp, rwflag) g:)emagsleaﬂ grtl)lgfl:/gnd wakens processes sleeping on CIET
ttywait(tp) suspends TTY processing until I/0 completes CsET
undmal(base, count, rw) unlocks memory locked with userdma GP
untimeout(id) cancels timeout or timeoutfs with matching ID GisP
upath(userbuf, kernelbuf, maxbufsz) |copies data from user space to kernel space GsP
useracc(base, count, access) verifies user access to data structures GsP
userdma(base, count, rw) locks user virtual memory for DMA transfer GP
usshmetisshmiype, furc) i Wi e e oy chared memary [gp
usyscall(nsyscall, func, nargs) installs user-defined system call into kernel GP
uvtopde(uva) returns page descriptor entry for user virtual GsP

address

REAL/IX Kernel Reference Manual

Table 3—2. Kernel Function Summary (cont.)

Routine Description Type
valulock{lock_adar) returns current value of the spin lock GisF
valusema(sem_addr} returns current value of the semaphore GisF
vme_a24_mem_valid(paddr, bufsiz) ;:;Ilftl:zss that an address is accessible A24 VME GisP
vsema(sem_addr, reserved, flags) unlocks a semaphore, unblocks process If waiting GisF
wakeup(addr) resumes blocked execution GisP

Note: This function is not called from a driver.

Portability Issues

When discussing kernel-level portability, it is important to remember that there is no standard on
kernel code: neither SVID nor POSIX addresses anything below the system-call level, and all that is
standardized for system calls is a basic set to be included, not the lower-level kernel functions used
to implement the system calls. Consequently, each kernel has a number of variations from other
kernels. In addition to modifications made to provide performance that is acceptable for realtime
applications, the REAL/IX Operating System includes some modifications to the UNIX System V
kernel made when the operating system was ported to the microprocessor unit on which your
machine is based.

As a starting point, the tables on the following pages compare the REAL/IX kernel to that
documented in the AT&T UNIX System V Release 3 Driver Reference Manual. If the kernel code
you are porting ran on a different variation of the operating system, you may find additional
inconsistencies. At worst, these changes should be a minor aggravation. If you have code to port, a
simple grep(1) should enable you to identify all UNIX System V entry-point routines and kernel
functions that are not supported. To identify other variations, you can carefully compare the code
to the routines and functions listed in this section, or you can attempt to compile the driver code;
the linker will flag functions that are not supported as unresolved references.

AT&T documents a number of kernel functions that are not supported on the REAL/IX Operating
System. Some of these are machine-specific functions that are not included in the porting base;
some are not included in the system from which the REAL/IX Operating System was ported;
others were changed because of specific issues related to the REAL/IX Operating System.

Table 3-3 summarizes the kernel functions documented in the AT&T Driver Reference Manual that
either are not supported or are used differently on the REAL/IX Operating System, with guidelines
on how to modify code that calls these functions.

The D3X kernel functions listed in Table 3-4 are implemented only on the REAL/IX Operating
System. Sections of code that use these functions should be considered non-portable and should be
isolated appropriately. Note that the system from which the REAL/IX Operating System was
ported also includes a number of kernel functions that were not documented by AT&T; these
functions are not listed in Table 3—4 but are documented in this section.

REAL/IX Kernel Reference Manual 3-9

Table 3-3.

AT&T Kernel Functions Not Supported

AT&T UNIX System V,
Release 3

REAL/IX System
Release C.0

delay(ticks)

No change if installed under compatibility mode.

Replace with delayfs if driver code Is fully semaphored.

drv_rfile(D_FILE)

Not supported

hdeeqd(dev, pdsno, ediyp)

hdelog(eptr)

Not supported; SCSI disk devices have own hard-disk error
reporting scheme implemented

While still supported, virtually all driver calls to this function

fowait(bp) should be replaced with preiowait(D3X). Refer to the
preiowait reference page for more information.

kseg(pages) Not supported; to allocate/deallocate memory pages from a

unkseg(vaddr) map, use sptalloc and sptfree.

logmsg(message) Not supported

longjmp(env) If env is u.u_qsav, use kiongjmp with no argument; for ail

other values of env, use olongjmp

malloc(mp, size)

semantics are changed; refer to manual page for detalls

mapinit{map, mapsize)

semantics are changed; refer to manual page for details

mapwant(vaddr)

In fully semaphored drivers, mapwant is called automatically.

sleep(ovent, priority)
wakeup(event)

Can be used only if driver entry is semaphored; priority
argument has slightly different meaning.

For fully semaphored drivers, replace with psema and vsema.

spl*()

Can be used as-is with drivers Installed under CPU affinity,a
although note that the spl-to-IPL relationship is usually
ditferent for each computer. For increased performance,
replace calls to spix with calls to spix_fast.

Can be removed from drivers installed under major or minor
device semaphoring to improve interrupt latency on system,
except when it protects a resource that is shared with other
kernel processes.

For drivers that are fully semaphored, most spls can be
replaced with spin locks (spsema and svsema)

sptalloc(size, mode, base,
flag)

Semantics are changed; refer to sptalloc(D3X) for detaits.

sptfree(vadadr, size, mode)

Semantics are changed; refer to sptfree(D3X) for detalls.

timeout(func, arg, ticks)

No change if driver is installed under a compatibility mode.

Replace with timeoutfs if driver code is fully semaphored.

vtop(vaddr, p)

Not supported

2Not all machines support CPU affinity. Refer to the Release Notes shipped with your system.

REAL/IX Kernel Reference Manual

Table 3—4. REAL/IX—=Only Kernel Functions

Feature D3X Function Description
cintreti{cid, command, arg) Implement connected Interrupt IOCTLs
cintrelse{cid) Release a connected interrupt identifier
Connected = v U — .
Interrupts onnect driver to a connected interrup
cintrget(key, arg, flag) structure
cintmotify(cid, dataitem) Notify user-level process of device interrupt
Initsema(sem_addr, sem_val, flags) Initialize kernel semaphore
psema(sem_addr, flags) Decrement semaphore; block if unavailable
ggrr::;l)hores cpsema(sem_addr, flags) Decrement semaphore; return if unavaitable
ﬁ%ﬁnd vsema(sem_addr, proc, flags) Increment semaphore
valusema(sem_addr) Return current value of semaphore
prelowait(bp) Wait for completion of block /0
! initlock(/ock_addr, lock_val) Initialize spin lock
‘ spsemaf(lock_addr) Lock spin lock
. Spin Locks
svsema(lock_adadr) Unlock spin lock
valulock{/ock_addr) Return current value of spin lock
kiongjmp() Replaces longjmp
Performance
spix_fast{x) A faster alternative to spix
Kernel drilock(switch, major, minor) Lock a switch table entry
Semaphores | griuniock(switch, major, minor) Unlock a driver entry
Mark completion of asynchronous 1/0
Asynchronous comp_alo(areq, byte_cnt, status) operations
1/0
comp_cancel_alo(areq) Cancel asynchronous 1/0 operation
psignalcur(pid, sigmask) Signal currently executing process
gizan':{:e psignalval(pid, sigmask) Signal specified process
send_event(pid, eid, type, dataitem) | Post event to specified process
Memory bmemalloc(siz) Allocate siz number of bytes of memory
Management | pemfree(vadar, siz) Free memory allocated with bmemalioc
Panic and atpanic() Function to execute after a system panic
Powertfall
Handling atpfali() Function to execute after an AC power failure
ksetjmp(addr)
Other klongjmp() Provides longjmp functionality in the
osetjmp(adadr) semaphored kernel !
olongjmp()

REAL/IX Kernel Reference Manual

atpanic(D3X)

NAME
SYNOPSIS
ARGUMENTS

DESCRIPTION

atpanic(D3X)

atpanic - function to execute after a system panic

atpanic()

None. .

The atpanic function is called when the system panics. The released system
includes an atpanic function that does nothing but return 1 to let the panic
proceed; you can define your own atpanic function by putting the code in
the custom.c file specified below.

Each executing kernel can have only one atpanic function, so the function
must be defined to handle all situations needed by any kernel program.
Note that there is no guarantee that the system will be able to call atpanic,
and that code that stops a potential panic can be very dangerous if not
thought out and implemented carefully.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

EXAMPLE

Because it is impossible to predict what will be executing at the time the
panic occurs, the atpanic function must be coded to have no semaphore
ramifications.

As released, atpanic returns 1 under all conditions. Return codes have the

following meaning to atpanic: .
0

stop the panic
1 let the panic proceed

Your atpanic function can include code for both return values. If you stop
the panic (return 0), the panic error message is not displayed.

Base or Interrupt
/stub/atpanic.c (code should be put in usr/src/uts/realix/custom/atpanic.c)
atpfail(D3X)

A simple example of coding in atpanic is the following, which writes a
message to the console and putbuf, then lets the panic proceed:

cmn_err(CE_NOTE, "My atpanic handler has been invoked.");
return 1;

REAL/IX Kernel Reference Manual

atpfail(D3X) atpfail(D3X)

NAME atpfail — function to execute when system suffers an AC power failure
SYNOPSIS atpfail()

ARGUMENTS None.

DESCRIPTION The atpfail function is called when the system suffers a power failure; it

executes in the few microseconds between the power failure and when the
system actually runs out of power. The released system includes an atpfail
function that does’ nothing but return 1; you can define your own atpfafl
command by putting the code in the custom.c file specified below.

Each executing kernel can have only one atpfail function, so the function
must be defined to handle all situations needed by any kernel program.
Note that there is no guarantee that the system will be able to call atpfail.
If the system is configured with an uninterruptible power supply (UPS), it
may not even realize that it has suffered a power failure to call this routine.

SEMAPHORE RAMIFICATIONS

Because it is impossible to predict what will be executing at the time the
power fail occurs, the atpfail function must be coded to have no semaphore
ramifications.

RETURN VALUE As released, atpfail returns 1 under all conditions.

If you define your own atpfafl function, it will have the return value you
define. A common use of atpfail is to "ride out” the power failure; if it is
still running after 5 seconds, it indicates a backup power supply has taken
over and the system is still up. If atpfail returns any value, the system will
issue the following console error message: "AC — FATIL".

LEVEL Base or Interrupt
SOURCE FILE stub/atpfail.c (code should be put in /usr/src/uts/m68k/custom/atpfail.c)
SEE ALSO atpanic(D3X)

REAL/IX Kernel Reference Manual 3-13

bcopy(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

bcopy(D3X)

bcopy — copy data between address locations in the kernel (byte copy)

#include<sys/types.h>

becopy(from, to, bcount)
caddr_t from, to;
int bcount

from source address from which the copy is made
to destination address to which copy is made
bcount the number of bytes (characters) moved

This function copies bcount bytes from one kernel address to another.
Addresses that are word-aligned are moved most efficiently. However, the
driver developer is not obligated to ensure alignment. This function auto-
matically finds the most efficient move algorithm by how the addresses are
aligned. If the input and output addresses overlap, the command executes,
but the results may not be as expected.

The from and to addresses must both be within kernel address
space. No range checking is done. If an address outside kernel
WARNING! address space is selected, the system will panic.

Note that beopy should never be used to move data in or out of a user
buffer because it has no provision for handling page faults (use copyin(D3X)
and copyout(D3X) instead). The user address space can be swapped out at
any time, and beopy always assumes that there will be no paging faults. If
beopy attempts to access a user buffer when it is swapped out, the system
will crash. Because kernel space is never swapped out, it is safe to use beopy
to move data within kernel space.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

None.
Under all conditions, 0 (zero) is returned.

Base or Interrupt

REAL/IX Kernel Reference Manual

bcopy(D3X) bcopy(D3X)

SOURCE FILE ml/*/misc.s

SEE ALSO KPG, "Synchronized 1/0 Operations”
copyin(D3X), copyout(D3X), fubyte(D3X), fuword(D3X), iomove(D3X),
subyte(D3X), suword(D3X)

EXAMPLE In the following example, an I/O request is made for data stored in a RAM
disk.

Q If the I/0 operation is a read request, the data is copied from the
RAM disk to a buffer (line 7).

O Otherwise, the I/O operation is a write request; the data is copied
from a buffer to the RAM disk (line 10).

The beopy function is used because both the RAM disk and the buffer are
part of the kernel address space.

1 #define RAMDNBLK 1000 /* Blocks in RAM disk */

2 #define RAMDBSIZ 512 /* Bytes per block */

3 char ramdblks[RAMDNBLK] [RAMDBSIZ] ; /* Blocks forming RAM disk */
4

5 if (bp->b_flags & B_READ) {

7 bcopy(§éramdblks [bp—>b_blkno] {0}, bp->b_un.b_addr, bp->b_bcount);
8)

9 else {

10 bcopy(bp->b_un.b_addr, sramdblks([bp->b_blkno] [0], bp—>b_bcount);
1)

REAL/IX Kernel Reference Manual 3-15

bmemalloc(D3X) bmemalloc(D3X)

NAME bmemalloc -~ allocate memory
SYNOPSIS #include<sys/sysmacros.h>
char *
bmemalloc(siz)
int siz;
ARGUMENTS siz the number of bytes to be allocated
DESCRIPTION This function allocates a specified number of bytes of memory. The normal

return value is the kernel virtual address of the allocated space. Allocated
space is virtually, but not physically, contiguous.

Using bmemalloc does not guarantee any alignment of allocated space.
SEMAPHORE RAMIFICATIONS

No spin locks can be held when calling bmemalloc.
RETURN VALUE Under normal conditions, the kernel virtual address of the allocated buffer is

returned. Otherwise, NULL is returned when either virtual or physical
memory cannot be allocated.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE sys/sysmacros.h
SEE ALSO KPG, "Memory Management”

bmemfree(D3X)

3~16 REAL/IX Kernel Reference Manual

bmemfree(D3X) bmemfree(D3X)

NAME bmemfree - free allocated memory
SYNOPSIS bmemfree(vaddr, siz)
char * vaddr;
int siz;
ARGUMENTS vaddr base virtual address of memory to be released, which is returned

from bmemalloc

siz number of bytes ta be released; must be the same as the siz
argument used with the associated call to bmemaliee ., .

DESCRIPTION This function releases memory or performs garbage cleanup to free allocated
memory for reuse. This function is called after bmemalloc(D3X) to free
allocated memory.

SEMAPHORE RAMIFICATIONS

No spin locks can be held when calling bmemfree.

RETURN VALUE None.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE sys/sysmacros.h
SEE ALSO KPG, "Memory Management”

bmemalloc(D3X)

REAL/IX Kernel Reference Manual 3-17

bprobe(D3X)
NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

bprobe(D3X)
bprobe — access an address with recovery from errors
int
bprobe(addr, val)
char * addr;
int val;
addr base virtual address to be tested
val specifies a read probe or write probe. If val is negative, bprobe
reads the specified address; if non-negative, bprobe writes val to

addr.

This function typically is used during driver initialization to determine if the
board associated with the driver is installed at a given address. If the value
of the second argument (val) is less than O, bprobe reads the byte at the
address given in the first argument (addr); otherwise, bprobe writes the non-
negative value of val to that address. In either case, a bus error occurs if the
addressed location is not configured in the system; as part of driver initiali-
zation, the bus error occurs if the board is not installed at specified address.
bus handler recognizes that the bus error is a result of a bprobe and assumes
that bprobe returns the appropriate value.

SEMAPHORE RAMIFICATIONS

CAVEATS

RETURN VALUE

LEVEL

SOURCE FILE

No spin locks can be held when calling bprobe.

It is strongly recommended that bprobe be called only as part of driver
initialization, before any driver processes are running. Once processes are
running, bprobe should not be called because accessing a non-existent loca-
tion can impact realtime performance.

If the device is present (a bus error does not occur), bprobe returns 0. If
the device is not present (a bus error occurs), bprobe returns 1.

Base Only (Do not call from an interrupt routine)

ml/*/misc.s

REAL/IX Kernel Reference Manual

brelse(D3X) brelse(D3X)

NAME brelse — return buffer to the bfreelist
SYNOPSIS #include <sys/types.h>
#include<sys/buf.h>
. brelse(bp)
struct buf *bp;
ARGUMENTS bp pointer to the buffer header described in buf.h. This is the buffer

“header address being returned to the kernel's buffer pool.

DESCRIPTION This block interface function is called after the driver function is finished
with the buffer. It returns a buffer to the bfreelist pool of free buffers as
a function of B_AGE, unblocks any processes that may be waiting for a free
buffer, then unlocks a semaphore to allow other processes to lock the
buffer.

If B_AGE is set, the buffer will be reused before other buffers in the
system. B_AGE should be set when you know that the data in the buffer will
not be needed by other processes.

The flags in the b_flags member of the buf(D4X) structure must
have appropriate settings when brelse is called. Otherwise, the disk
may be corrupted and the system may panic.

If the buffer was allocated with geteblk(D3X) or getnblk(D3X), the
buffer is not assigned to any particular device and block number.
After brelse executes, the buffer will be reassigned to some other

CAUTION use. However, if the B_DELWRI flag is set, the system will attempt
to write the data in the buffer to the device and block number
specified in the appropriate buf fields.

b_flags should be treated as shown in the example that follows.
SEMAPHORE RAMIFICATIONS
No spin locks can be locked when invoking brelse. Any necessary locks are
handled by geteblk(D3X) or getnblk(D3X), which should have been called

before brelse.

RETURN VALUE brelse does not return a value. If B_ERROR has been set due to an error in
an earlier I/O transfer, b_error is set to 0 (zero).

LEVEL Base or Interrupt

SOURCE FILE os/bio.c

REAL/IX Kernel Reference Manual 3-19

brelse(D3X)

SEE ALSO

EXAMPLE

brelse(D3X)

KPG, "Synchronized I/0 Operations”
geteblk(D3X), getnblk(D3X), clrbuf(D3X), iowait(D3X), preiowait(D3X),
buf(D4X)

In the following example, an I/0 request is made, but a buffer has not been
allocated. This can take place in a driver ioctl(D2X) routine that needs to
download pump code to a device controller.

O A surplus buffer is allocated from the buffer cache (line 3) and cleared
of old data (line 4).

O The new data is copied into the buffer, relevant fields in the buffer
header are set up, and the physical 1/O is scheduled by calling the
driver’s strategy routine (line 7).

O The driver waits for the completion of the physical I/O operation
(line 8).

Q b_flags is set to ensure that the system does not subsequently attempt
to write the data in the buffer to disk (line 9). Clearing all the flags
except B_BUSY is not required on the REAL/IX Operating System
because B_DELWRI should not have been set by any code in this
example. However, for portability considerations it is good practice to
include this line in your code.

Q b_flags is set to ensure the buffer is reused again quickly (line 10).
This optimization ensures that possibly useful buffers in the cache are
not reused before this buffer, which is no longer needed.

Q The unblocked base level portion of the driver then releases the buffer

(line 11).

O When the I/O operation is finished, the driver’s interrupt routine calls
iodone(D3X) to unblock (line 15).

O Note that any error setting within the buffer will have caused iowait

(line 8) to place the error code in the u_area. It is not necessary for
the driver to check buffer fields explicitly

REAL/IX Kernel Reference Manual

brelse(D3X)

brelse(D3X)

an

=0~

= O

13

14

15
16

register struct buf *bp;

bp = geteblk;
clrbuf(bp);

/* Copy data to allocated buffer and */
/* schedule physical I/O request with device */

xxstrategy(bp):

iowait(bp);

bp->b_flags &= B_BUSY;
bp->b_flags |= B_AGE | B_STALE;
brelse(bp);

xxintr(subvec); {

iodone(bp);

REAL/IX Kernel Reference Manual

3-21

btoc(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

btoc(D3X)

btoc, btoct — convert bytes to clicks (memory pages)

unsigned
btoc(bytes)
unsigned bytes;

The syntax of btoct is the same as that of btoe.
bytes quantity of bytes

These macros return the number of memory pages (clicks) that are needed
to contain a specified number of bytes. btoc rounds up to the next page and
can be used to determine the number of pages required to hold the specified
number of bytes; btoct (truncated) rounds down and is used to determine
the page on which the number of bytes ends. For example, if the page size
on your system is 4096 bytes,! then btoc(14384) returns 4 and btoct(14384)
returns 3. btoc(0) and btoct(0) both return 0.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

None.

A non-negative value is always returned.
Base or Interrupt

sys/sysmacros.h

ctob(D3X)

IThe page size used by the REAL/IX Operating System varies depending on the hardware platform on which it
runs. Refer to the Release Notes shipped with your system.

3-22

REAL/IX Kernel Reference Manual

bl i

bzero(D3X) bzero(D3X)

NAME bzero - clear memory for a specified number of bytes
SYNOPSIS #include <(sys/types.h>
bzero(addr,bytes)
caddr_t addr
int bytes;
ARGUMENTS addr starting virtual address of memory to be cleared (must be an

even word address)

bytes the number of bytes to clear starting at addr (should be a word-
size multiple number of bytes)

DESCRIPTION This function clears a contiguous portion of memory by filling the memory
with Os (zeroes).

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE bzero returns 0 whether or not it is successful.

LEVEL Base and Interrupt
SOURCE FILE ml/*/misc.s
SEE ALSO beopy(D3X), cirbuf(D3X)

REAL/IX Kernel Reference Manual 3-23

canon(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

canon(D3X)

canon - transfer characters from t_rawq to t_canq

#include(sys/types.h>
#include<sys/tty.h>
#include<sys/file.h>
#include<sys/termio.h>

canon(tp)
struct tty *tp;

ip pointer to the current tty structure for the device accessed

This function moves characters from a terminal's raw input buffer to a
processed-character buffer and handles erase, BREAK, DELETE, and special
character processing (known as canonical processing). A terminal may select
to either process input a line at a time or a character at a time. The
difference as seen by a user program is that, for line at a time processing, a
read of a terminal does not return until a whole line of input is accumulated.
For character at a time processing, a read returns one character. Canonical
processing is performed for line-at-a-time processing only.

The ICANON variable (set in t_lflag) is enabled to denote that line at a time
and canonical processing be performed, or disabled to denote character at a
time processing.

The input buffer (or raw queue t_rawq in the tty structure) contains
delimiters to mark the amount of input to be examined.

During the transfer of data from the raw queue to the canonical queue, if
ICANON is set, the following character translations are done:

O Erase character processing

O Kill character processing

Q End-of-file character processing

O Escaped characters (characters preceded by a backslash "/”)

O XCASE processing (uppercase/lowercase presentation)
Refer to termio(7) for more information about these translations.

canon is normally called when the characters in t_rawq are ready to be
processed. However, you can call canon before a delimiter is received in the
queue. canon will call sleep(D3X) to wait on t_rawq (at the TTIPRI sleep
priority). For this reason, canon must never be called from an interrupt
routine.

REAL/IX Kernel Reference Manual

canon(D3X) canon(D3X)

The following flags have special meanings to canon:

Flag Purpose Header Flle
CANBSIZ Maximum line length for a terminal param.h
CARR_ON Carrler Is present ty.h
FNDELAY Open flle without delay file.h
IASLP Wakeup process when input is done tty.h
ICANON Perform canonical processing termio.h
RTO Timeout in progress for raw device tty.h
TACT Timeout in progress for the device tty.h
TTIPRI TTY Input priority (28) for sleep tty.h
VEOF Same as termio(7) EOF termio.h
VEOL Same as termio(7) NL termio.h
VEOL2 Same as termio(7) EOL termio.h
VERASE Same as termlo(7) ERASE termio.h
VKILL Same as termio(7) KILL termio.h
VMIN Same as termio(7) MIN termio.h
VTIME Same as termio(7) TIME termio.h
XCASE Upper/iowercase presentation mode termio.h

Traditionally, canon is called by a line discipline read routine to transfer
characters if there are no characters in the t_cam queue. canom is called
from the ttread line discipline routine to do this.

SEMAPHORE RAMIFICATIONS

Drivers that use canon must be installed under a compatibility mode.

LEVEL Base Only (Do not call from an interrupt routine)

SOURCE FILE io/vme/tty.c

SEE ALSO KPG, "Drivers in the TTY Subsystem”
ttread(D3X), ttin(D3X)

REAL/IX Kernel Reference Manual 3-25

canon(D3X) canon(D3X)

RETURN VALUE In general, canon blocks if there is not yet a delimiter in the input t_rawq,
uniess non-canonical processing is in effect. When a delimiter is present,
canon processes characters until the first delimiter is hit and then returns.
Specifically, canon returns:

O If ICANON is on and characters have been transferred into the
t_canq up to and including the first delimiter, a delimiter being either
a"/n", t_ce[VEOF], t_cc[VEOL), or t_cc[VEOL2].

O If the delimiter count is O and t_state does not have CARR_ON set.

Q If the delimiter count is 0 and the mode of the read has no delay

(FNDELAY) set. In this case u.u_error is set to EAGAIN and canon
returns —1.

O If ICANON is not set, and the input parameters t_ce[VMIN] (the
minimum number of characters to be input) and t_cc[VTIME] (the
time in tenths of seconds to wait between characters, after the first
character has been input) have been satisfied. IF t_cc{VTIME] is non-
zero, and t_cc[VMIN] characters have not yet been input, canon calls
tttimeo to schedule a wakeup and then calls sleep.

If canon must call sleep before returning, it passes sleep the address
of t_rawq as the event and sets a priority of TTIPRI (28).

EXAMPLE This excerpt from ttread(D3X) uses canon from a driver read routine.
ttread(tp)
register struct tty *tp;
{

register struct clist *tq;
tq = &tp->t_cang;

/* If no character to process in the canonical queue, call canon to
/* transfer characters or sleep until a delimiter is present. */

if(tg—>c_cc == 0)
canon(tp);
while(u.u_count!=0 && u.u_error==0)

{
/* transfer characters to user data space from canq */

)

3-26 REAL/IX Kernel Reference Manual

cintrcti(D3X) cintrcti(D3X)

NAME cintrctl - connected interrupt I/O control operations (IOCTLs)

SYNOPSIS #include <sys/cintrio.h>

int cintrectl(cid, command, arg)
int cid, command;
struct cintrio *arg;

ARGUMENTS cid identifies the connected interrupt structure on which to perform
the command. cid is returned by a previous call from the
cintrget(D3X) function.

command the connected interrupt control function to be performed, passed
from user-level process’s ioctl(2) call.

arg pointer to a cintrio(4) data structure that contains additional
information needed by this command, passed from user-level
process's foctl(2) call (optional; not all commands require an
arg).

DESCRIPTION This function is used in the driver’s ioctl(D2X) routine to implement all
connected interrupt IOCTL commands listed on the cintrio(4) manual
page except CI_CONNECT (which is implemented with the cintrget(D3X)
function). The functions implemented are:

CI_UCONNECT
disconnect the process associated with the connected inter-
rupt identifier (cid). The cid is removed and the associated

data structure is released. This function is equivalent to
cintrelse(D3X).

CI_SETMODE
switch the bit of the ci_flags member of the structure. If set
to CINTR_PERIODIC, the user-level process is notified of
all device interrupts; if not set, the user-level process is
notified of one interrupt at a time; subsequent interrupts are
ignored until the previous one is acknowledged with the
CI_ACK command.

CI_LACK acknowledge the last delivered device interrupt (ignored if the
CINTR_PERIODIC flag is set).

CI_STAT populate arg with the values currently assigned to cid. arg
must point to a user address.

For more information about using these IOCTL commands in user-level
programs, refer to cintrio(7) and to the Programmer's Guide.

REAL/IX Kernel Reference Manual 3-27

cintrctl(D3X)

cintrctl(D3X)

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

No spin locks can be locked when invoking cintretl with the
CI_.UCONNECT function.

On success, a value of 0 is returned. Otherwise, a value of —~1 is returned
and w.u_error is set to indicate the error. cintrctl will set u.u_error to
EINVAL, EFAULT, or ENODEV.

Base Only (Do not call from an interrupt routine)

os/cintr.c

KPG, "Interrupts”

cintrget(D3X), cintrnotify(D3X), cintrelse(D3X)
evetl(2), evget(2), evrev(2), evrevl(2), evrel(2), cintrio(4), cintrio(7)

REAL/IX Kernel Reference Manual

cintrelse(D3X) cintrelse(D3X)

NAME cintrelse ~ release a connected interrupt identifier
SYNOPSIS #include <sys/cintrio.h>
. int cintrelse(cid)
int cid;
ARGUMENTS cid identifies the connected interrupt structure to be released. cid is

returned by a previous call from the cintrget(D3X) function.

DESCRIPTION This function is used in the driver's close(D2X) routine to disconnect the
process associated with the connected interrupt identifier cid (if it was not
previously disconnected with a CILUCONNECT cintrctl(D3X) command),
remove the connected interrupt identifier, and release the data structure
associated with it.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling cintrelse.

RETURN VALUE If successful, 0 is returned. Otherwise, a value of -1 is returned and
| u.u_error is set to EINVAL.

i LEVEL Base Only (Do not call from an interrupt routine)
‘ . SOURCE FILE os/cintr.c
| SEE ALSO KPG, "Interrupts”

cintretl(D3X), cintrnotify(D3X)

REAL/IX Kernel Reference Manual 3-29

cintrget(D3X) cintrget(D3X)

NAME cintrget — connect the driver to a cintrio(4) structure
SYNOPSIS #include <sys/cintrio.h>

int cintrget(key, arg, flg)

int key, flg;

struct cintrio *arg

ARGUMENTS key the connected interrupt key. By convention, this is the device
number (major and minor number concatenated), although any
value can be used.

arg pointer to a cintrio(4) data structure that contains additional
information needed by this command, passed from user-level
process's ioctl(2) call.

flag CINTR_EXCL if exclusive access is required for this key; oth-
erwise, 0.
DESCRIPTION This function is called in the driver’s ioctl(D2X) routine to implement the

connected interrupt CI_CONNECT IOCTL command. It returns the con-
nected interrupt identifier associated with key. On each successful call,
cintrget creates a connected interrupt identifier and an associated
cintr(D4X) data structure, and populates the cintr structure with informa-
tion from the associated user-level cintrio(4) structure.

SEMAPHORE RAMIFICATIONS .
No spin locks can be locked when invoking cintrget.
RETURN VALUE Upon success, a non-negative integer (the connected interrupt identifier) is

returned. Otherwise, a value of -1 is returned and w.u_error is set to
EPERM, EINVAL, EFAULT, or ENOSPC to indicate the error.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/cintr.c
SEE ALSO KPG, "Interrupts”

cintretl(D3X), cintrnotify(D3X), cintrelse(D3X)
evetl(2), evget(2), evrev(2), evrevl(2), evrel(2), cintrio(4), cintrio(7)

3-30 REAL/IX Kernel Reference Manual

cintrnotify(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

cintrnotify(D3X)

cintrnotify, CINTRNOTIFY - notify the user-level process of an interrupt

#include <¢sys/cintrio.h>

void cintrnotify(cid, dataitem)
int cid, dataitem

CINTRNOTIFY has the same syntax as cintrnotify.

cid identifies the process to be notified of the interrupt. cid is
returned by a previous call from the cintrget(D3X) function.

dataitem if the notification method for this cid is CINTR_EVENTS, this °
is the dataitem to be written to the evt structure associated with
this connected interrupt; otherwise is unused.

This function is used in the driver’s intr(D2X) routine to notify the user-level
process associated with the connected interrupt identifier cid of an interrupt.
The notification method used is that which was requested by the
CI_CONNECT command for identifier cid.

CINTRNOTIFY is an inline (macro) version defined in sys/cintrio.h. It
provides the same functionality as cintrnotify and takes the same arguments,
but is faster.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

No spin locks should be held when calling cintrotify.

cintrnotify and CINTRNOTIFY do not return a value under any conditions.
Interrupt Only (Do not call from a base level routine)

os/cintr.c

KPG, "Interrupts”

cintreti(D3X), cintrget(D3X), cintrelse(D3X)
eveti(2), evget(2), evrev(2), evrevl(2), evrel(2), cintrio(4), cintrio(7)

REAL/IX Kernel Reference Manual 3-a1

cirbuf(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

cirbuf(D3X)

clrbuf ~ erase the contents of a buffer (clear buffer)

#include<sys/types.h>
#include<sys/buf.h>

void

clrbuf(bp)
struct buf *bp;

bp pointer to the buf(D4X) structure

The clrbuf function clears the buffer and sets the b_resid member of the buf
structure to 0O (zero).

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

EXAMPLE

None.

None.

Base and Interrupt

os/bio.c

brelse(D3X), geteblk(D3X), getnblk(D3X), buf(D4X)

See the example for geteblk(D3X) for an example of clrbuf.

REAL/IX Kernel! Reference Manual

cmn_err(D3X) cmn_err(D3X)

NAME cmn_err — display an error message or trigger a system panic

SYNOPSIS #include<sys/can_err.h>

cmn_err(level, format, args)
char *format;
int level, arg;

ARGUMENTS level A constant defined in the cmn_err.h header file. level indicates
the severity of the error condition. The four severity level mes-
sages are:

CE_CONT indicates a message should not be preceded with a
label such as NOTICE, WARNING, or PANIC.
This message can be used to continue other mes-
sages or display informative messages not con-
nected with an error during system initialization.
It is not recommended outside init(D2X) routines
because other code could interrupt this code be-
tween the first and second lines of the error.
Moreover, using CE_CONT makes it more diffi-
cult to grep for all WARNING and NOTICE
messages in the /usr/adm/putbuf file.

CE_NOTE reports system events that do not necessarily re-
quire user action, but may interest the system
administrator. For example, a sector on a disk
needing to be accessed repeatedly before it can be
accessed correctly might be such an event.

CE_WARN reports system events requiring immediate atten-
tion. If an action is not taken, the system may
panic. For example, when a peripheral device
does not initialize correctly, this level should be
used.

CE_PANIC results in a system panic. Drivers should specify
the CE_PANIC level only under the most severe
conditions or for debugging a driver. A valid use
of CE_PANIC is when the system cannot con-
tinue to function. If the error is recoverable, or
not essential to continued system operation,
CE_PANIC should not be specified.

An invalid value for level will panic the system when cmn_err executes.

REAL/IX Kernel Reference Manual

cmn_err(D3X) cmn_err(D3X)

format An error message to be displayed. Direct the message to a
specific destination by encoding a special character in the first
position of the string. Otherwise, the rules for the string are the
same as those for printf(3S) strings. The special characters are as
follows:

! directs the output of the string only to the putbuf, a circular
array in memory used to storec messages. The messages usu-
ally are read by putbuf(1) using /dev/osm and are written to a
log file, usually /usr/adm/putbuf.

displays the message only on the console

If a special character is omitted from the first string position, the
message is directed to both the putbuf and the console. Except
for CE_CONT, cmn_err appends "\n" to each format whether
displaying information about the console and/or writing the for-
mat message to putbuf. CE_CONT messages are printed as writ-
ten (no "\n" is appended).

args The set of arguments passed with the message being displayed.
Valid conversion specifications are $s, $u ,%d, %o, $x, and $D.
cmn_err acts similar to printf(3S) in displaying messages on the
system console or storing in the putbuf. Up to 10 arguments can
be printed. Note that cmn_err does not accept length specifica-
tions in conversion specifications. For example, $3d is ignored.

DESCRIPTION The emn_err function is used to write error and informational messages to
the console and/or the putbuf structure. On the REAL/IX Operating Sys-
tem, emn_err messages are written to the prfbuf structure,! and the print
daemon (prfd)* moves messages from prbuf to the console, the putbuf, or
both (see figure).

!By default, prfbuf has 100 entries and the putbuf is 2000 bytes long. If cmn_err messages are being lost
because prfbuf is too small, the message 'cmn_err: too many messages, xx lost’ is displayed. Messages may also
be lost if the size of the putbuf is too small; however, no message is displayed in this case. You can increase the
size of prfbuf by modifying the MAXPRBUFS kernel parameter in sysgen(1M); you can increase the size of the
putbuf by modifying the PUTBUFSZ kernel parameter in sysgen. If you increase the value of either one, you
should increase the value of the other one, too.

2prfd does not execute during kernel initialization or when the system panics. In these cases, cmn_err messages
are written directly to the console and the putbuf. With superuser privileges, you can force cmn_err messages to
be written directly to the console and the putbuf (by means of the RLXPRFCTL command of sysrealix(2)). This
method guarantees that no messages are lost, but may have an adverse impact on real time performance (interrupt

latency). This method may be useful during driver development, but is nor recommended when running a
production system.

3-34 REAL/IX Kernel Reference Manual

cmn_err(D3X)

cmn_err(D3X)

prfbuf putbuf

cmn_err putbuf
parameters > daemon
Jusr/adm/putbuf

system console

08151

Use cmn_err to notify the administrator of specific actions required (such as
mounting a tape on the driver or adding paper to the printer) or to provide
information about device conditions that may eventually cause serious system
problems (for instance, if retries are required to complete the operation, the
device may need repair, even though the operation eventually succeeded).
cmn_err can also be used for messages that allow you to trace the progress
through the driver code during the debugging stage or that report perform-
ance statistics (such as the amount of time required to complete the I/0
operation) when doing performance testing.

If CE_PANIC is set, emn_err stops the machine. This is used often for
debugging (because panicking the machine enables you to save a copy of
memory that can be analyzed), but should be used very carefully in produc-
tion drivers. Drivers should avoid panicking the system except when it is
clear that the kernel is corrupted or some other condition exists that makes
it dangerous for the system to continue to run.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

REAL/IX Kernel Reference Manual

None.
No value is returned.

Any message passed to cmn_err, unless assigned a specific location, is
displayed on the console and assigned to putbuf.

3-35

cmn_err(D3X)

LEVEL
SOURCE FILE

SEE ALSO

cmn_err(D3X)

If an unknown level is passed to cmn_err, the following panic error message
is displayed:

PANIC: unknown level in cmn_err (level=level, msg=formar)
If there are subsequent panic calls to emn_err after the first panic message is
received, the system will attempt to print both messages with an indication
of the order in which the panic calls occurred.
Base or Interrupt
os/prf.c

KPG, "Process Notification”
print(D2X), atpanic(D3X)

REAL/IX Kernel Reference Manual

cmn_err(D3X) cmn_err(D3X)

EXAMPLES The first code example below illustrates how cmn_err is used to provide

information that a routine has been called during the testing phase. Note
that, because the "%x" conversion character is used, the minor/major
number of the device will be printed in hexadecimal.

register struct device *rp;
rp = xx_addr[(minor(dev) >> 4) & Oxf)];
#if TEST
cmn_err(CE_NOTE, “xx _open routine called - dev = 0x%x”,
dev);
#endif g

The next code fragment shows that the cmn_err function can:
O record tracing and debugging information in the putbuf (lines 12 — 13)
Q display information about the device on the system console (line 15)

Q stop the system if a required device malfunctions (line 19)

WOV W

struct device { /* Physical device registers layout */
int control; /* Physical device control word */
int status; /* Physical device status woxd */
int error; /* Error codes from device */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */

}:

extern struct device xx_addr(]; /* Physical device registers t/

extern int xx_cnt; /* Number of physical devices */

register struct device *rp;
rp = xx_addr[(minor(dev)>?4) & O0xf)]; /* Get device registers =/

cmn_erxr(CE_NOTE, °!xx_open function called - dev = 0x%x", dev);
cmn_err(CE_CONT, “! flag = 0x%x”, flag);
if ((rp—>status & POWER) == OFF) {

cmn_err(CE_WARN, ““xx_open: Power is OFF on device %d port 8d°,
}

((dev>>4) & 0xf), (dev &0xf)):;
if (rp-derror == BADVTOC && dev == rootdev)({

cmn_erx(CE_PANIC, “xx_open: Bad VTOC on root device”);
}

REAL/IX Kernel Reference Manual 3-37

comp_aio(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

comp_aio(D3X)

comp_aio - indicates that an asynchronous 1/0 operation has completed

#include <sys/aio.h>

comp_aio(areq, byte_cnt, status)
areq_t *areq;
int byte cnt, status;

areq pointer to the areq(D4X) structure being used for this operation
byte_cnt number of bytes transferred; must be —1 if status is not 0

status indicates whether the operation completed successfully (0) or
unsuccessfully (non-zero)

comp_ajo updates the areq(D4X) structure to indicate that an asynchronous
I/0 operation has completed. If an aiocb(4) structure was given in the
initiating aread(2) or awrite(2) call, comp_aio populates the rt_errno and
nobytes members of the aiocb. If required, the eid in the areq structure is
posted to the associated user-level process.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

No spin locks should be set when calling comp_ale. In particular,
areq->p->p_lock must be unlocked.

comp_aio does not return a value under any conditions. The starus argument
should hold an appropriate error code for unsuccessful operations (refer to
aread(2) and awrite(2) for a list of error codes that are anticipated by the
system calls).

Base or Interrupt

os/aio.c

KPG, "Miscellaneous I/O Operations”

aio(D2X), comp_cancel_aio(D3X), areq(D4X)
aread(2), awrite(2), aiocb(4)

REAL/IX Kernel Reference Manual

comp_cancel_aio(D3X) comp_cancel_aio(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

comp_cancel_aio - indicate that an asynchronous I/O operation has been
canceled

#include (sys/aio.h>

comp_cancel_aio(areq)
areq t *areq;

areq pointer to the areq(D4X) structure being used for this operation

154 RN

When the aio(D2X) routine is called with"the ACANCEL cmd, it is up to
the driver whether the asynchronous operation is really to be canceled. If so,
the driver calls comp_cancel_saio and returns ACANYES to the alo routine.

comp_cancel_alo updates the areq(D4X) structure to indicate that an asyn-
chronous I/0 operation is no longer in progress. If there was an aioch(4)
structure given in the initiating aread(2) or awrite(2) call, then the rt_errno
member of the aiocb(4) is set to ECANCELLED and the nobytes member
is set to —1.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

No spin locks should be held when calling comp_cancel_aio. In particular,
areq->p->p_lock must be unlocked.

comp_cancel_aio does not return a value under any conditions.
Base or Interrupt (Usually called from base level)

os/aio.c

KPG, "Miscellaneous I/0 Operations”

alo(D2X), comp_aio(D3X), areq(D4X)
acancel(2), aread(2), awrite(2), aioch(4)

REAL/IX Kernel Reference Manual 3-39

copyin(D3X)
NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

copyin(D3X)

copyin ~ copy data from a user program to a driver buffer (copy into kernel)

int

copyin(userbuf, driverbuf, count)
char *driverbuf, *userbuf;

int con;

userbuf user program source address from which data is transferred

driverbuf driver destination address to which data is transferred (adequate
space must be given)

count number of bytes transferred

The copyin function copies data from a user program to a driver. Addresses
that are word-aligned are moved most efficiently. However, the driver devel-
oper is not obligated to ensure alignment. This function automatically finds
the most efficient move according to address alignment.

By convention, within the kernel, when a driver read(D2X) or write(D2X)
routine is entered, the u.u_base member of the user(D4X) data structure
contains the buffer address in the user address space, and the u.u_count
member contains the number of bytes remaining to be transferred. After a
read or write call to copyin function completes, the driver should increase
the value of the u.u_base member and decrease the value of the w.u_count
member by the number of bytes transferred.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

No locks should be held when calling copyin.

Under normal conditions a 0 (zero) is returned indicating the copy is suc-
cessful. Otherwise, a —1 is returned if one of the following occurs:

Q paging fault; the driver tried to access a page of memory for which it
did not have read or write access

Q invalid user area or stack area

O invalid address that would have resulted in data being copied into the
user block

If a -1 is returned, set the u.u_error member of the user(D4X) structure to
EFAULT.

REAL/IX Kernel Reference Manual

copyin(D3X) copyin(D3X)

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE ml/*/userio.s
. SEE ALSO KPG, "Synchronized 1/Q Operations”
beopy(D3X), copyout(D3X), fubyte(D3X), fuword(D3X), iomove(D3X),

subyte(D3X), suword(D3X)
EXAMPLE The following example shows that a

O after an appropriate size buffer (line 2) is allocated from a private
space management map (line 3)

Q data is copied from the user data area to the private buffer (line 4).

Q If an invalid address is detected in the user data area, the private -
buffer is released (line 6) and an error code is returned.

Q Otherwise, the pointer to the user data area is advanced to the next
starting byte of data to be copied (line 11), and the remaining byte
count is updated (line 12).

while{u.u_count>0){ /* While data in user data area, */
cnt = min(u.u_count, MAXBUF); /* reduce large data output */

N =

3 addr = (caddr_t)malloc(xx_map, cnt);
4 if (copyin(u.u_base, addr, cnt) == -1)
5 {

6 mfree(xx map, cnt, (uint)addr);
7 u.u_error = EFAULT;

8 return;

9 }

10

11 u.u_base += cnt;

12 u.u_count -= cnt;

13)

REAL/IX Kernel Reference Manual 3-41

copyout(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

copyout(D3X)

copyout ~ copy data from a driver to a user program (copy out of kernel)

copyout(driverbuf, userbuf, count)
char *driverbuf, *userbuf;
int cn;

driverbuf source address in the driver from which the data is transferred
(adequate space must be given)

userbuf destination address in the user program to which the data is
transferred (adequate space must be given)

count number of bytes moved

The copyout function copies data from driver buffers to user data space. By
convention, within the UNIX system kernel, when a driver read(D2X) or
write(D2X) routine is entered, the u.u_base member of the user(D4X) data
structure contains the address of the buffer in the user address space, and
the u.u_count member contains the number of bytes remaining to be trans-
ferred. After a read or write call to the copyout function completes, the
driver should increase the value of the u.u_base member and decrease the
value of the u.u_count member by the number of bytes transferred.

Addresses that are word-aligned are moved most efficiently. However, the
driver developer is not obligated to ensure alignment. This function auto-
matically finds the most efficient move algorithm according to address
alignment.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

No spin locks should be held when calling copyout.

Under normal conditions a 0 (zero) is returned to indicate a successful copy.
Otherwise, a —1 is returned if one of the following occurs:

O memory management fault; the driver tried to access a page of mem-
ory for which it did not have read or write access

O invalid user area or stack area
O invalid address that would have resulted in data being copied into the
user block, gate table, user .fext (addresses where the user does not

have write permission)

If a -1 is returned, set the u.u_error member of the user structure to
EFAULT.

REAL/IX Kernel Reference Manual

copyout(D3X) copyout(D3X)
LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE ml/*/userio.s
SEE ALSO KPG, "Synchronized 1/0 Operations”
beopy(D3X), copyin(D3X), fubyte(D3X), fuword(D3X), iomove(D3X),
subyte(D3X), suword(D3X)
EXAMPLE The following example shows that a driver loctl(D2X) routine can be used to
get or set device attributes or registers. In the XX _GETREGS condition
(line 17), the driver copies the current device register values to a user data
area (line 18). If the specified argument contains an invalid address, an error
code is returned.
1 struct device /* Layout of physical device registers */
2
3 int control; /* Physical device control word */
4 int status; /* Physical device status word */
5 short recv_char; /* Receive character from device ®/
6 short xmit_char; /*Transmit to device */
7 };/* end device */

extern struct device xx _addr([]; /* Physical device registers location */

10 xx_joctl(dev, cmd, arg, flaqg)

11 dev_t dev;
12 caddr_t arg;

13 {

14 register struct device *rp = &xx_addr[minor(dev)>>4);
15 switch(cmd)

16 {

17 case XX GETREGS:

18 if (copyout(rp, (struct device *)arg,sizeof(struct device)) == -1) [
19 u.u_error = EFAULT;

21 break;

20 }

22

23 }

24

REAL/IX Kernel Reference Manual 3-43

cpass(D3X) cpass(D3X)

NAME cpass — get next character from user's write call

SYNOPSIS cpass()

ARGUMENTS None. .
DESCRIPTION c.pass picks up the next character from location u.u_base in the current

user(D4X) structure, and updates the u.u_base, u.u_count, and
u.u_offset members.

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE If successful, cpass returns the next character. If u.u_count is 0 (meaning
there are no characters to be written), cpass returns —1. If there is an
access fault (u.u_base points outside the user's address space), cpass
returns -1 and sets u.u_error to EFAULT.

LEVEL Base Only (Do not call from an interrupt routine)

SOURCE FILE os/move.c

SEE ALSO passc(D3X), user(D4X)

EXAMPLE This example comes from the kernel code that allows users to write to the .

internal putbuf structure via /dev/osm. |

extern sema_t putbuf_ sema; /* blocking semaphore for putbuf structure */
extern putbufsz; /* size of last offset read from */
extern putbufndx; /* next position to write to */

osmwrite()
register int cc;

while ((cc = cpass()) >=0)
putbuf [putbufndx++ % putbufsz] = cc;

3-44 REAL/IX Kernel Reference Manual

cpsema(D3X) cpsema(D3X)

NAME cpsema, rcpsema, pcpsema — lock semaphore for a resource if the resource
is available
SYNOPSIS #include <sys/types.h>
. #include (sys/sema.h>

val = cpsema(sem_addr, flags)
sema_t *sem_ addr;
int flags;

ARGUMENTS sem_addr semaphore to lock
[flags flags; valid values are:
0 Boosting algorithm should not be used.

SEMRTBOOST Apply a boosting algorithm that temporarily
boosts the priority of lower priority process
when it holds the semaphore if the sema-
phore is needed by a higher priority real-
time process. This flag should only be ap-
plied to semaphores that are expected to be
used by realtime processes after their ini-
tialization time processing.

. DESCRIPTION The cpsema family of macros locks the semaphore for a resource by
decrementing its value, similar to the psema family of macros. The differ-
ence between the two is that cpsema locks a resource only if it is immedi-
ately available; if cpsema finds that the semaphore is already locked (a value
of O or less), it returns without changing the value of the semaphore.

Note that, if the SEMRTBOOST flag is used, all calls for that semaphore
(psema, cpsema, and vsema) must also use the SEMRTBOOST flag. This
restriction is necessary to ensure that the boosting algorithm is reliable.

Semaphores locked with a member of the cpsema family can be unlocked
with any member of the vsema family of macros.

The rcpsema and pcpsems macros are available for optimizing driver per-

formance. rcpsema can be used if interrupts are already disabled with

spsema(D3X); pcpsema can be used if interrupts are fully enabled.
SEMAPHORE RAMIFICATIONS

Drivers that call cpsema must be installed fully semaphored. A spin lock
. may be held when calling cpsema.

REAL/IX Kernel Reference Manual 3-45

cpsema(D3X) cpsema(D3X)

RETURN VALUE If the value of the semaphore is greater than zero (unlocked) on entry,
cpsema returns 1, indicating that it got the resource. Otherwise, cpsema

returns 0.
LEVEL Base or Interrupt .
SOURCE FILE sys/sema.h
SEE ALSO KPG, "Synchronization”

cvsema(D3X), decsema(D3X), incsema(D3X), initsema(D3X), psema(D3X),
psvsema(D3X), valulock(D3X), valusema(D3X), vsema(D3X)

3-486 REAL/IX Kernel Reference Manual

ctob(D3X) ctob(D3X)

NAME ctob — convert clicks to bytes
SYNOPSIS #include<sys/sysmacros.h>
unsigned

ctob (clicks)
unsigned clicks;

ARGUMENTS clicks number of memory pages

DESCRIPTION This macro returns the number of bytes in the specified number of memory
pages (clicks). For example, if the page size on your system is 4096 bytes,
ctob(2) returns 8192.! ctob(0) returns 0.

SEMAPHORE RAMIFICATIONS

None.

RETURN VALUE A non-negative value is always returned. The number may be truncated if it
exceeds the capacity of an unsigned integer.

LEVEL Base or Interrupt
SOURCE FILE sys/sysmacros.h
SEE ALSO btoc(D3X)

IThe page size used by the REAL/IX Operating System varies depending on the hardware platform on which it
runs. Refer to the Release Notes shipped with your system.

REAL/IX Kernel Reference Manual 3-47

cvsema(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

cvsema(D3X)

cvsema, rcvsema, pcvsema — unlock semaphore for a resource if a process is
waiting or make resource available

#include <sys/types.h>

#include <¢sys/sema.h> .
cvsema(sem addr)

sema t *sem addr;

The synopses of rcvsema and pevsema are the same as the synopsis of
cvsema.

sem_addr identifies the semaphore to be unlocked; must correspond to the
sem_addr used to lock the resource.

The cvsema family of macros increments a semaphore value (thus
unblocking a process) only if a process is waiting for the semaphore (in other
words, the semaphore value is less than 0). If the semaphore value is greater
than or equal to 0, the cvsema macros do nothing.

cvsema is used with semaphores that are initialized to 0 to unblock any

processes that are suspended. cvsema cannot be used if the psema call that

blocked the process used any flags. The cvsema macros are not commonly

used in drivers. An example of their use is the clock interrupt, which does a

cvsema to unblock a process that may have done a psema. Also system

daemons that have been blocked with a psema call are unblocked with .
cvsema.

The revsema and pcvsema macros are faster versions of cvsema. revsema ‘
can be used if all interrupts are guaranteed to be disabled; pcvsema can be
used if all interrupts are guaranteed to be enabled.

This is not a reliable mechanism because the process to be

NOTE unblocked may not yet have issued a psema (for example, it may
not have run due to other, high-priority processes being
scheduled). However, this is a convenient way to periodically
unblock processes.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

Drivers that call evsema must be installed fully semaphored.

The cvsema macros do not return a value under any conditions.

Base or Interrupt .

REAL/IX Kernel Reference Manual

cvsema(D3X) cvsema(D3X)

SOURCE FILE sys/sema.h
SEE ALSO KPG, "Synchronization”
cpsema(D3X), decsema(D3X), incsema(D3X), initsema(D3X),
. psema(D3X), psvsema(D3X), spsema(D3X), svsema(D3X),
valulock(D3X), valusema(D3X), vsema(D3X)

REAL/IX Kernel Reference Manual 3-49

dcachclr(D3X) dcachclr(D3X)

NAME dcachclr — flush the virtual cache, if present

SYNOPSIS dcachelr()

ARGUMENTS None.

DESCRIPTION deachelr flushes the virtual data cache on the CPU, if present. The function

performs no action if there is no virtual cache. Flushing the cache ensures
that stale data is eliminated from the data cache. This may be required
because:

O The cache can contain data that has been mapped via a virtual ad-
dress, so if different pieces of data are referenced by two different
processes, each using the same virtual addresses, it can get out of
synchronization.

O A controller board may have written directly into main memory, and
the data cache must be flushed to be synchronized with main memory.
For controllers that read and write global memory, there are times
when it is crucial that the data cache is synchronized with main
memory.

An intr(D2X) routine or other interrupt handler can be sysgened to auto-
matically flush the onboard data cache after it executes, but if the interrupt
handler needs to look at data in the cache that could be stale, it needs to
explicitly flush the cache. The dcachelr function is necessary for processors
that have a virtual cache to ensure that cache contents are not stale.

Drivers that use dcachelr must be compiled with a sed(1) script. The
custom/custom.mk file handles this automatically.

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE None.

LEVEL Base or Interrupt
SOURCE FILE scsi/scsimd.h
SEE ALSO intr(D2X)

3-50 REAL/IX Kernel Reference Manual

decsema(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

decsema(D3X)

decsema, rdecsema, pdecsema — decrement a semaphore value for a re-
source by 1

#include <sys/types.h>
#include <sys/sema.h>

decsema(sem_addr)
sema_t *sem_addr;

The synopses of rdecsema and pdecsema are the same as that of decsema.

sem_addr identifies the semaphore to be decremented

W
The decsema family of macros decrement by one the value of the semaphore
specified by sem_addr. The are used to manipulate counters (such as the
number of I/O operations in progress) for statistics, and should not be used
for synchronization or exclusion.

rdecsema and pdecsema provide functionality similar to that of decsema,
but are faster. rdecsema can be used when all interrupts are disabled with a
spin lock; pdecsema can be used when all interrupts are guaranteed to be
enabled.

SEMAPHORE RAMIFICATIONS

RETURN VALUE
LEVEL
SOURCE FILE

SEE ALSO

Drivers that call decsema should be installed fully semaphored.
The decsema macros do not return a value under any conditions.
Base or Interrupt

sys/sema.h

incsema(D3X)

REAL/IX Kernel Reference Manual 3-51

DELAY(D3X)

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

DELAY(D3X)

DELAY - delay by spinning when no clock timing is available
DELAY (microseconds)

microseconds the amount of time to suspend the code. This is converted
internally into the proper spin count.

DELAY provides a way of delaying a process for a specified amount of
time, independent of clock interrupts. This provides finer resolution than
delayfs(D3X) and delay(D3X).

Defined constants can be used with DELAY to convert other time measures
to microseconds:

MS_TO_US milliseconds to microseconds
HS_TO_US 1/100 seconds to microseconds
TS_TO_MS 1/10 seconds to microseconds

SECONDS_TO_US seconds to microseconds

A millisecond is 1/1000 second; a microsecond is 1/1,000,000 second; a
nanosecond is 1/1,000,000,000.

SEMAPHORE RAMIFICATIONS

RETURN VALUE
LEVEL

SOURCE FILE

None.
None.
Base or Interrupt

sys/sysmacros.h defines DELAY macro; sys/param.h defines the constants;
io/vme/mvmecpu.c defines clock rate assumptions for supported processors

REAL/IX Kernel Reference Manual

delay(D3X) delay(D3X)

NAME delay, delayfs - delay process execution for a specified number of clock
cycles
SYNOPSIS delay(ticks) /* compatibility mode drivers */
. int ticks
delayfs(ticks) /* fully semaphored drivers */
int ticks
ARGUMENTS ticks number of clock cycles for a delay. ricks are frequently set as an

expression containing the system variable HZ (the number of
clock cycles in one second) defined in param.h.

DESCRIPTION Occasionally, you may need to wait a given period of time until work is
available. The delay and delayfs functions provide the wait time. The exact
time interval that the delay takes effect cannot be guaranteed, but the value
given is a close approximation.

SEMAPHORE RAMIFICATIONS

delay is used only with drivers installed for semaphoring on the driver entry
(compatibility modes); drivers that are fully semaphored should use the
delayfs(D3X) function instead.

No spin locks should be held when calling delayfs. delay can be used only in
. drivers installed under the compatibility modes.
RETURN VALUE None.
LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/clock.c
SEE ALSO KPG, "Synchronization”

iodone(D3X), iowait(D3X), sleep(D3X), timeout(D3X), ttywait(D3X),
untimeout(D3X), wakeup(D3X)

REAL/IX Kernel Reference Manual 3-53

delay(D3X) delay(D3X)

EXAMPLE Before a driver I/O routine allocates buffers and stores any user data in

them:
O It checks the status of the device (line 11).
Q If the device needs some type of manual intervention (such as, needing
to be refilled with paper), a message is displayed on the system

console (line 12).

O The driver waits for a specific period of time (line 14) for the problem
to be corrected before repeating the procedure.

W

~

struct device /* Layout of physical device registers */
{

int control; /* Physical device control word */

int status; /* Physical device status word */

short xmit_char; /* Transmit character to device */
}: /* end device */

extern struct device xx _addr[]; /* physical device registers location */

register struct device *rp = &xx addr[minor(dev)>>4)];
/* Get device regs */

while(rp->status & NOPAPER) /* While printer is out of paper */

{ /* display message & ring bell on system console */
cmn_err(CE_WARN, ““xx_write: NO PAPER in printer %d 07", (dev & oxf));
delay(60 * HZ); /* Wait one minute and try again */

/* endwhile */

REAL/IX Kernel Reference Manual

disable(D3X) disable(D3X)

NAME disable — disable interrupts for the processor on which code is executing
SYNOPSIS disable()

. ARGUMENTS None.
DESCRIPTION disable disables all interrupts for the processor on which code is executing.

spl*(D3X) and spsema(D3X) call disable internally, and usually it is better
to use these furttions than to call disable directly. disable is useful for
protecting a local resource (such as a board) with less overhead than the
other functions entail.

disable does not protect global data structures in a multi-
processor environment. Only spin locks can guarantee that data
structures will be protected. Do not use disable in drivers that are
written for or that may eventually be ported to a multiprocessor
configuration.

Disabling interrupts for long periods of time will degrade general system
performance.

SEMAPHORE RAMIFICATIONS

. None.

RETURN VALUE None.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/*/interrupt.c
SEE ALSO enable(D3X), spl(D3X), spsema(D3X), svsema(D3X)

REAL/IX Kernel Reference Manual 3-55

disable(D3X) disable(D3X)

EXAMPLE The sample driver avme9510.c uses disable/enable in its close(D2X) routine
to protect the code that disables the timer and interrupts from the board. If
an interrupt were received in the middle of this code, it would generate a
spurious interrupt that might corrupt the kernel. To modify this code for a
multiprocessor, disable would be changed to spsema and enable would be
changed to svsema.

See the sys/avme9510.h header file for a definition of the structure and
corresponding register fields that are used.

a%950close(dev)
dp = (struct a9510_dev *) a950_adr|ctrl];

disable();
dp->a_control &= “BC_CNTEN;
dp—>a_status &= "A_ENABLE;
enable();

3-56 REAL/IX Kernel Reference Manual

disjointio(D3X) disjointio(D3X)

NAME disjointio — get physical location of user virtual memory
SYNOPSIS #include <¢sys/disjointio.h>
int disjointio(bp, djntptr, szdjnt, maxtc);
struct buf *bp;

struct djntio *djntptr;
unsigned szdjnt maxtc;

ARGUMENTS bp pointer to buffer header
djntptr disjoint array for discontiguous pages
szdjnt size of disjoint array

maxtc maximum transfer count in bytes for each TA/TC pair; must be
multiple of the page size!

The following members of buf(D4X) are implicit arguments to disjointio:

b_un.b_addr virtual address of buffer in user space
b_bcount buffer size, in bytes
b_flags sets B_LREAD and, if appropriate, B_AIO

physical memory may not be contiguous; it is described by a sequence of
physical address 1-byte count pairs called TA/TC pairs (for transfer address,
transfer count, on the assumption that the mapping is for the purposes of an
1/0 transfer).

. DESCRIPTION disjointio finds the physical location of an area of user virtual memory. The

The virtual memory is described by the b_un.b_addr and b_bcount members
of the buf(D4X) structure pointed to by bp. djniptr points to an area where
the TA/TC pairs are to be recorded, and szdjnf gives the maximum number
of TA/TC pairs that can fit in this area.

djntio does not necessarily generate a TA/TC pair for every page of physical
memory; if the pages are contiguous, they can be described by a single
TA/TC pair. The maxtc parameter controls how large a transfer count is
allowed in one TA/TC pair. This degree of control is provided because
certain devices have a fixed limit for the byte count in a TA/TC pair.

The virtual memory must have been locked into physical memory by a call to

userdma(D3X) or useracc(D3X). These functions also validate the user

buffer. If the memory described by b_un.b_addr and b_bcount has not been

validated and locked, the effects of disjointio are undefined and poteatially
. catastrophic.

1The page size used by the REAL/IX Operating System varies depending on the hardware platform on which it
runs. Refer to the Release Notes shipped with your system.

REAL/IX Kernel Reference Manual 3-57

disjointio(D3X)

disjointio(D3X)

If the list of TA/TC pairs is to be used to control direct memory accessed
(DMA) hardware, more work on the part of the caller is required. For
example, it is typically necessary to add a null TA/TC pair to mark the end
of the list. Some DMA devices require that bits be set in the upper part of
each TC, while others require a transformation to another format, such as a
linked list.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

No locks should be held when calling disjointio.

If successful, disjointio returns the number of TA/TC pairs recorded in the
disjoint array pointed to by djnper. If not successful, disjointio returns -1,
sets b_error, and sets u.u_error to the following:

ENXIO byte count of the I/O request exceeds the maximum allowed
(determined by the kernel tunable parameter, DJ NTMAXSZ), or
more TA/TC pairs are required to describe the user virtual
memory than are allowed by the szdjnt parameter.

dis jointio also calls the iodone(D3X) function, unless the ATO flag in b_flags
is set.

Base Only (Do not call from an interrupt routine)
io/vme/disjointio.c

djntfree(D3X), djntget(D3X)

REAL/IX Kernel Reference Manual

djntfree(D3X) djntfree(D3X)

NAME djntfree - free a disjoint I/O structure
SYNOPSIS djntfree(entryp);
struct djntio *entryp;
ARGUMENTS entryp disjoint I/0 structure to be freed, as returned by djntget(D3X).
DESCRIPTION djntfree frees a disjoint I/O that was allocated with djntget(D3X). Its argu-

ment is the value returned by djntget.

djntfree does not make any consistency checks.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling djntfree.

RETURN VALUE djntfree does not return a value under any condition.

LEVEL Base or Interrupt
SOURCE FILE io/vmeldisjointio.c
SEE ALSO disjointio(D3X), djntget(D3X)

REAL/IX Kernel Reference Manual 3-59

djntget(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

djntget(D3X)

djntget - allocate a disjoint I/O data structure

#include <sys/disjointio.h>
extern int djntesize;

struct djntiox; .
djntget(slpflg);

int slpflg;

slpflg indicates whether or not the process should block to await a
disjoint 1/O structure if one is not currently available. If set, the
process will return NULL and not block if no disjoint I/0
structure is available; if not set, the process will block until it
can get a disjoint 1/O structure.

djntget returns a pointer to an array of disjoint I/0O data structure. User
virtual memory is typically discontiguous in physical memory. If the physical
location of the virtual memory must be given to a routine, it can be
described as a sequence of physical address / byte count pairs. Disjoint 1/0
data structures are used to hold such address/count sequences. The size of
each disjoint I/O data structure array is given in the external variable
DINTESIZE. The value of DINTESIZE determines the maximum size of a
disjoint 1/0O data transfer and is determined by the tunable kernel parameter
DINTMAXSZ.!

The number of djntio structures available for use is limited; the actual
number is determined by the sysgen parameter DJINTCNT. The structure

should be freed back to the system pool using djntfree(D3X) when it is no

longer required.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

No spin locks should be held when calling djntget.

If successful, djntget returns a pointer to a djntio structure. The structure
is actually the first in an array of structures. The size of the array is
determined by the sysgen parameter DINTMAXSZ and is given in the
external variable DJNTESIZE.

If no structure is available and sipflg is set, djntget returns NULL to the
calling process.

IDINTESIZE is determined by the following formula: .
DINTESIZE = ((NBPP-1+DINTMAXSZ~1)/NBPP +1 +1)

NBPP, the number of bytes per page, is defined in immu.h. See space.h for more information about this

calculation.

REAL/IX Kernel Reference Manual

djntget(D3X) djntget(D3X) .

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE lo/vmeldisjointio.c
‘ SEE ALSO disjointio(D3X), djntfree(D3X)

REAL/IX Kerne!l Reference Manual 3-61

DESCRIPTION

On entry, the buf(D4X) structure pointed to by bp is assumed to be set up
for a block device data transfer, except for the fact that the buffer address
field points to an area of user virtual memory. This is the situation for
subordinate functions called from physio(D3X).

The dma_breakup function provides a simple method of dealing with the
fact that the buffer in virtual memory is possibly spread across discontiguous
physical memory. It does this by providing a kernel buffer for the actual
device transfer.

dma_breakup({D3X) dma_breakup(D3X)
NAME dma_breakup - set up strategy request using intermediate kernel buffering
SYNOPSIS #include <sys/types.h>
#include <errno.h>
#include<sys/buf.h> .
dma_breakup(strat, bp, sectorsize)
int (*strat)():
struct buf *bp;
int sectorsize;
ARGUMENTS strat address of a routine to be called, with a single parameter, a copy
of the bp parameter to dma_breakup. Normally this routine will
be the driver’s strategy(D2X) routine.
bp pointer to a buf(D4X) structure
sectorsize sector size for data transfer
@

The sectorsize parameter is used to verify that the byte count specified in
bp->b_beount is for an integral number of sectors. If the byte count is
correct, dma_breakup attempts to obtain a kernel buffer large enough to
hold the entire transfer. If either of these tests fail, the dma_breakup
routine sets an error condition, signals I/O completion (using the
iodone(D3X) function) and returns.

dma_breakup determines the direction of transfer by the setting of the
B_READ flag in the b_flags member of the buf structure pointed to by bp.
For a write, data is copied from user space to the kernel buffer before the
supplied sfrat routine is called. For a read, the strar routine is called and
then data is copied from the kernel buffer. In both cases, dma_breakup
blocks while waiting for the stras routine to signal completion with the
iodone function.

dma_breakup blocks the driver with the prefowait(D3X) function; the actual

fowait(D3X) function will be called at some other point within the operating

system. Refer to preiowait(D3X) for a discussion of nested waits for 1/0 .
completion. The driver’s interrupt routine must call lodone(D3X) to signal

when the I/O transfer is completed.

REAL/IX Kernel Reference Manual

dma_breakup(D3X)

In summary, dma_breakup requires the b_flags, b_bcount, and b_un.b_addr
members in the supplied buf(D4X) structure. dma_breakup also requires
the u.u_drivsema member in the user(D4X) structure to allow it to call the
driver correctly.

On exit, dma_breakup may update the following members of buf:

b_error set to ENXIO if an error was encountered

b_flags The B_ERROR flag is set if an error was encountered.
B_DONE and B_ERROR are explicitly cleared before the
strat routine is called.

b_un.b_addr undefined. It was used to point to kernel buffer used for the
transfer, but that memory may have been reused for another

operation by the time dma_breakup exits.

Note that the strar routine will probably update additional buf members.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

REAL/IX Kernel Reference Manual

No spin locks should be held when calling dma_breakup.

No value is returned. If dma_breakup cannot allocate a buffer (typically
because the transfer size exceeds the physical buffer size) or if the byte
count specified in bp->b_becount is not for an integral number of sectors,
b_flags is ORed with B_LERROR and B_DONE and b_error is set to
ENXIO.

Base Only (Do not call from an interrupt routine)

io/vme/physdsk.c

strategy(D2X), physio(D3X), userdma(D3X)

dma_breakup(D3X)

dma_breakup{D3X) dma_breakup(D3X)

EXAMPLE The following example shows how dma_breakup is used from a driver's
read(D2X) and write(D2X) routines.

1 struct dsize {

2 daddr_t nblocks; /* Number of blocks in disk partition */
3 int cyloff; /* Starting cylinder # of partition #*/

4 } my_sizes[4] = {

5 20448, 21, /* partition 0 = cyl 21-305 */

6 21888, 1, /* partition 1 = cyl 1-305 */

7)

8 /* physical read */

9 my_read(dev)
10 [
11 register int nblks;

12 nblks = my_ sizes[minor(dev) & 0x7].nblocks; /* Get number of blocks */
13 /* blocks in partition */

14 if (physck(nblks, B _READ) /* If request is within */

15 { /* limits for the device, */

16 physio(my breakup, 0, dev, B_READ); /* schedule I/O transfer */

17 }

18 }

19 /* physical write */

20 my_write(dev)
21 {
22 register int nblks;

23 nblks = my sizes[minor(dev) & 0x7].nblocks; /* Get number of blocks *x/
24 /* blocks in partition */

25 if (physck(nblks, B_WRITE) /* If request is within */
26 { /* limits for the device, */
27 physio(my_breakup, 0, dev, B_WRITE); /* schedule I/0 transfer */
28 }

29)

30 s+

31 * Ensure the request that came from physio will result in I/0 to
32 * contiguous memory by using dma_breakup to obtain intermediate
33 * kernel buffering. Pass at least 512 bytes (one sector) at a

34 * time (except for the last request).

35 x/

36 static
37 my_breakup(bp)
38 register struct buf *bp;

39 |
40 dma_breakup(my_strategy, bp, sectorsize);
41)

3-64 REAL/IX Kernel Reference Manual

driinvoke(D3X)

NAME

SYNOPSIS

. ARGUMENTS

DESCRIPTION

driinvoke(D3X)

driinvoke — fast lock on switch tables for driver semaphoring
driinvoke(switch, major, minor, routine, parm);

switch identifies the switch table being accessed (cdevsw or bdevsw)
major internal major device number entry

minor internal minor device number entry

routine name of entry point routine being accessed

parm single parameter to routine

The driinvoke macro is a faster alternative to drilock(D3X)/driunlock(D3X)

that can be used when the invoked function is invoked with only a single
parameter, and the return value from the function (if any) is ignored.

SEMAPHORE RAMIFICATIONS

. RETURN VALUE

LEVEL
SOURCE FILE

SEE ALSO

driinvoke should be used only in fully-semaphored drivers. In drivers installed
under the compatibility modes, driinvoke’s lock results in nested locks on the
switch table entry, which causes reentry problems.

None.

Base Only (Do not call from an interrupt routine)

sys/conf.h

drilock(D3X)/driunlock(D3X), bdevsw(D4X), cdevsw(D4X)

REAL/IX Kernel Reference Manual 3-65

drilock, driunlock(D3X) drilock, driunlock(D3X)

NAME drilock, driunlock — lock switch table for semaphoring

SYNOPSIS drilock(switch, major, minor)
cdevsw; /* or bdevsw; */

driunlock(switch, major, minor)
int major;

int minor;

ARGUMENTS swiich identifies the switch table being accessed (cdevsw or bdevsw)
major internal major device number entry
minor internal minor device number entry

DESCRIPTION The drilock and driunlock macros are used throughout the kernel to implement
the device driver semaphoring policy by protecting calls to a driver through the
switch tables. These are necessary for the REAL/IX Operating System be-

cause of the preemptive kernel and the multiprocessor configuration.

drilock behaves differently depending on the semaphoring policy under which
the target driver is installed:

Q For drivers installed as fully semaphored, drilock does nothing.

O For drivers installed under major- or minor-device semaphoring, drilock
locks a semaphore, saving a pointer to it in u.u_drivsema. .

O For drivers installed under CPU affinity, drilock does a context switch to
the appropriate processor and disables preemption.

driunlock releases the semaphore and processes interrupts that may have been
deferred while the driver semaphore was held.

Most drivers will not use these functions directly. A few drivers pass work on
to other drivers by calling through the cdevsw table; these calls need to be
protected by drilock.

SEMAPHORE RAMIFICATIONS
drilock and driunlock should be used only from fully-semaphored drivers. In
drivers installed under the compatibility modes, drilock’s lock results in nested

locks on the switch table entry, which causes reentry problems.

RETURN VALUE None.

LEVEL Base Only (Do not call from an interrupt routine) .

3-66 REAL/IX Kernel Reference Manual

drilock, driunlock(D3X) drilock, driunlock(D3X)

SOURCE FILE sys/conf.h

SEE ALSO driinvoke(D3X), bdevsw(D4X), cdevsw(D4X), user(D4X)

REAL/IX Kernel Reference Manual 3-67

enable(D3X) enable(D3X)

NAME enable — reenable interrupts that were disabled with disable(D3X)

SYNOPSIS enable()

ARGUMENTS None. .
DESCRIPTION enable reenables interrupts that were disabled by disable(D3X). Refer to

disable(D3X) for a discussion of when these functions are used rather than
spl* or spsema/svsema.

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE None.

LEVEL Base or Interrupt

SOURCE FILE os/*/interrupt.c

SEE ALSO disable(D3X), spsema(D3X), svsema(D3X)
EXAMPLE Refer to the example for disable(D3X).

3-68 REAL/IX Kernel Reference Manual

etimeout(D3X) etimeout(D3X)

NAME etimeout — extended version of timeout(D3X)

SYNOPSIS #include <sys/time.h>
#include <sys/timers.h>
#include <sys/timesys.h>

int

etimeout(func, arg, hrticks, rptticks, lopri)
int (*func)();

caddr_t arg;

int hrticks;

int rptticks;

int lopri;

ARGUMENTS Junc kernel function to invoke when the time increment expires
arg argument to be passed to the function
hrticks number of clock ticks to wait before the function is called

ptticks number of clock ticks to wait between repeated calls to the func-
tion; if 0, function is called one time only (i.e., when hriicks
expires)

lopri indicates the process priority level at which the function should be
called; at present, the only valid values are O (default high priority)
and 1 (default low priority)

DESCRIPTION The etimeout function belongs to the timeout(D3X) family of functions; it
works very much like them, but with extended capabilities. etimeout differs

from the conventional timeout function in three ways:

O The timeout period is specified in terms of the system clock, not in the
notional clock rate determined by the constant HZ.

Q The rptticks argument provides an optional repeat facility. This facility is
useful in cases where a function must be performed at some fixed

interval. If func is to be called one time only, the value for rptricks is 0.

O The lopri argument provides explicit control of the process execution
priority to be used for the user-supplied timeout function.

s A value of 0 specifies the default high-priority timer execution priority
as used by the hipritimed daemon.

® A value of 1 specifies the default low-priority timer execution priority
as used by the lopritimed daemon.

s All other values for lopri are reserved.

REAL/IX Kernel Reference Manual

etimeout(D3X)

etimeout(D3X)

The timeout functions, in general, are useful when an event is known to occur
within a specific time frame, or when you want to wait for I/O processes when
an interrupt is not available or might cause problems. etimeout, in particular,
is useful when a'function must be performed repetitively at some fixed interval,
or when it is important to control the process execution priority used for the
user-supplied function.

The system guarantees that the time that elapses between the call to etimeout
and the execution of func is not less than the value specified by hrficks. The
function is scheduled hrricks after the next clock tick; thus, the average delay
typically is half a clock tick more than was requested. Note also that other
processing may cause the execution of func to take place some time after it
was scheduled.

As noted above, the timeout delay and interval period are given in terms of the
system clock, not in terms of a notional system clock that ticks at a rate
determined by the constant HZ. The external variable ficks_per_sec, which is
declared in sys/fimesys.h, holds the system clock rate in ticks per second. This
value can be modified through sysgen(1M).

When the time specified by hricks has elapsed, the system arranges for func to
be called. Control is returned immediately to the caller. After rptticks clock
ticks (assuming rpiticks > 0), func is called again and continues to be called
every rprticks clock ticks thereafter.

The user-supplied function is invoked with all interrupts disabled; it may
choose to reenable interrupts by invoking enable(D3X). The function is actu-
ally called from one of two system daemons, hipritimed or lopritimed as speci-
fied by lopri. The daemon is responsible for servicing other timer functions,
which means func cannot be allowed to block. For these reasons, func must
adhere to the same restrictions as a driver interrupt handler: it can neither
access the user(D4X) structure, nor use previously set local variables. Fur-
thermore, func should not call sleep(D3X), delay(D3X), or psema(D3X).
However, data in func can be protected, if necessary, with spin locks
(spsema(D3X) and svsema(D3X)).

SEMAPHORE RAMIFICATIONS

RETURN VALUE

Drivers that call etimeout must be installed fully semaphored.

Under normal conditions, an integer timeout identifier is returned (which may,
in unusual circumstances, be set to 0). The identifier can be passed to the
untimeout(D3X) function to cancel a pending request.

If the timeont table is full, the following panic message results:

PANIC: Timeout table overflow

REAL/IX Kernel Reference Manual

etimeout(D3X) etimeout(D3X)

The size of the table is determined by the sysgem parameter NCALL. The
default setting should be sufficient for all but the most unusual configuration.

l Note that no value is returned from the called function.

LEVEL Base or Interrupt; however, it is recommended that etimeout be used only in
base-level code because of the CPU time it uses

SOURCE FILE os/clock.c

SEE ALSO KPG, "Synchronization”
timeout(D3X), untimeout(D3X)

EXAMPLE Refer to untimeout(D3X) for an example of how to call the timeout family of
functions.

REAL/IX Kernel Reference Manual 3-71

freecpages(D3X) freecpages(D3X)

NAME freecpages ~ free contiguous pages previously allocated with getcpages
SYNOPSIS freecpages(paddr, npgs)
unsigned int paddr, npgs;

ARGUMENTS paddr physical address of the first in the range of contiguous pages to be
freed (returned by getcpages(D3X). (This is returned by
getcpages(D3X).

npgs number of pages in the range of contiguous pages.
DESCRIPTION freecpages frees the set of contiguous pages previously allocated with

getcpages. If a driver no longer needs the contiguous pages, it should free
them. In many cases, the driver executes getcpages in its init(D2X) routine
and never releases them.
The npgs is frequently expressed as:
btoct (ctob(no_of bytes)
The number of pages freed must match the number of pages

allocated with getcpages. Freeing only part of the range of
pages may corrupt the kernel.

SEMAPHORE RAMIFICATIONS

No spin locks or global semaphores should be held when calling freecpages.

RETURN VALUE None.

LEVEL Base or Interrupt

SOURCE FILE os/page.c

SEE ALSO getcpages(D3X)
3-72

REAL/IX Kernel Reference Manual

freepbp(D3X)

NAME

SYNOPSIS

. ARGUMENTS

DESCRIPTION

freepbp(D3X)

freepbp — free buffer header obtained with getpbp(D3X)

freepbp(bp)
buf_t* bp;

bp pointer to the buffer header, returned by getpbp(D3X)

freepbp frees the buffer header allocated with getpbp. freepbp places the
buffer indicated by bp (which must have been allocated with getpbp) back on
the free queue of physical buffer headers.

The kernel may be seriously corrupted if the values of the b_lock
and b_jodone semaphores in the buf header are not the same
when freepbp is called as when getpbp was called. The values
of the semaphores can change often, but must be returned to
the original state before freepbp is called.
GALTION The kernel may also be corrupted if freepbp is called twice for
the same allocation on the buffer.

SEMAPHORE RAMIFICATIONS

‘ RETURN VALUE

LEVEL
SOURCE FILE
SEE ALSO

EXAMPLE

No spin locks should be held when calling freepbp.
No value is returned.

Base or Interrupt

os/physio.c

freephysbuf(D3X), getpbp(D3X), getphysbuf(D3X)

The following code illustrates how freepbp is used to free a buffer header:

if (ready_to_free buffer_header) {
freepbp(bp);
}

REAL/IX Kernel Reference Manual 3-73

freephysbuf(D3X) freephysbuf(D3X)

NAME freephysbuf - release a physical buffer obtained with getphysbuf(D3X)
SYNOPSIS freephysbuf (buffp)
caddr_t buffp;
ARGUMENTS buffp pointer to physical buffer, returned by getphysbuf
DESCRIPTION freephysbuf frees the physical buffer allocated by getphysbuf after the driver

has finished with it (typically when an I/O transfer is complete). freephysbuf
places the buifer indicated by buffp back on the queue of physical buffers.

The kernel may be corrupted if freephysbuf is called twice for
the same physical buffer.

CAUTION

SEMAPHORE RAMIFICATIONS

No spin locks should be held when calling freephysbuf.

RETURN VALUE None.

LEVEL Base or Interrupt
SOURCE FILE io/vmel/physdsk.c
SEE ALSO getphysbuf(D3X)
EXAMPLE The following code illustrates how freephysbuf is used to free a physical buffer

when the I/O transfer is completed. bufaddr is the kernel buffer address.
Refer to getphysbuf(D3X) for the associated code that allocated the physical
buffer.

register caddr_t bufaddr;

bufaddr = getphysbuf (count);

if (I/O_complete) {
freephysbuf (bufaddr)

}

3-74 REAL/IX Kernel Reference Manual

fubyte(D3X) fubyte(D3X)

NAME fubyte — copy a byte from a user program to a driver (fetch user byte)
SYNOPSIS int

fubyte(userbuf)

char *userbuf;
ARGUMENTS userbuf address in a user program area that contains the byte to be moved
DESCRIPTION This function copies a byte from a user program to a driver.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling fubyte.

RETURN VALUE The normal return value is the requested data bye. Otherwise, a —1 is returned
if an attempt is made to access an address that is not part of a user program

area.

If a -1 is returned indicating an error condition, set u.u_error to EFAULT.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE ml/*/userio.s
SEE ALSO beopy(D3X), copyin(D3X), copyout(D3X), fuword(D3X), iomove(D3X),

subyte(D3X), suword(D3X)

EXAMPLE Refer to the putc(D3X) example for an example of how fubyte is called.

REAL/IX Kernel Reference Manual 3-75

fuword(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

fuword(D3X)

fuword ~ copy a word from a user program to the driver (fetch user word)
int
fuword(userbuf)

int *userbuf;

userbuf user program area address that contains a 32-bit word! to be moved
to a driver. This address must be word aligned.

This function copies a single data word from a user program to a driver.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

No spin locks should be held when calling fuword.
The normal return value is the requested data word. Otherwise, a -1 is
returned if an attempt is made to access an address that is not part of the user

program area.

Under normal conditions fuword can return a -1 in the normal data flow.
Therefore, if the accessed data may include a -1, use copyin(D3X) instead.

If a -1 (failure) is returned, set u.u_error to EFAULT.
Base Only (Do not call from an interrupt routine)

ml/*/userio.s

beopy(D3X), copyin(D3X), copyout(D3X), fubyte(D3X), iomove(D3X),
subyte(D3X), suword(D3X)

!The fushort kernel function can be used to copy a 16-bit word. For fushort, userbuf must be short aligned.

3-76

REAL/IX Kernel Reference Manual

fuword(D3X)

fuword(D3X)

EXAMPLE When debugging a driver, the ioctl(D2X) routine can be used by the superuser
to manually set a device control register. This can change any incorrect
settings made by another driver routine.

Q The driver verifies that the user-level process has real time or superuser
privileges (line 19); if not, returns an error code (line 21). Note that
suser sets the error code as a side effect.

Q The new setting is retrieved from the user data area specified by arg

(line 23).

O If arg is an invalid address, an error code is returned (line 26). Other-
wise, the device control register is assigned the new setting (line 28).

1 struct device /*
2 {

3 int control; /*
4 int status; /*
5 short recv_char; /*
6 short xmit_char; /*
7 }: /*
8 extern struct device xx_addr(]; /*
9

10 xx_ioctl(dev, cmd, arg, flag)
11 dev_t dev;

12 caddr_t arg;

13 |

Layout of physical device registers */

Physical device control word */
Physical device status word */
Receive character from device */
Transmit character to device */
end device */

Physical device registers location */

14 register struct device *rp = &xx_addr[minor(dev) »> 4];

15 register int c;

16 switch(cmd)
17 {
18 case XX SETCNTL:

19 if (!(rtuser() || suser()))
20 {

21 return;

22

23 if ((¢c = fuword(arg)) == -1)
24 {

25 u.u_error = EFAULT;

26 return;

27

28 rp->control = c;

29 break;

30

REAL/IX Kernel Reference Manual

getc(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

getc(D3X)

getc — get a character from a clist(D4X)

#include <sys/types.h>
#include <sys/tty.h>

int
getc(clp)
struct clist *clp;

clp pointer into the clist

The gete function receives, as an argument, a pointer to a clist. It
retrieves the first character from the clist, decreases the clist character
count, and returns the character to the calling routine. If the character
taken was the last in the cblock(D4X), the cblock is returned to the
cfreelist(D4X).

Note that you must protect the tty(D4X) structure before manipulating it:
Q If driver is installed under CPU affinity, set splhi to inhibit interrupts.
Q If driver is installed under major- or minor-device semaphoring, issue

a psema(D3X) against the semaphore you have initialized for the
tty(D4X) structure.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

Drivers using gete must be installed under the compatibility modes.

The normal return value is the requested character. Otherwise, a -1 is
returned when the number of characters in the clist is less than one.

Base or Interrupt
io/vmel/clist.c
KPG, "Drivers in the TTY Subsystem”

getch(D3X), getef(D3X), pute(D3X), puteb(D3X), putcf(D3X), ttin(D3X),
ttread(D3X), clist(D4X)

REAL/IX Kernel Reference Manual

getc(D3X) getc(D3X)

EXAMPLE The following example shows that data can be moved between a clist and a
user data area one byte at a time using gete.

Q As long as there is space in the user data areas, and there is data in
. the clist, get a single byte from the first cblock in the clist
(line 7).

Q and then copy it to the user data area (line 10).
O If an invalid address is found, then return error code (lines 11 - 12).

Q Update remaining size of data area (line 14).

1 extern struct tty xx_ttyl[]:;

3 register struct tty *tp = &xx tty[minor(dev)]};
4 register int c;

5

6 while(u.u_count > 0){

7 if ((c = getc(&tp—->t_cang)) == -1)
8 return;

9 }

10 if (subyte(u.u_baset+, c) == -1){
11 u.u_error = EFAULT;

12 return;

13 }

14 u.u_count——;

15}

REAL/IX Kernel Reference Manual 3-79

getcb(D3X) getcb(D3X)

NAME getcb — get first cblock(D4X) on a clist(D4X)

SYNOPSIS #include <(sys/types.h>
#include <sys/tty.h>

struct cblock *

getcb(clp)
struct clist *clp;

ARGUMENTS clp pointer to a clist

DESCRIPTION The getcb function returns the first cblock on the clist specified by the
argument clp. getcb decreases the clist character count by the number of
characters in the cblock and unlinks the cblock from the clist.

SEMAPHORE RAMIFICATIONS

Drivers that call getcb must be installed under the compatibility modes.

RETURN VALUE The normal return value is a pointer to the requested cblock. Otherwise, if
the clist is empty, NULL is returned.

LEVEL Base or Interrupt
SOURCE FILE io/vme/clist.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”

getcb(D3X), getcf(D3X), pute(D3X), puteb(D3X), putef(D3X), ttin(D3X),
ttread(D3X), cblock(D4X)

3-80 REAL/IX Kernel Reference Manual

getcb(D3X) getcb(D3X)

EXAMPLE The following example shows data can be moved in complete cblocks
between a clist and a user data area using getcb.

O As long as there is space in the user data area, and blocks are present
. in the clist, get the first cblock in the clist (lines 7 through 9).

Q If clist is empty, return (line 10).

O Next, compute the bytes in the cblock and copy the bytes to the user
data area (lines 11 and 12).

O Finally, the empty cblock is returned to the cfreelist(D4X)
(line 15).

O If an invalid address is detected, the data transfer returns an error
condition (lines 16 and 17).

1 extern struct chead cfreelist;
2 extern struct tty xx_ttyl(]l:

3

4 register struct tty #*tp = &xx_tty[minor(dev)l];

5 register struct block *cp;

6 register int i;

7 while(u.u_count >= cfreelist.c_size)

8 [

9 if((cp = getcb(atp->t_canq)) == NULL) /* No cblocks available */
10 return;

11 i = cp->c_last - cp->c_first;

12 copyout (u.u_base, (caddr_t)s&cp—>c_datalcp->c_first],i);

13 u.u_base += i; /* Increment virtual base addr */
14 u.u_count -= i; /* Decrement bytes not transferred */
15 putcf(cp); /* Release cblock */

16 if (u.u_error != 0)

17 return;

18)

REAL/IX Kernel Reference Manual 3-81

getcf(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

getcf(D3X)

getcf — get a free cblock(D4X)

#include <sys/types.h>
#include <sys/tty.h>

struct cblock * .
getcf()

None.

The getef function unlinks a cblock from the cfreelist(D4X) and returns
it to the calling routine. getcf sets the cblock forward pointer to NULL and
sets c_first to the first character read in the c_data array and c_)ast to the
last character in the c_data array.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

Drivers calling getef must be installed under the compatibility modes.

Under normal conditions, a pointer to a cblock is returned. Otherwise, if
the cfreelist is empty, the system panics.

(Note that the initial number of cblocks in the system can be specified with

the tunable parameter NCLIST. The system periodically checks the usage of

cblocks and attempts to add more cblocks to the pool. Therefore, it is

unlikely the system will ever run out of cblocks. Refer to cblock(D4X) for .
details.)

Base or Interrupt
io/vmel/clist.c
KPG, "Drivers in the TTY Subsystem”

getcb(D3X), getef(D3X), pute(D3X), putecb(D3X), putef(D3X), ttin(D3X),
ttread(D3X), cblock(D4X)

REAL/IX Kernel Reference Manual

getcpages(D3X) getcpages(D3X)

NAME getcpages — get physically contiguous pages
SYNOPSIS # include <(sys/immu.h>

caddr_t

getcpages(npgs, mode)

int npgs;

unsigned mode;
ARGUMENTS npgs number of pages to be allocated

mode One or both of the following flags; if the second flag is used,
mode also contains an address:

NOSLEEP Do not block if physically contignous pages
cannot be allocated. Without this setting, the
code will block and retry the page allocation a
few times, although it will not necessarily block
until it can allocate the pages.

MINADDRFLAG
Used to specify the lowest area of physical
memory from which the range of contiguous
pages should be allocated. The address speci-
fied should be aligned on an even page bound-
ary and is obtained by ANDing the mode pa-
rameter with the inverse of POFFMASK.

If the NOSLEEP mode is not specified, getcpages blocks for
a period of time - in the order of seconds - while waiting for
contiguous pages to become available. It is strongly recom-
mended that getcpages without NOSLEEP should be used

CAUTION only during driver initialization and that NOSLEEP should be
specified for all other calls to getcpages.

DESCRIPTION getcpages gets a block of physically contiguous pages. Pages allocated are
not mapped to sysreg. getcpages is commonly called from driver init(D2X)
routines, and the range of contiguous pages is held as long as the system is
running. If the range of contiguous pages is not required at all times, it can
be freed with freecpages(D3X).

SEMAPHORE RAMIFICATIONS

No locks and no global semaphores should be held when calling getcpages
unless the NOSLEEP mode is specified.

REAL/IX Kernel Reference Manual 3-83

getcpages(D3X) getcpages(D3X)

RETURN VALUE If successful, getcpages returns the kernel virtual address of the blocks

allocated. If the pages cannot be allocated, getcpages returns 0.

LEVEL Base or Interrupt. The NOSLEEP mode must be specified if calling from
interrupt level.

SOURCE FILE os/page.c

SEE ALSO freecpages(D3X)

EXAMPLE The following code illustrates how getcpages is used to allocate pages,

specifying 0x100000 as the lowest address at which the pages can be allo-
cated and not blocking if the pages cannot be allocated.

size = btoc(sum of all buffers to use the contiguous range of pages)

if (!(mblock = (mblk_t *)getcpages(size, NOSLEEP|MINADDRFLAG|0x100000)))
{

cmn_err(CE_WARN, “myinit: cannot allocated contiguous pages”);

other error handling code
}

REAL/IX Kernel Reference Manual

getebik(D3X) geteblk(D3X)

NAME geteblk — get an empty block
SYNOPSIS #include <sys/types.h>
#include <(sys/buf.h>
. #include <sys/systm.h>
struct buf*
geteblk()
ARGUMENTS None.
DESCRIPTION The geteblk function retrieves a buffer from the buffer cache and returns the

buffer header address to the calling routine. If a buffer header is not
available, geteblk sleeps until one is available. Buffers allocated with geteblk
should be released with brelse(D3X) when they are no longer needed.

When the driver strategy(D2X) routine receives a buffer header from the
kernel (that is, when the driver is entered through its strategy routine), all
the necessary members are already initialized. However, when a driver
routine allocates buffers for its own use, the routine must set up some of the
members before calling the driver strategy routine.

The following list explains the state of these members when the buffer
header is received from geteblk and what must be done.

. Q b_flags is set to B_AGE to ensure that, when the buffer is released, it
is placed at the head of the free queue and hence reused before other
buffers that may contain valid data. If this buffer header is to be
passed to any of the various kernel or driver routines, then certain
other flags may be required to cause the required behavior. For
example, if the buffer is passed to a block driver strategy routine, the
B_READ flag must be set in order for a read to take place.

Q b_forw and b_back are reserved for use by the buffer allocation
routines and must not be altered by the driver.

O b_avforw and b_avback are undefined and available for use by the
driver, typically for queuing the buffer.

Q b_dev is set to NODEV and must be initialized by the driver.

Q b_error is normally zero, but this is not guaranteed by the kernel.

The normal usage of this field is to carry an error code. This field is

checked for an error code only if the flag B_ERROR is set, in which

case the error code is transferred to the u.u_error field of the

. user(D4X) structure, for eventual return to a caller. The field is
cleared after u.u_error is set.

REAL/IX Kernel Reference Manual 3-85

geteblk(D3X)

geteblk(D3X)

It is possible (but not recommended) for a driver to use this field for
other uses. If it does do this, it should set the field to zero before
releasing the buffer.

Q b_lock will have had a successful psema(D3X) operation performed on
it, indicating that the buffer is locked on behalf of its new owner.
This semaphore is released by the operating system when the
brelse(D3X) function frees the buffer header back to the free pool.
Drivers should not perform any semaphore operations on this field
other than the implicit vsema(D3X) operation when the buffer is
released.

O b_jodone will have the value of 0 so that the first psema operation will
block. The iowait(D3X) or preiowait(D3X) functions will issue a
psema to block, and the iodone(D3X) function will issue a vsema
operation to unblock; the driver should not perform an explicit sema-
phore operations on b_jodone.

O b_bcount is set to the number of bytes of data in the buffer pointed to
by b_un.b_addr. geteblk returns a buffer of the smallest size config-
ured in the system (usually 1 Kbyte).

O b_un.b_addr has been set to the kernel virtual address of the buffer
that the buffer header is controlling. A driver should preserve this
field because the kernel will assume it is valid when the driver issues
the brelse function to release the buffer. If the buffer header is to be
passed to the dma_breakup(D3X) function, take care because
dma_breakup will overwrite the value of this field.

Q b_resid member will be set to zero. This field is conventionally used to
carry the residual byte count if not all the requested data is trans-
ferred. The zero value means that b_resid is preset for the case where
a complete transfer takes place.

O b_shift is reserved for use by the buffer header allocate and search
routines; it should not be read or written by the driver.

U The b_s0, b_s1, b_s2, b_umd, b_blkno, b_start, and b_proc members
are undefined.

Typically, block drivers do not allocate buffers. The buffer is allocated by
the kernel, and the associated buffer header is used as an argument to the
driver strategy routine. However, in order to implement some driver pro-
grams or iectl(D2X) routines, the driver may need its own buffer space.
When this is the case, either declare data space in the driver to be used as a
buffer, or borrow buffers from the buffer cache.

REAL/IX Kernel Reference Manual

geteblk(D3X) geteblk(D3X)

If the buffer space is not needed frequently, declaring buffer space in the
driver (especially for large buffers) is wasteful. Additionally, because block
drivers are intimately tied to the buffer cache and the buffer header data
structure, using another buffering scheme may require the addition of special
case driver code, again expanding the driver unnecessarily. Therefore, in
many instances it is advantageous to borrow a buffer from the buffer cache
and use the existing driver code to implement special case utilities. Note,
however, that if a driver wishes to obtain a buffer header structure that is
not associated with any particular buffer, then it may use the getpbp(D3X)
function.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling geteblk.

RETURN VALUE A pointer to a buf(D4X) structure is returned.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/bio.c
SEE ALSO KPG, "Synchronized 1/0 Operations”

strategy(D2X), brelse(D3X), dma_breakup(D3X), getnblk(D3X),
getpbp(D3X), iowait(D3X), iodone(D3X), prelowait(D3X), buf(D4X)

. EXAMPLE The example given for brelse(D3X) illustrates the use of geteblk.

REAL/IX Kernel Reference Manual 3-87

getnblk(D3X) getnblk(D3X)

NAME getnblk - get empty buffer of specified size

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <(sys/systm.h>

struct buf*
getnblk(bf, need)
bfree t *bf;

int need;

ARGUMENTS bf pointer to the free list holding buffers of the desired size. The
sys/buf.h file declares an array of lists named bfree. The ele-
ments determine the buffer size being requested.! For example:

bfree[0] controls 1-Kbyte buffers
bfree[1] controls 2-Kbyte buffers
bfree[2] controls 4-Kbyte buffers
bfree[3] controls 8-Kbyte buffers
bfree[8] controls 128-Kbyte buffers

need determines the response if no buffer can be allocated. If set to 1,
the system will panic if a buffer cannot be allocated; if set to 0,
getnblk returns NULL if a buffer cannot be allocated.

DESCRIPTION The getnblk function gets an empty buffer that is at least as big as that in
the freelist pointed to by bf. The system must be configured with buffers at
least as large as that specified. The state of the returned buffer is the same
as that described for geteblk(D3X).

SEMAPHORE RAMIFICATIONS
No semaphores should be held when calling getnblk.

RETURN VALUE If successful, getnblk returns the buffer pointer for the allocated buffer. If
not successful, the need argument determines the outcome:

Q If need is 1 and no buffer can be allocated, the system panics and gives
the following error message: "getnblk: no size byte buffers”.

U If need is 0, getnblk returns 0; the driver or system call should take
appropriate action, which may include setting the u.u_error member of
the user(D4X) structure to ENOMEM or some other value agreed on
between the system call and the user-level process (it is not necessary
to set w.u_error; this is determined by the needs of the application).

1The specified buffer size must be configured as part of the system buffer cache. The REAL/IX Operating
System supports buffer sizes ranging from 1 Kbyte to 128 Kbytes, but the released configuration uses only
1 Kbyte. Refer to the System Administrator’s Guide for more information.

3-88 REAL/IX Kernel Reference Manual

getnblk(D3X) getnblk(D3X)

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/bio.c
. SEE ALSO brelse(D3X), geteblk(D3X), buf(D4X)
EXAMPLE The following code illustrates how getnblk is used to obtain a buf(D4X) with

an associated buffer whose size is 4 Kbytes:

if (getting_the_buffer_is_essential) {
mp—>m_bufp = (caddr_t)getnblk(s&bfreel2], 1);
} else {
qp—>q_bufp = (caddr_t)getnblk(s&bfree[2], 0);
if (gp—>q bufp == 0) {
u.u_error = ENOMEM;
return;

qp->q_bufp == 0 is true if no buffer is obtained.

REAL/IX Kernel Reference Manual

getpbp(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

getpbp(D3X)
getpbp — get physical I/0 buffer pointer
buf_t *
getpbp(slpflg)
int slpflg;
sipflg indicates whether or not the process should block to await a

physical I/O pointer if one is not currently available. If set, the
process will return NULL and not block if no physical 1/0
pointer is available; if not set, the process will block until it can
get a physical I/0 buffer pointer.

getpbp obtains a buffer header structure for use in making calls to block
mode routines that bypass the buffer cache.

The contents of the buf structure returned by getpbp are undefined except
that the semaphores b_lock and b_jodone are correctly initialized to values
of 1 and 0, respectively. After the I/O operation is complete, the driver
should return the buf to the poll of physical buffer headers with the
freepbp(D3X) function.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

No spin locks should be held when calling getpbp.

If successful, getpbp returns the buffer pointer for the physical I/0 buffer.
Otherwise, it returns a null pointer.

If sipflg is set and no buffer pointer is returned, the action to be taken is
driver dependent. If running at base level and the initiating operation cannot
be accomplished due to lack of resources, it is usually appropriate to set the
u.u_error member of the user(D4X) structure to EAGAIN.

Base or Interrupt; if called from interrupt level, slpflg must be set.

os/physio.c

freepbp(D3X), physck(D3X), physio(D3X)

REAL/IX Kernel Reference Manual

getpbp(D3X)

EXAMPLE

getpbp(D3X)

The following code segment illustrates how getpbp is used:

#define NOSLP 1

if (

(bp = getpbp(NOSLP)) == NULL) {
cmn_err(CE_WARN, “unable to allocate buffer header”);

u.u_error = EAGAIN;
return;

REAL/IX Kernel Reference Manual

getphysbuf(D3X) getphysbuf(D3X)

NAME getphysbuf — get physical buffer
SYNOPSIS caddr_t
getphysbuf (size)
unsigned size;
ARGUMENTS size specifies the minimum buffer size required
DESCRIPTION getphysbuf obtains a physical buffer, which is an area of kernel memory

typically used as an intermediate buffer between user virtual memory and a
device driver.!

SEMAPHORE RAMIFICATIONS

No spin locks should be held when calling getphysbuf. The function sets a
spin lock on the linked list of physical buffers, then releases it after it has
obtained the buffer. Because getphysbuf may block until a buffer is ob-
tained, semaphores should be used with caution.

RETURN VALUE If successful, getphysbuf returns a pointer to a buffer that is guaranteed to
be greater than or equal to the specified size. If size is greater than the
configured PHYBSIZE, it returns a NULL pointer.

LEVEL Base Only (Do not call from an interrupt routine)

SOURCE FILE io/vme/physdsk.c

SEE ALSO freephysbuf(D3X), getpbp(D3X), freebpb(D3X)

EXAMPLE The following code illustrates how getphysbuf is used to obtain a physical

buffer. Refer to freephysbuf(D3X) for the associated code that frees this
physical buffer after the I/O transfer is complete.

register caddr_t bufaddr;
register int count

count = bp->b_bcount
if ((bufaddr = getphysbuf(count)) == 0) {
bp->b_flags |= B_ERROR;
bp->b_error = ENXIO;
iodone(pb);
return;

!The number of physical buffers configured in the system and the size of each are determined by the
PHYBSIZE and PHYSCNT tunable parameters discussed in the System Administrator's Guide.

3-92 REAL/IX Kernel Reference Manual

get_timer(D3X) get_timer(D3X)

NAME get_timer — get interval timer
SYNOPSIS struct tmr *get_timer(type);
int type;
. ARGUMENTS type the timer type to be used by this interval timer; at present, valid

values are TIMEOFDAY and TIMESINCEBOOT

DESCRIPTION The get_timer function acquires an interval timer from the pool of available
interval timers. The resource is then allocated uniquely to the driver that
issued get_timer until the driver releases the timer by issuing

' rel_timer(D3X). When used with get_timer, TIMESINCEBOOT gives the
same results as TIMEOFDAY.

A successful call to get_timer actually returns a pointer to the tmr structure.
This structure is defined in sys/timesys.h. Note, however, that the contents
of this structure may change, so drivers should not use any of the fields
within the tmr structure.

If no interval timers are available system-wide or if none are available for

system use (as determined by the tunable parameters ITIMAXSYS and

ITIMAXK, respectively), get_timer returns NULL.! get_timer also returns

NULL if type is not a valid timer type or if the timer type supports only a
I limited number of timers and the limit has already been reached.

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE If successful, get_timer returns a pointer to the tmr structure allocated to
the driver. get_timer returns NULL under any of the following conditions:

QO no interval timers are available
Q rype is not a valid timer type

Q the number of timers supported by fype has already been reached

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/timer.c
SEE ALSO rel_timer(D3X), set_timer(D3X)

IThree other tunable parameters that control interval timers are ITTIMAXPROC, which limits the number of
processes that can have timers at any time; ITTICNTPROC, which determines how many interval timers a process
can have; and CLOCKRES, which sets the system clock rates and allows for adjustment of the clock resolution.
For more information about these parameters, refer to the System Administrator’s Guide.

REAL/IX Kernel Reference Manual

incsema(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

incsema(D3X)

incsema, rincsema, pincsema - increment a semaphore value for a resource
by 1

#include <sys/types.h>
#include <(sys/sema.h>

incsema(sem_addr)
sema_t *sem_addr;

The synopses of rincsema and pincsema are the same as that of inesema.
sem_addr identifies the semaphore to be incremented

The incsema family of macros increment by one the value of the semaphore
specified by sem_addr. They are used to manipulate counters (such as the
number of I/O operations in progress) for statistics, and should not be used
for synchronization or exclusion.

rincsema and pincsema provide functionality similar to that of incsema, but
are faster. rincsema can be used when all interrupts are disabled with a spin
lock; pincsema can be used when all interrupts are guaranteed to be
enabled.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

Drivers that call incsema should be installed fully semaphored.
The incsema macros do not return a value under any conditions.
Base or Interrupt

sys/sema.h

decsema(D3X)

REAL/IX Kernel Reference Manual

initlock(D3X) initiock(D3X)

NAME initlock - imitialize spin lock for a resource
SYNOPSIS #include <sys/types.h>
#include <sys/sema.h>
. initlock(lock_addr, lock_val)
lock_t *lock_addr;

int lock_val;

ARGUMENTS lock_addr identifies the spin lock to be initialized; this addr is used by the
macros that set and release the spin lock.

lock_val the value to which the semaphore is to be initialized. If 0, the
semaphore is initially unlocked; if 1, the semaphore is initially
locked. Other values are illegal.

DESCRIPTION The initlock function is used in the driver’s init(D2X) routine to initialize the
spin lock for a resource to O (unlocked) or 1 (locked). The predominant
usage is to initialize a spin lock to be unlocked (lock_val = 0).

The number of locks that need to be initialized varies from driver to driver.
Some drivers are served well by one global lock that is used for all spin
operations, whereas other drivers require as many as one lock per board or
per minor device. The spinning action involved when a process is attempting
to access a locked spin lock hurts system performance as well as the

. performance of the driver itself. Therefore, for performance, it is best to be
generous in the number of spin locks initialized. Spin locks also disable
interrupts for the CPU; for this reason, they should be locked for only very
short periods of time (typically less than 50 microseconds).

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE None.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE sys/sema.h
SEE ALSO KPG, "Synchronization”

spsema(D3X), svsema(D3X), valulock(D3X)

REAL/IX Kernel Reference Manual 3-95

initlock(D3X) initlock(D3X)

EXAMPLE

#include “sys/debug.h

#include “sys/sema.h” .

extern struct xyz xyz_tablf]; /* xyz table */
extern struct xx XX; /* information structure */
Xx_init()

{

register int i;

for (i = 0; i < xx.maxsys; it++){ /* initialize all locks */
xyz_tab[i].z_key = Z_FREE;
xyz_tab[i).z_cid = i;
initlock(s&xyz_tab[i].z_lock, 0);

3-96 REAL/IX Kernel Reference Manual

initsema(D3X) initsema(D3X)

NAME initsema, reinitsema, rreinitsema, preinitsema — initialize or reinitialize
kernel semaphore for a resource

SYNOPSIS #include <sys/types.h>

. #include <sys/sema.h>

initsema(sem_addr, sem val, flags);
sema_t *sem_addr;

int sem_val;

int flags;

The synopses of the reinitsema, rreinitsema and preinitsema macros are the
same as that for initsema.

ARGUMENTS sem_addr identifies the semaphore to be initialized; this address is used by
the services that lock and unlock semaphores.

sem_val the value to which the semaphore is to be initialized. If 1, the
semaphore is initially unlocked; if 0, the semaphore is initially
locked. If greater than 1, signifies the number of processes that
can concurrently access the resource. Negative values are illegal.

flags currently unused; must be specified as 0.

DESCRIPTION The initsema function is used in the driver’s init(D2X) routine to initialize
the semaphore for a resource to a non-negative integer value. The value of
sem_val determines the type of access for the resource:

0 the semaphore for the resource is initially locked and waits for an
unlock operation. For instance, a process can wait for completion of
an I/O operation when sem_val is 0. A call to psema(D3X) will
block the calling process until a vsema(D3X) is issued against the
resource when the I/0 operation is complete.

1 sets up mutual exclusion access; allows only one process to access
the resource at a time. For instance, a critical section of code can be
protected when sem_val is 1. The first process to access the critical
section of code with psema will be successful, but the next process
that attempts to access the same section of code will block waiting
for a vsema, which will allow access to that section of code.

>1 a specified number of processes can concurrently access the re-
source. For instance, if sem_val is 3, the first three processes that
access the resource with psema or cpsema(D3X) will be successful,
but the fourth process will block waiting for a vsema, which will

. allow access to the resource.

REAL/IX Kerne! Reference Manual 3-97

initsema(D3X) initsema(D3X)

The reinitsema macro reinitializes a semaphore that was previously initialized
with initsema. It is used, for example, to ensure that a semaphore used for
waiting for I/O completion has a value of 0 before a process issues a psema
call that should block the process.

The rreinitsema and preinitsema macros are faster than reinitsema; they
can be used to optimize performance. rreinitsema can be used if interrupts
have been disabled; preinitsema can be used if all interrupts are guaranteed
to be enabled.

Note that the reinitsema semaphore family are rarely used because the
psema and vsema operations normally ensure a semaphore has the required

valued.

SEMAPHORE RAMIFICATIONS

None.
RETURN VALUE The initsema macros do not return a value under any conditions.
LEVEL initsema(D3X) — Base Only (Do not call from an interrupt routine)
reinitsema(D3X) — Base or Interrupt
SOURCE FILE os/sema.c
SEE ALSO KPG, "Synchronization”

cpsema(D3X), cvsema(D3X), decsema(D3X), incsema(D3X), psema(D3X),
valulock(D3X), valusema(D3X), vsema(D3X)

3-98 REAL/IX Kernel Reference Manual

initsema(D3X) initsema(D3X)

EXAMPLE As an aid to understanding how to use the initsema macros, refer to

psema(D3X).

In this example, initsema is initializing two semaphores for a pool of buffers.
The first lock is for individual buffers; the buffers are allocated to a process
one-at-a-time, and no lock is required as long as there are available buffers.

A second semaphore, for the download buffer itself, is initialized to 1. It is
used in the lock_dibuf and unlock_dlbuf routines to control access to the
buffer resource. Note how lock_dlbuf uses the psema routine to check for
pending signals before blocking. If there are pending signals, it records an
error condition to the user structure and does a klongjmp; otherwise, it
blocks and waits for the unlock_dibuf routine to release the semaphore.

xx_init /* initializes buffer semaphores */
for ctl = 0; ctl < xx_cnt/MAXDEV); ctl++) {
initsema(&de[ctl].freesema, NPKTS-2, 0);
initsema(&de[ctl) .buf_busy, 1, 0); /* lock for download buffer */
}

lock_dlbuf (dp) /* lock download buffer =*/
register struct xx_dev *dp;
{
if (psema(sdp->buf_busy, SEMCATCH)) { /* has the psema been */
. u.u_error = EINTR; /* interrupted by a signal? =/

klongjmp(u.u_gsav);
}

unlock_dlbuf (dp) /* unlock download buffer */
register struct xx_dev *dp;

{
}

vsema(&dp—>buf_busy, 0, 0);

REAL/IX Kernel Reference Manual 3-99

iodone(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

iodone(D3X)

iodone - resume execution suspended pending block I/0

#include <sys/types.h>
#include <sys/buf.h>

iodone(bp)
struct buf #*bp

bp pointer to the block interface buffer structure defined in buf.h.
This is the address of the buffer header associated with the
buffer where the I/0 occurred (or should have occurred).

fodone is normally called by the block driver interrupt routine when the data
transfer is complete. It is also called if an error condition prevents the
completion of the data transfer. iodone does the following:

O Marks b_flags of buffer header with B_DONE.

Q If the I/O operation is synchronous, issues a vsema(D3X) to unblock
a process that called iowait(D3X) to wait for the buffer header.

O If the I/O operation is asynchronous, releases the buffer
(brelse(D3X))

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-100

No spin locks should be set when calling iodone.
Under all conditions, no value is returned.

Base or Interrupt

os/bio.c

KPG, "Synchronization”

iowait(D3X), preiowait(D3X), psema(D3X), sleep(D3X), vsema(D3X),
wakeup(D3X), buf(D4X)

REAL/IX Kernel! Reference Manual

iodone(D3X) iodone(D3X)

EXAMPLE Generally, the first validation test performed by any block device
strategy(D2X) routine is a check for an end-of-file (EOF) condition. The
strategy routine is responsible for determining an EOF condition when the
device is accessed directly (for example, physio(D3X)).

QO If a read request is made for one block beyond the limits of the device
(line 8), it will report an EOF condition (line 10). The return value for
the read(2) system call is computed by taking the difference between
b_bcount and b_resid.

Q Otherwise, if the request is outside the limits of the device, the
routine will report an error condition (lines 11 through 14).

Q In either case, report the I/Q operation as complete and (line 15).
iodone unblocks the process that is blocked waiting for this I/O
operation or, if this is an asynchronous I/O operation (B_ASYNC),
releases the buffer.

1 #define RAMDNBLK 1000 /* Number of blocks in RAM disk */
2 #define RAMDBSIZ 512 /* Number of bytes per block */

3 char ramdblks[RAMDNBLK] [RAMDBSIZ}; /* Blocks that form the RAM disk */
4 ramdstrategy(bp)

S register struct buf *bp;

6 {

7 register daddr_t blkno = bp->b blkno; /* Get requested block number */

8 if (blkno < 0 || blkno > = RAMDNBLK) {

9 if (blkno == RAMDNBLK && bp->b_flags & B_READ) {

10 bp~>b_resid = bp->b_bcount;

11 } else |

12 bp->b_error = ENXIO;

13 bp->b_flags |= B_ERROR;

14 1

15 iodone(bp)

16 return;

17)

18 /* continue to set up transfer */

REAL/IX Kernel Reference Manual 3-101

iomove(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

iomove(D3X)
iomove — move bytes
iomove(cp, bytes, rwflag)
caddr_t cp;
int bytes, rwflag;
cp bytes are moved to or from this address in kernel space.
bytes number of bytes to move. If bytes is set to 0 (zero), no bytes are
moved.
rwflag indicates whether a block access is a read or a write. Set to

B_WRITE to move bytes from user address space to a driver.
Set to B.READ to move bytes from a driver to user address
space.

This function copies bytes from user space to a driver, or from a driver to a
user space. The kernel address is given by the cp parameter, while the user
address is given by the u.u_base field of the user(D4X) structure. The
u.u_segflg (described in user.h) determines how the copy is made. If
u.u_segflg shows that this is a kernel process (segflag==1), then a straight-
forward copy can be made; otherwise, virtual address translations must be
made.

lomove cannot be called from the driver’s init(D2X) routine.
In addition to moving data, fomove adds the number of bytes moved to

u.u_base and u.u_offset. iomove also decreases u.u_count by the number of
bytes moved.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

3-102

No spin locks should be set when calling lomove.
Under all conditions, no value is returned. However, if rwflag is B_WRITE
and u.u_segflg is not equal to 1, and the move fails, then the following
occurs:

Q u.u_error is set to EFAULT

O u.u_base, u.u_offset, and u.u_count are not changed

Base Only (Do not call from an interrupt routine)

os/move.c

REAL/IX Kernel Reference Manual

iomove(D3X)

SEE ALSO

EXAMPLE

iomove(D3X)

KPG, "Synchronized 1/0 Operations”
beopy(D3X), copyin(D3X), copyout(D3X), fubyte(D3X), fuword(D3X),
subyte(D3X), suword(D3X)

With a RAM disk, direct I/O requests can be handled in the driver's
read(D2X) routine (begins line 4) and write(D2X) routine (begins line 24), as
long as the 1/0 requests are for one or more complete blocks of informa-
tion. For either a read or write request:

O A test is made (lines 12 and 32) to determine if the I/0 request is in
the limits of the RAM disk (physck(D3X)).

O The number of blocks the user data area can contain is computed
(lines 14 and 34). The data must be moved as a single complete block
or multiples of complete blocks, so the user data area must be large
enough to contain at least one complete block. If it cannot, an error
condition will be returned for read operations (line 17), or must be set
for write operations (line 36).

O Otherwise, compute the starting block number (lines 19 and 39) and
copy the requested number of blocks from the RAM disk to the user
data area (lines 20 and 40).

REAL/IX Kernel Reference Manual 3-103

iomove(D3X) iomove(D3X)

WA

#define RAMDNBLK 1000 /* Number of blocks in RAM disk */
#define RAMDBSIZ 512 /* Number of bytes per block */

char ramdblks[RAMDNBLK] [RAMDBSIZ); /* Blocks forming the RAM disk */
ramdread(dev)

dev_t dev;

{

register daddr_ t blkno; /* Starting block number */

register int nblocks; /* # blocks to be read with physio */

}

if (physck(RAMDNBLK,B_READ)) {
if ((nblks = u.u_count / RAMDBSIZ)) <= 0)
return;
} /* endif =*/
blkno = u.u_offset /RAMDBSIZ;
iomove(sramdblks [blkno][0], (nblks * RAMDBSIZ), B_READ);
/* Copy data to user */

/* end ramdread */

ramdwrite(dev)

dev_t dev;

{

register daddr_t blkno; /* Starting block number */

register int nblks; /* # blocks to be written with physio %/

if (physck(RAMDNBLK,B WRITE)) {
if (u.u_count % RAMDBSIZ !=0)) [
u.u_error = EFAULT;
return;
) /* endif */
blkno = u.u_offset / RAMDBSIZ;
iomove(&ramdblks[blkno] [0}, u.u_count, B_WRITE);

/* end ramdwrite */

3-104

REAL/IX Kernel Reference Manual

iowait(D3X) iowait(D3X)

NAME iowait ~ block execution pending completion of a block I/O request (in-
put/output wait)

SYNOPSIS #include<sys/types.h>

#include<sys/buf.h>

iowait(bp)

struct buf *bp;
ARGUMENTS bp pointer to a buf(D4X) structure controlling the data transfer
DESCRIPTION The kernel provides functions to suspend (lowalt and preiowait(D3X)) and

continue (iodone(D3X)) execution during block I/0. The iowait function is
typically called by driver routines that have allocated their own buffers and
are waiting for data transfer to complete.

fowait blocks on the b_jodone semaphore to wait for I/O completion. The
semaphore is unblocked by a corresponding call to iodone(D3X) when the

transfer completes.

Do not call lowait from the driver init(D2X), strategy(D2X), or interrupt
routine. When you need iowait functionality in the strategy routine or when
using physio(D3X), use the preiowait(D3X) function instead. Refer to
prefowait(D3X) for details.

SEMAPHORE RAMIFICATIONS
No spin locks can be set when calling fowait.
RETURN VALUE No value is returned.
This function updates uv.u_error with information in b_error on errors that

occurred while the process was blocked. If an error is encountered but
b_error equals 0 (zero), u.u_error is set to EIO.

LEVEL Base Only (Do not call from an interrupt routine)

SOURCE FILE os/bio.c

SEE ALSO iodone(D3X), psema(D3X), preiowait(D3X), sleep(D3X), vsema(D3X),
wakeup(D3X)

EXAMPLE Refer to the geteblk(D3X) example for an example of using iowait(D3X).

REAL/IX Kernel Reference Manual 3-105

klongjmp(D3X) klongjmp(D3X)

NAME klongjmp - non-local "goto”
SYNOPSIS #include <sys/types.h>
void klongjmp(); .
ARGUMENTS None.
DESCRIPTION This function restores a previously saved environment, then transfers control

to this environment.

By default, the restored environment is that of the system call handler. In
this case, the system call handler ensures that an error return is made from |
the system call. If no error code is set in u.u_error, klongjmp sets EINTR.

You can set an alternative return environment by using the ksetjmp(D3X) |
function. klongjmp returns control to this alternative environment if the |
v.u_setjmp flag is set. In this case, klongjmp ensures that u.u_setjmp is

cleared, but does not check u.u_error to see if EINTR should be set. |

klongjmp is rarely called explicitly by a driver. However, you should be |
aware that it is called when a process is interrupted while sleeping on an |
interruptible semaphore. For more information, refer to psema(D3X) and ‘

sleep(D3X).
klongjmp is the equivalent of the UNIX System V longfmp kernel function. .
This function is a part of the kernel. It is nor the same as the longjmp

library routine (part of the setjmp(3C) routine). Both the code and the
number of arguments are different.

klongjmp is useful when your code has entered many successive layers of
subroutines and you wish to return immediately to an upper level. If an
error occurs during processing in a subroutine, for example, the normal exit
method is to return a negative value, and have the calling subroutine detect
the error and set another negative return value, and so forth, until the first
caller is made aware of the error. klongjmp provides a quick return to the
user program that issued the call to the driver.

When a blocking system call is terminated prematurely by a signal, it is
necessary to abort the system call in an orderly manner before returning to
the calling process. klongjmp provides a convenient method of doing this.

Drivers that block may need to perform cleanup operations before klongjmp
is called. Typical items that need cleaning up are locked data structures that
should be unlocked when the system call is finished. If the SEMCATCH flag
is specified for psema (or the sleep priority argument is ORed with the .
defined constant PCATCH), klongjmp is not called when a signal is re-

3-106 REAL/IX Kernel Reference Manual

klongjmp(D3X) klongjmp(D3X)

ceived; instead, the value 1 is returned to the calling routine, and the driver
must call klongjmp explicitly after doing the necessary cleanup.

A default return environment is set up at the beginning of every system call.
Therefore, a driver can always use klongjmp to abandon normal processing
when an error is detected in the base level.

When you set an alternative environment to be restored (by setting
uv.u_setjmp and calling ksetjmp), the environment details are stored in the
fixed area u.u_gsav. Therefore, it is not possible to stack return environ-
ments. If it is necessary to arrange for a temporary alternative return
environment, an explicit save area can be given to the osetjmp(D3X) func-
tion, and control can be returned to that save area by a call to
olongjmp(D3X). In practice, osetjmp and olongjmp are rarely used.

SEMAPHORE RAMIFICATIONS
No spin locks should be set when calling klongjmp.

RETURN VALUE None (Because this function performs a non-local "goto”, it does not return
to the caller)

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE ml/*/cswitch.s
SEE ALSO psema(D3X), sleep(D3X)

REAL/IX Kernel Reference Manual 3-107

klongjmp(D3X) klongjmp(D3X)

EXAMPLE (Fully Semaphored)

Any code that blocks with the SEMINTR flag (or a flag that implies
SEMINTR) set can have the I/O request aborted upon receiving any signal.
Control returns to the appropriate location. However, some drivers, espe-
cially in communication networks, need to clear the device of the 1/0
operation before a stop can take place. This is accomplished by:

O setting the SEMCATCH flag when psema is called. If the return code
value from psema is -1, then the vsema results from receiving a
signal.

O do the necessary cleanup code and call klongjmp to return control to
the appropriate location.

if (psema(this_sema, SEMCATCH) == -1 {
do whatever cleanup is necessary
u.u_error = EINTR;
klongjmp();

EXAMPLE (Compatibility Modes)

Drivers installed under the compatibility modes issue sleep(D3X) with a
priority greater than PZERO (defined in param.h) to make the sleep
interruptible. To "catch” the interrupt and do cleanup before returning with
a call to klongjmp:

0O OR the PCATCH bit is to the value in the priority field. In the
example, this is done by defining XX_PRIORITY in the first line.

O If the return code value from sleep is equal to 1, then the wakeup
results from receiving a signal.

O do the necessary cleanup code and call klongjmp to return control to
the appropriate location.

#define XX_PRIORITY ((PZERO + 1) | PCATCH)

if (sleep(sevent, XX PRIORITY)==1) {
do whatever cleanup is necessary
u.u_error = EINTR;
klongjmp();

3-108 REAL/IX Kernel Reference Manual

kmap(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

kmap(D3X)

kmap - lock user virtual memory and map it to kernel virtual memory

#include <sys/types.h>
#include (sys/errnoc.h
#include <sys/systm.h>

caddr_t
kmap(base, count);
caddr_t base;

int count;
base the start address of the user memory to be mapped
count the size in bytes of the user memory to be mapped

kmap is typically used when the kernel (which includes the various drivers)
may require access to an area of user memory when the user process is not
currently executing.

The effect of kmap is undone by kunmap(D3X).

kmap checks that the user has access to the region of memory; there is no
need to check this with userace(D3X) before calling kmap.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

No spin locks should be set when calling kmap.

If successful, the return value will be a pointer to the area of kernel virtual
memory where the user virtual memory has been mapped. If unsuccessful, a
null pointer is returned and u.u_error will be set with an appropriate error
code:

EAGAIN Insufficient kernel resources to lock or map a page

EFAULT User memory is marked as being read-only. (A read from a
device has to write to user memory, and it is not allowed.)

EFAULT The memory described by base and count is not within the
user’s address space.

EINVAL The count parameter was equal to zero.

Base Only (Do not call from an interrupt routine)
os/kmap.c

kunmap(D3X), undma(D3X), userdma(D3X)

REAL/IX Kernel Reference Manual 3-109

ksetjmp(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

ksetjmp(D3X)

ksetjmp - saves registers and return location for klongjmp(D3X) to
u.u_gsav

#include <sys/types.h>

u.u_setjmp = 1;
int ksetjmp()

u.u_setjmp = 0
None.

ksetjmp sets the return value for future implicit and explicit calls to
klongjmp(D3X) so that, if a signal is received or an error occurs, control
can be returned to a specific section of code. Note that the default environ-
ment to which klongjmp returns is the system call handler; because this
environment is suitable for most handlers, ksetjmp is rarely used.

ksetjmp returns the value zero (0) after saving environment details. If a call
to klongjmp returns control to this point, it will appear as if the corre-
sponding call to ksetjmp had just returned the value 1.

ksetjmp saves environment details in u.u_qsav. The calling process must set
u.u_setjmp to indicate that the contents of w.u_qsav are valid and must
clear u.u_qsav when a return to the environment saved in w.u_qsav is no
longer required.

If ksetjmp is called a second time, it overwrites the previously saved envi-
ronment in w.u_gsav. If it is necessary to stack return environments, use
osetjmp(D3X) and olongjmp(D3X).

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

3-110

No semaphores should be set when calling ksetjmp.

0 if a normal call to ksetjmp. 1 if control has been returned to ksetjmp by a
klongjmp call.

Base Only (Do not call from an interrupt routine)

ml/*/cswitch.c

REAL/IX Kernel Reference Manual

ksetjmp(D3X) ksetjmp(D3X)

SEE ALSO klongjmp(D3X), olongjmp(D3X), osetjmp(D3X)

EXAMPLE The following code from the kernel copen function illustrates the use of
ksetjmp. Note the use of setjmpcleanup. This function is called by kernel
code (however, nor by driver code) to clean up after every call to a driver; it
is used in the event the driver that was called is configured under one of the

compatibility modes.

u.u_setjmp = 1;

if (ksetjmp()) {
setjmpcleanup();
if (u.u_error == 0)

u.u_error = EINTR;

u.u_ofile[i] = NULL;
closef(fp);

} else {

u.u_setjmp = 0;

REAL/IX Kernel Reference Manual 3-111

kunmap(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

kunmap(D3X)

kunmap - unmap and unlock user virtual memory from kernel virtual
memory

#include <sys/types.h>
#include <sys/errno.h>

void

kunmap (base, count, kvaddr);
caddr_t base;

int count;

caddr_t kvaddr;

base The start address of the user memory to be unmapped.
count The size in bytes of the user memory to be unmapped.
kvaddr The start address of the kernel memory to which the user mem-

ory was mapped, as returned from an earlier call to kmap(D3X).

kunmap is the inverse of kmap(D3X).

kunmap assumes that the parameters it is given are exactly as
per the original call to kmap. In any case, it has no ready means
by which to validate them. Passing incorrect parameters to the
kunmap function will give undefined and potentially catastrophic

results.
CAUTION

SEMAPHORE RAMIFICATIONS

RETURN VALUE
LEVEL
SOURCE FILE

SEE ALSO

3-112

No spin locks should be set when calling kmap.
kunmap does not return a value.

Base Only (Do not call from an interrupt routine)
os/kmap.c

kmap(D3X)

REAL/IX Kernel Reference Manual

major(D3X) major(D3X)

NAME major — return the internal major number from a device number
SYNOPSIS int
major (dev)
. dev_t dev;
ARGUMENTS dev internal device number (contains both the major number and the

minor number)

DESCRIPTION This macro extracts the internal major number from a device number. An
internal major number is returned only if your driver is compiled into an
object file using the cc(l) -DINKERNEL option. Installing your driver
through the custom.mk file automatically provides -DINKERNEL.

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE The internal major number.

LEVEL Base or Interrupt

SOURCE FILE sys/sysmacros.h

SEE ALSO makedev(D3X), minor(D3X)
. EXAMPLE

1 dev_t dev;
2 cmn_err(CE_NOTE, “Driver Started. Internal Major# = %d,
3 Internal Minor# = %d°,major(dev), minor(dev));

REAL/IX Kernel Reference Manual 3-113

makedev(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

makedev(D3X)

makedev — make a device number from an external major and external
minor device number

#include<sys/types.h>
#include<sys/sysmacros.h>

makedev(majnum, minnum)
int majnum minnum;

majnum major number
minnum minor number
This macro creates a device number from an external major and external

minor device number. Typically, a defined constant is used to represent the
major number used by device drivers.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-114

None.

The external device number (contains both the major number and the minor
number).

Base or Interrupt
sys/sysmacros.h

major(D3X), minor(D3X)

REAL/IX Kernel Reference Manual

malloc(D3X) malloc(D3X)

NAME malioc - allocate space from a private space management map
SYNOPSIS #include<{sys/map.h>
uint
malloc(mp, size, 0)
register struct map *mp;
register int size;
ARGUMENTS mp memory map from which the resource is drawn
size number of units of the resource
0 always O for drivers; malloc used outside drivers occasionally

uses other values

DESCRIPTION Drivers may define private space management maps for allocation of mem-
ory space, in terms of arbitrary units, using malloc. The system maintains
the map structure by size and index, computed in units appropriate for the
memory map. For example, units may be byte addresses, pages of memory,
or blocks. The elements of the memory map are sorted by index, and the
system uses the size member to combine adjacent objects into one memory
map entry. The system allocates objects from the memory map on a first-fit
basis. The normal return value is an unsigned integer set to the value of
m_addr from the map structure.

. malloc allocates memory from a map; it does not allocate the map itself.
The map should be protected by a semaphore defined in map.h. When
accessing an internal memory map in a fully-semaphored driver, malloc locks
the semaphore before doing the allocation, then frees it.

SEMAPHORE RAMIFICATIONS

A semaphore is set automatically when malloc is called if a semaphore was
specified in the previous call to mapinit(D3X).

RETURN VALUE Under normal conditions, malloc returns the address of the buffer (as an
unsigned integer). Otherwise, the malloc function returns a 0 (zero) if all
memory map entries are already allocated; the driver should be coded to
return EAGAIN in this case.

LEVEL Base Only (Do not call from an interrupt routine)

SOURCE FILE os/malloc.c

REAL/IX Kernel Reference Manual 3-115

malloc(D3X) malloc(D3X)

SEE ALSO mapinit(D3X), mfree(D3X), sptalloc(D3X), sptfree(D3X)

EXAMPLE A driver can supply its own private buffer area for storing user data. When
an 1/0 request is made, the necessary user data buffer space can be
allocated from the private buffer area by means of a space management
memory map.

The example that follows shows how to allocate space from a private map. A
fully-semaphored driver must initialize two semaphores: one for exclusive use
of the map (mapsema, initialized to 1 in line 12) and one for blocking
(mapsemb, initialized to 0 in line 13); these lines are not coded in a non-
semaphored driver. Otherwise, the code for fully-semaphored drivers and
non-semaphored drivers is the same:

O The driver allocates a buffer from the map (line 15).

Q If the space allocation cannot be satisfied, the driver sets w.u_error to
EAGAIN and returns (lines 16 and 17).

O The data is copied from the user data area to the allocated buffer
(line 19).

Q If an invalid address is detected in the user data are, the allocated
buffer is released (line 20), and an error code is returned (lines 21

and 22). .

3-116 REAL/IX Kernel Reference Manual

malloc(D3X) malloc(D3X)

01 #define XX MAPPRIO (PZERO + 6)
02 #define XX MAPSIZE 12

03 #define XX BUFSIZE 2560

04 #define XX MAXSIZE (XX BUFSIZE / 4)

05 struct map xx_map{XX MAPSIZE]; /* Private buffer space map */
06 char xx_buffer[XX BUFSIZE]; /* driver xx_ buffer area */
07

08 register caddr_t addr;
09 register int size;

10 size = min(u.u_count, XX MAXSIZE); /* Break large I/0 request */
11 /* into small ones */
12 initsema(&mapsema, 1, 0);

13 initsema(smapsemb, 0, 0);

14 mapinit(xx_map, sz, &mapsema, &mapsemb)

15 if((addr = caddr_t)malloc(xx_map, size, 0)) == NULL) {

16 u.u_error = EAGAIN;

17 return;

18 } /* endif */

19 if copyin(u.u_base, addr, size) == -1) {

20 mfree(xx_map, size, addr);

21 u.u_error = EFAULT;

22 return;
23 } /* endif */

REAL/IX Kernel Reference Manual 3-117

mapinit(D3X) mapinit(D3X)

NAME mapinit - initialize a private space management map

SYNOPSIS #include<sys/map.h>

mapinit(map, mapsize, sl, s2)
struct map *mp;

int mapsize;

int s1, s2;

ARGUMENTS mp memory map from where the resource is drawn
mapsize number of entries for the memory map table
s semaphore to control map; set to 0 if no semaphoring is required

52 synchronization semaphore (also called mapout (map)); set to 0 if
no semaphoring is required

DESCRIPTION The driver must initialize the map structure by calling the mapinit macro.
Two memory map table entries are reserved for internal system use and they
are not available for memory map use. The mapinit macro does not cause
the memory map entries to be labeled available. This must be done through
mfree(D3X) before an object can actually be allocated from the memory
map.

Through the mapinit macro, drivers may define private space management
map for allocation of memory space and initialize a suspend lock semaphore
to protect the map when it is accessed. The system maintains the memory
map list structure by size and index, computed in units appropriate for the
memory map. Units may be byte addresses, pages of memory, or blocks.
The elements of the memory map are sorted by index. The system uses the
size member so that adjacent objects are combined into one memory map
entry. The system allocates objects from the memory map on a first-fit basis.

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE None

LEVEL Base or Interrupt
SOURCE FILE sys/map.h
SEE ALSO malloc(D3X), mfree(D3X), sptalloc(D3X), sptfree(D3X)

3-118 REAL/IX Kernel Reference Manual

mapinit(D3X) mapinit(D3X)

EXAMPLE (Fully—Semaphored Driver)

A driver can supply its own private buffer area for buffering user data. A
space management memory map can be used to manage the allocation and
deallocation request of the private buffer area. The space management must
first be initialized with the number of slots that are in the memory map
(line 9). The private buffer area that is managed by the space management
memory map is assigned to the memory map (line 10).

1 #define XX MAPSIZE 12
2 #define XX BUFSIZE 2560

3 struct map xx map[XX_MAPSIZE]; /* Private buffer for space map */
4 char xx_buffer[XX BUFSIZE]); /* Driver xx_buffer area */

5

6 initsema(smapsema, 1, 0); /* Locking semaphore for map */
7 initsema(smapout, 0, 0); /* Synchronization semaphore */

8 /* Initialize space management map with number of slots in the map */
9 mapinit(xx map, XX _MAPSIZE, smapsema, &mapout);

10 mfree(xx_map, XX BUFSIZE, xx_buffer); /* Initialize map */

11 /* with total buffer area it is to manage */

EXAMPLE {Non—-Semaphored)

mapinit can also be used in non-semaphored drivers. In this case, the s7 and
52 parameters are both specified as 0. Note that it is not necessary to use
synchronization functions to avoid contention because the operating system
ensures that only one instance of the driver executes at a time.

1 #define XX MAPSIZE 12
2 #define XX BUFSIZE 2560

3 struct map xx_map[XX MAPSIZE]; /* Private buffer for space map */

4 char xx_buffer[XX BUFSIZE]; /* Driver xx_buffer area */

5

6 mapinit(xx_map, XX_MAPSIZE, 0, 0); /* Initialize space management map */
7 /* with number of slots in the map */
8 mfree(xx_map, XX BUFSIZE, xx buffer); /* Initialize map */
9 /* with total buffer area it is to manage =/

REAL/IX Kernel Reference Manual 3-119

max(D3X) max(D3X)

NAME max — return the larger of two integers
SYNOPSIS max(intl, int2)
int intl, int2;
ARGUMENTS intl, int2 both arguments are integers to be compared .
DESCRIPTION This macro returns the larger of two integers.

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE The larger of the two numbers.

LEVEL Base or Interrupt
SOURCE FILE sys/sysmacros.h
SEE ALSO min(D3X)
EXAMPLE
1 extern int tthiwat[]; /* High water marks for cblock allocation base */
2 /* Baud rate (t_cflag & CBAUD) /*
3 extern struct tty xx_ttyll;
4
5 register struct tty *tp = xx_tty[minor(dev)};
6 register int maxsize;
7 maxsize = max(u.u_count, tthiwat[tp->t_cflag & CBAUD]):;
8 /* Get larger allowed buffer size */

3-120 REAL/IX Kernel Reference Manual

mfree(D3X) mfree(D3X)

NAME mfree — free space back into a private space management map

SYNOPSIS #include<sys/map.h>

mfree(mp, size, a)
struct map *mp;

int size;
uint a;
ARGUMENTS mp map pointer
size number of units being freed
a address of the buffer as allocated by malloc(D3X), given as an

unsigned integer

DESCRIPTION This function releases space back into a private space management map. It is
the opposite of malloc, which allocates space that is controlled by a private
map structure.

Drivers may define private space management buffers for allocation of
memory space, in terms of arbitrary units, using the malloc and mfree
functions and the mapinit(D3X) macro. The drivers must include the file
map.h. The system maintains the memory map list structure by size and
index, computed in units appropriate for the memory map. For example,
units may be byte addresses, pages of memory, or blocks. The elements of
the memory map are sorted by index, and the system uses the size member
so that adjacent objects are combined into one memory map entry. The
system allocates objects from the memory map on a first-fit basis. mfree
frees up unallocated memory for reuse.

SEMAPHORE RAMIFICATIONS

None.

REAL/IX Kernel Reference Manual 3-121

mfree(D3X) mfree(D3X)

RETURN VALUE None.

It is possible the map area will have insufficient space to record details of the
freed buffer. In this case, the memory is lost to the system and the following
warning message is displayed on the console:

WARNING: mfree map overflow mp lost size items at index

where mp is the hexadecimal address of the map structure; size is the number
of buffers freed (in decimal); and index is the decimal address to the first buffer
unit freed.

This loss of memory occurs only under extraordinary conditions, which are not
likely to be present in normal use. For example, if the driver allocated several
hundred buffers by means of malloc, then freed alternate buffers by means of
mfree, the resultant fragmentation of the map would lead to loss of buffers as
described here.

LEVEL Base Only (Do not call from an interrupt routine)

SOURCE FILE os/malloc.c

SEE ALSO malloc(D3X), mapinit(D3X)

EXAMPLE For examples of using mfree in a fully-semaphored or a non-semaphored

driver, refer to malloc(D3X).

3-122 REAL/IX Kernel Reference Manual

min(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

min(D3X)

min - return the lesser of two integers

min(intl, int2)
int intl, int2;

intl, inr2 both arguments are integers to be compared

This macro returns the lesser of two integers.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

EXAMPLE

None.

The lesser of the two numbers.

Base or Interrupt

sys/sysmacros.h

max(D3X)

The following example illustrates a use of min, to get the smaller buffer size.

size = min(u.u_count, cfreelist.c_size);

REAL/IX Kernel Reference Manual 3-123

minor(D3X) minor(D3X)

NAME minor - return the internal minor device number from a device number

SYNOPSIS #include<sys/types.h>
#include<sys/sysmacros.h>

int minor(dev)
dev_t dev;

ARGUMENTS dev device number (contains both the internal major and the internal
minor device numbers)

DESCRIPTION This macro returns the internal minor device number. (An internal minor
number is returned only if your driver is compiled into an object file with
using the cc(1) ~DINKERNEL option.)

SEMAPHORE RAMIFICATIONS

None.

RETURN VALUE The internal minor number.

LEVEL Base or Interrupt
SOURCE FILE sys/sysmacros.h
SEE ALSO major(D3X), makedev(D3X)

3-124 REAL/IX Kernel Reference Manual

minor(D3X) minor(D3X)

EXAMPLE In the following example, the internal minor device number is defined by the
driver writer. It contains the number of physical devices controlled by the
driver, the physical location of the device, and the possible number of

subdevices.
. The internal minor number is extracted from the device number (line 14) and
is used for the following:
Q accesses the device logical structure, such as a tty structure

Q determines if the physica] device slot is equipped

Q gets the address of the device registers

1 struct device /* Physical device registers layout */

2 {

3 int control; /* Physical device control word */

4 int status; /* Physical device status word */

5 short recv_char; /* Receive character from device */

6 short xmit_char; /* Transmit character to device =/

7 }: /* end device */

8 extern struct device xx_addr(}; /* Physical device registers location */
9 extern int xx_cnt; /* Number of physical devices =/

10 extern struct tty xx ttyl[]:

12 register struct tty *tp = xx_tty[minor(dev)]; /* Get device's tty structs/
13 register struct device *rp;

14 if ((minor(dev) >> 3) > xx_ent) { /* If device number is out of %/
15 u.u_error = ENXIO; /* equipped device range, return error */
16 return;

17 } /% endif */

18 rp = &xx_addr([minor(dev) >3 3]; /* Get device registers =/

REAL/IX Kernel Reference Manual 3-125

nodev(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

nodev(D3X)

nodev - indicate a driver routine is missing

nodev()

{
u.u_error = ENODEV;

}

None.

This function is an internal function that marks the point(s) in the
cdevsw(D4X) or bdevsw(D4X) switch table where a driver’s primary routine
was omitted. nodev should not be used by the driver developer; its descrip-
tion is provided here for informational purposes only.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

3-126

None.
Each time nodev is accessed, u.u_error is set to ENODEV.
Not called from a driver.

os/subr.c

REAL/IX Kernel Reference Manual

NOT_ALIGNED(D3X)

NAME

. SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUE

. LEVEL

SOURCE FILE

NOT_ALIGNED - prevent compiler from reporting unaligned structures in
the kernel

NOT_ALIGNED
structure_definition {

structure_members
}

None.

For processors on which alignment rules are not defined, the
NOT_ALIGNED macro is used to prevent the compiler from reporting that
structures in the kernel are not aligned on a word boundary.
NOT_ALIGNED is used only when the kernel is being built. It is most
commonly used when defining structures that give the physical layout of
device registers, but is also sometimes used with definitions of software
structures as well. For processors on which alignment rules are defined, this
macro performs no action.!

SEMAPHORE RAMIFICATIONS

None.
Not applicable.

Not applicable.

sys/types.h

system.

REAL/IX Kernel Reference Manual

ITo determine if alignment rules are defined on your machine, refer to the Release Notes shipped with your

NOT_ALIGNED(D3X)

3-127

nulldev(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

nulidev(D3X)

nulldev — perform no operation

nulldev()
{

’ O
None.

This function indicates that a driver routine is not necessary for this particu-
lar operation (for example, driver open(D2X) routine for /dev/kmem).

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

3-128

None.

None

Not called from a driver.

os/subr.c

REAL/IX Kernel Reference Manual

olongjmp(D3X) olongjmp(D3X)

NAME olongjmp - return to location specified by osetjmp(ID3X)
SYNOPSIS olongjmp(save_area);
c_addr save_area;
. ARGUMENTS save_area area to which osetjmp saved the registers. This can never be
u.u_gsav.
DESCRIPTION The olongjmp function resets the registers saved by osetjmp from values in

save_area and returns to the location from which osetjmp was called. It is

seldom used in either drivers or system calls; usually the klongjmp(D3X)

function is used when kernel code must return to a sane point.
SEMAPHORE RAMIFICATIONS

No semaphores should be held when calling olongjmp.

RETURN VALUE If successful, olongjmp returns a value of 1.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE ml/*/cswitch.c
SEE ALSO klongjmp(D3X), olongjmp(D3X), osetjmp(D3X)

REAL/IX Kernel Reference Manual 3-129

osetjmp(D3X) osetjmp(D3X)

NAME osetjmp — save registers and return location for olongjmp(D3X)
SYNOPSIS finclude <sys/types.h>
osetjmp (save_area);

ARGUMENTS save_area the area where registers and return location are to be saved.
This argument cannot be u.u_gsav.

DESCRIPTION The osetjmp function saves registers and a return location to which the
olongjmp function will return control if called. Tt differs from ksetjmp(D3X)
in that u.u_gsav is not used (the user passes the save area). It is rarely
used.

SEMAPHORE RAMIFICATIONS

No semaphores should be held when osetjmp is called.

RETURN VALUE If successful, osetjmp returns 0.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FiLE mi/*/cswitch.c
SEE ALSO klongjmp(D3X), olongjmp(D3X), osetjmp(D3X)

3-130 REAL/IX Kernel Reference Manual

passc(D3X) passc(D3X)

NAME passc — pass character to user-level process
SYNOPSIS passc(c)
char c;
. ARGUMENTS c character to be passed
DESCRIPTION passc passes a character back to the location pointed to by the u.u_base

member of the user(D4X) structure and updates the u.u_base, u.u_count,
and u.u_offset members of the user structure.

SEMAPHORE RAMIFICATIONS
No spin locks and no global semaphores should be held when calling passec.
RETURN VALUE passc returns the updated value of u.u_count. On the last character of the

user's read operation, passc returns -1. If passc cannot write to the
address specified by u.u_base, it returns —1 and sets u.u_error to EFAULT.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/move.c
SEE ALSO cpass(D3X), user(D4X)

REAL/IX Kernel Reference Manual 3-131

pg_getaddr(D3X) pg_getaddr(D3X)

NAME pg-getaddr - get page address
SYNOPSIS unsigned int
pPg_getaddr(pde)
pde_t *pde; .
ARGUMENTS pde the address of a page descriptor entry
DESCRIPTION This macro extracts the physical address of the page mapped by the page
descriptor, pde.

SEMAPHORE RAMIFICATIONS

None.
RETURN VALUE The physical address mapped by the specified page descriptor.
LEVEL Base or Interrupt

SOURCE FILE sys/*/immu.h

3-132 REAL/IX Kernel Reference Manual

physck(D3X) physck(D3X)

NAME physck — verify the requested block exists
SYNOPSIS #include<sys/types.h>
physck(nblocks, rwflag)
daddr_t nblocks;
int rwflag;

ARGUMENTS nblocks number of logical blocks in the partition

rwflag flag indicating whether the access is a read (B_LREAD) or a write
(B_WRITE)

The following members in the user structure are implicit arguments to
physck:

u.u_offset a byte offset in the file
u.u_count a byte count for the transfer
u.u_ap points to the original parameters of the system call.

These members are used the same as with standard read and write calls (that
is, a file descriptor, a buffer address, and a count).

DESCRIPTION physck is used in the block driver read(D2X) and write(D2X) routines to
. verify that the user-requested block exists on the requested device.

The driver read and write routines are called through the cdevsw table to
perform unbuffered I/0; that is, data is transferred directly between the
device and user data space. The kernel provides physck to help the driver
perform unbuffered I/0 operations. This function is called by both the
driver read routine and the driver write routine. The physck and
physio(D3X) functions perform almost all the work needed to be done by a
block driver read and write routines.

The nblocks parameter is used by physck to calculate the number of bytes
held in the partition. If the desired offset is past the end of the partition,

then ENXIO is set in u.u_error and a 0 is returned.

If the desired offset is exactly at the end of the partition, the rwflag is

checked:
Q If the flag indicates a write operation, then ENXIO is set and O is
returned.
Q If the flag indicates a read, 0 is returned (no error code is set in
. u.u_error). If the caller proceeds no further, this will result in correct
end-of-file handling.

REAL/IX Kernel Reference Manual 3-133

physck(D3X) physck(D3X)

If the required transfer length would take the transfer past the end of the
partition, then physck alters various fields to ensure that the transfer re-
mains within bounds. It adjusts u.u_count and also the byte count parameter
to the original system call, reducing them so that the transfer goes exactly to
the limits of the partition.

physck is appropriate only in response to a genuine read(2) or
NOTE write(2) system call. It is inappropriate to use physck in other
circumstances, such as to implement custom 1/0Q controls.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling physck.

RETURN VALUE A return of 1 indicates that a transfer may go ahead. The transfer may not
be exactly as originally requested; if it would go beyond the limits of the
partition, then the transfer count in u.u_count is reduced, as is the count
parameter to the original system call, as described above.

A return of 0 indicates that no transfer is possible. This may be due to a
read at end-of-file, in which case no error is reported. Otherwise, u.u_error
is set to ENXIO.

LEVEL Base Only (Do not call from an interrupt routine)

SOURCE FILE os/physio.c

SEE ALSO KPG, "Synchronized I/0 Operations”
dma_breakup(D3X), physio(D3X)

EXAMPLE For an example of the use of physck, refer to the example given for
dma_breakup(D3X).

3-134 REAL/IX Kernel Reference Manual

physio(D3X) physio(D3X)

NAME physio ~ call strategy(D2X) routine to process raw I/0 for block interface
drivers
SYNOPSIS #include<sys/types.h>

physio(strat, bp, dev, rwflag)
int (*strat)():
struct buf bp»*;
int dev, rwflag;

ARGUMENTS strat conceptually, the address of the driver's strategy(D2X) routine,
which physie uses to determine appropriate parameters. The
more typical usage is for the caller to supply the address of a
subroutine or function that performs some other device-
dependent operations (such as calling dma_breakup(D3X)) be-
fore calling the driver's strategy routine.

bp address of a buf(D4X) header. It is not necessary to supply a
buf header, and the typical usage of physio is with this parame-
ter set to 0. If a buf header is supplied, it is used in passing the
data to the supplied strategy routine, with various fields updated
as required. If no buf header is supplied, physio obtains one,
freeing it after the I/O operation is complete.

dev device number. The external device number received as an argu-
ment to the driver read or write routine should be used here.
The translation to an internal device number through the
minor(D3X) macro should be taken care of by the strategy
routine.

rwflag flag indicating whether the access is a read (B_READ) or a write
(B_WRITE). Note that B_WRITE cannot be directly tested as it
is 0.

Also note that the following members from the usex(D4X) structure are
implicit arguments to physio:

u.u_base transfer buffer start address
u.u_count transfer count

u.u_offset position in file

u.u_procp pointer to proc(D4X) structure

DESCRIPTION The physio function locks the area of user virtual memory so that transfers
may take place directly between the device and user memory without wor-
rying about paging (refer to userdma(D3X) for a function that performs this
directly). If an error occurs in the locking of memory, then physio returns
immediately with an error (EFAULT) set in u.u_error.

REAL/IX Kernel Reference Manual 3-135

physio(D3X) physio(D3X)

Once the user virtual memory is locked, physio sets up a buf(D4X) header
describing the operation. The members in buf are set as follows:

b_flags set to B_BUSY | B_PHYS | rwflag
b_error cleared to zero .
b_proc set from u.u_procp
b_dev set from the parameter dev
b_un.b_addr set from u.u_base
b_blkno set indirectly from u.u_offset (converted from bytes to logical
disk blocks)
b_bcount set from u.u_count

The contents of all other fields in the buf are undefined.

The physio function then calls the supplied strar routine, passing as the
single parameter a pointer to the buf(D4X) header. It then blocks on the
b_iodone semaphore. For normal transfers, when the transfer is complete,
physio is unblocked by the driver interrupt routine through the iodone(D3X)
function. If the driver detects any errors that prevent it from starting the
1/O transfer, it must call iodone(D3X) to unblock the physio function.

After being unblocked, physio unlocks the user virtual memory. It then

checks the contents of the buf header. The u.u_count field is updated with

the contents of the buf b_resid field. In addition, if an error is reported via

the B_ERROR flag, the u.u_error field is updated from the b_error field of .
the buf.

If a buf was supplied, then the only clean up performed by physio is to
ensure that the B_BUSY and B_PHYS flags are not set. All other fields are
as left by the strategy routine. If a buffer was not supplied and physio had
to supply a temporary buffer, then it is replaced in a free buffer pool.

As a note to driver writers, the data address given by physio is typically a
user virtual memory address. This can be determined by looking at the
u.u_segflg field of the user area.

The block driver read and write routines are called through the cdevsw table
to perform unbuffered I/0; that is, data is transferred directly between the
device and user data space. The kernel provides physio to help the driver
perform unbuffered I/0 while maintaining the buffer header as the interface
structure. physio is called by the driver read and write routines. With the
physck(D3X) function, these two functions perform almost all the work to
be done by a block driver’s read and write routines.

physio automatically handles memory page locking to ensure that the pages .
impacted by I/O are not swapped out.

3-136 REAL/IX Kernel Reference Manual

physio(D3X) physio(D3X)

Conventionally, in the absence of performance constraints, intermediate
kernel buffering is used as a method of avoiding the complication of dealing
with the possibly discontiguous user memory. The dma_breakup(D3X) func-
tion can be used for this work. Alternatively, the disjointio(D3X) function
can be used to obtain the real addresses of the pages that make up the user's
buffer area.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling physio.
RETURN VALUE physio does not have an explicit return value, but may update u.u_error with

an appropriate error code, and u.u_count with the number of bytes not
transferred from b_resid.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/physio.c
SEE ALSO KPG, "Synchronized 1/0 Operations”

dma_breakup(D3X), physck(D3X), strategy(D2X)

EXAMPLE Refer to the example for dma_breakup(D3X) for an example of physio.

REAL/IX Kernel Reference Manual 3-137

poff(D3X) poff(D3X)

NAME poff — get page offset
SYNOPSIS poff (addr)
unsigned int addr;
ARGUMENTS addr address for which the offset is to be returned
DESCRIPTION poff returns the page offset of the specified address.

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE page offset

LEVEL Base or Interrupt
SOURCE FILE sys/*/immu.h
SEE ALSO psnum(D3X)

3-138 REAL/IX Kernel Reference Manual

preiowait(D3X) preiowait(D3X)

NAME preiowait — suspend execution pending completion of a block or raw I/0
request for a block access device

SYNOPSIS #include <sys/types.h>

. #include <sys/buf.h>

preiowait(bp)
struct buf *bp;

ARGUMENTS bp pointer to the block interface buffer structure, buf.h, where the
awaited data transfer takes place

DESCRIPTION The preiowait function is typically used to block in the strategy(D2X)
routine when processing is required that can be performed only after the
operation is complete. For example, it is used to block in dma_breakup to
allow data to be copied and buffers freed.

Under UNIX System V, an iowait(D3X) system call is issued to wait for an
I/O operation that uses a buffer header. On a non-semaphored kernel, the
process sleeps until the B_DONE flag in b_flags is set; preiowait could be
called multiple times during a single operation. The first call waits until the
driver calls iodone(D3X), and subsequent fowalit calls just return when they
find the B_LDONE bit already set.

semaphore, b_jodone. To wait for the I/O operation to complete, lowalit
does a psema(D3X) on the bp->b_iodone and blocks until iodone issues the
corresponding vsema(D3X) indicating that the operation is complete. Mul-
tiple iowait calls cannot be performed because each one performs a psema
operation to decrement the value of bp->b_iodone, but the fodone function
issues only one vsema call to increment the value of bp~>b_iodone. The
first additional fowait call would block "forever” because no additional
iodone calls are forthcoming.

. The buffer header structure on the REAL/IX Operating System includes a

prefowait issues a psema call to wait for the operation to complete, then
issues a vsema on bp->b_iodone to prevent the next lowait call from
hanging. If multiple iowait calls are needed in a code sequence for a buffer
header, all but the last one must be prelowait, and the last one must be
fowait.

For raw access, physio(D3X) issues the final iowait call; for block access,
the iowait call is performed by the higher-level routines after the driver
strategy(D2X) routine returns.

. SEMAPHORE RAMIFICATIONS

No spin locks should be held when calling preiowait.

REAL/IX Kernel Reference Manual 3-139

preiowait(D3X) preiowait(D3X)

RETURN VALUE None. The buffer header's b_iodone semaphore is left with a value of -1.
Before the buffer is released, an iowait(D3X) call must be issued to incre-
ment the value of the semaphore to 0.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/bio.c
SEE ALSO delay(D3X), iodone(D3X), lowait(D3X), psema(D3X),

timeout/timeoutfs(D3X), ttywait(D3X), untimeout(D3X), vsema(D3X)

3-140 REAL/IX Kernel Reference Manual

psema(D3X) psema(D3X)

NAME psema, rpsema, ppsema — lock semaphore for a resource

SYNOPSIS #include <sys/types.h>
#include <sys/sema.h>

val = psema(sem addr, flags);

sem t *sem addr;
int flags;

The synopses for rpsema and ppsema are identical to the synopsis for

psema.
ARGUMENTS sem_addr identifies the semaphore to be locked
flags determine how the process that called psema reacts to interrupt
signals and if the priority boost is to be applied; valid flags values
are:
0 Wait may not be interrupted by signals and

boosting algorithm should not be used.

SEMINTR Check for signals before suspending self and
after being resumed. If no signals are held or
ignored and if SEMCATCH is not specified,
klongjmp will be invoked (This is roughly
equivalent to a sleep priority greater than
PZERO). :

SEMCATCH Check for signals before suspending self and
after being resumed. If there are signals, re-
turn error code (1 or —-1); otherwise, return 0.
SEMCATCH implies SEMINTR.

SEMRTBOOST Apply a boosting algorithm that temporarily
boosts the priority of lower priority process
when it holds the semaphore if the semaphore
is needed by a higher priority realtime proc-
ess. This flag should be applied only to sema-
phores that are expected to be used by real-
time processes after their initialization time
processing.

No other flags can be wused with
SEMRTBOOST, and vsema(D3X) calls for
this semaphore must also include the
SEMRTBOOST flag.

REAL/IX Kernel Reference Manual 3-141

psema(D3X)

DESCRIPTION

3-142

psema(D3X)

SEMINTBOOST Perform interactive boost (boosting for non-
realtime processes). SEMINTBOOST should
be used only for terminals (tty).
SEMINTBOOST implies SEMINTR.

SEMNOLOOP If an interrupt signal that is held or ignored
has made the process runnable, return a value
of 1. Without this flag, if psema determines
that the process was interrupted by a non-
ignored or held signal, it causes the process
to block again. SEMNOLOOP implies
SEMINTR. It is commonly used with inter-
ruptible blocks that use a counter to ensure
an appropriate value for the semaphore.

The psema family of macros decrements the value of the semaphore speci-
fied by sem_addr. If the value of the semaphore becomes negative, the
executing process is suspended and placed on a linked list of processes
sleeping on the semaphore.

If interrupt signals are pending against a blocked process, the value of the
flags parameter determines whether they are deferred or caught.

Q If flag is SEMINTR, receipt of a signal will cause a klongimp(D3X)
operation. Without this flag, the blocked process will not be awakened
by an interrupt signal. SEMINTR is implied by SEMCATCH,
SEMINTBOOST, and SEMNOLOOP.

Q If flag is SEMCATCH, the signal is caught and handled according to
code written in the driver. psema returns a value that indicates
whether or not the operation was successful.

For guidelines on selecting the correct flags, refer to the Kemnel Program-
ming Guide.

If psema is called from the driver strategy(D2X) routine, use the
SEMCATCH flag.

Semaphores that are blocked with the SEMINTR or SEMCATCH
flag may need to be reinitialized with reinitsema(D3X) before the
first psema call that is expected to block because the value of

CAUTION the semaphore will be incremented by all interrupts received as
well as by the vsema function. The driver must maintain a count
of processes blocked because the semaphore cannot be reinitial-
ized if a process is aiready blocked.

REAL/IX Kernel Reference Manual

psema(D3X) psema(D3X)

Semaphores decremented with psema can be incremented with the
vsema(D3X) macro. If the psema call uses no flags (0), the semaphore can
also be incremented with cvsema(D3X).

The rpsema and ppsema macros are faster than psema and can be used to
optimize performance in the driver. rpsema can be used if interrupts are
already disabled with the splhi function. ppsema can be used if all interrupts
are enabled.

SEMAPHORE RAMIFICATIONS

Drivers that call psema must be installed fully semaphored. No spin locks
should be held when calling psema.

RETURN VALUE The psema functions return a value only if the SEMINTR flag (or a flag that
implies SEMINTR) is specified. Return values are:

0 operation was successfully performed; the process has the resource.

-1 operation was not performed because a there is a non-ignored, non-
held signal pending for the process.

1 operation was not performed, but a non-ignored, non-held signal is
not pending for the process (is returned only if the SEMNOLOOP
flag is specified as well as SEMCATCH).

For other flags, the return value is undefined.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE sys/sema.h
SEE ALSO KPG, "Synchronization”

cpsema(D3X), cvsema(D3X), decsema(D3X), incsema(D3X),
klongjmp(D3X), valusema(D3X), vsema(D3X)

REAL/IX Kernel Reference Manual 3-143

psignal(D3X) psignal(D3X)

NAME psignal — send signal to a process

SYNOPSIS #include <(sys/signal.h>
#include <(sys/immu.h>
#include <(sys/sema.h>
#include <sys/region.h>
#include {(sys/psw.h>

psignal(p, signal)
struct proc *p;
int signal;

ARGUMENTS P pointer to the proc(D4X) structure of the process being signaled

signal signal sent; signal shoulu be in the range of 1 to (NSIG-1). 0 and
numbers greater than or equal to NSIG are also valid values,
indicating that no signal is to be sent. NSIG and valid signals are
listed in signal.h.

DESCRIPTION This function is called by the driver to send a signal to a single process.
psignal sends a signal to the process whose proc structure address is passed
as the argument p. If the process being sent the signal is blocked by a
psema(D3X) with the SEMINTR flag!, psignal makes the process execut-
able. Once the process executes, a klongjmp(D3X) is executed, which re-
turns to u.u_qgsav.

If the driver needs to do cleanup before the klongjmp, it should block with
the SEMCATCH flag, which implies SEMINTR. In this case, the driver

does any necessary cleanup, then issues the klongjmp call.

psignal is retained here for compatibility; psignalcur and psignalval are
faster ways to provide the same functionality.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling psignal.
RETURN VALUE None

LEVEL Base or Interrupt

Uf the driver is installed under CPU affinity, major-device semaphoring, or minor-device semaphoring, psignal
sends the signal unless the process has called sleep(D3X) to wait at a priority higher than PZERO. If PZERO
has not been ORed with PCATCH, psignal issues klongjmp. If PZERO has been ORed with PCATCH, the
driver does any necessary cleanup, then calls klongjmp. PZERO is defined in param.h and p_pri is explained on
the proc(D4X) manual page.

3-144 REAL/IX Kernel Reference Manual

psignal(D3X) psignal(D3X)

SOURCE FILE os/sig.c
SEE ALSO psignalcur(D3X), psignalval(D3X), sendevent(D3X), signal(D3X)
. EXAMPLE In the following example:

Q Get device registers (line 12) and get port number (line 13).

Q A base level routine detects the telephone carrier to a modem has
stopped (line 15).

Q The routine signals this event to the process (line 17).

QO Note that a more efficient way of providing the same functionality is to
use psignaleur(D3X).

1 struct device /* Layout of physical device registers */
2 i
3 int control; /* Physical device control word */
4 int status; /* Physical device status word */
5 short modem_status; /* Modem carrier (upper 8 bits) & */
6 /* ring (lower 8 bits) status word =/
7 short recv_char; /* Receive character from device */
8 short xmit_char; /* Transmit character to device */
. 9), /* end device */

10 extern struct device xx addr{]; /* Physical device register location */
11

12 register struct device *rp = &xx_addr[minor(dev) >> 3];
13 register int port = minor(dev) & 0x07;

14

15 if ((rp—>modem status & (0x0100 << port)) == 0)
16 {

17 psignal(u.u_procp, SIGHUP);

18 return;

19 } /* endif *x/

REAL/IX Kernel Reference Manual 3-145

psignalcur(D3X) psignalcur(D3X)

NAME psignalcur - send a valid signal number to the currently executing process

SYNOPSIS #include <¢sys/signal.h>
#include <sys/immu.h>
#include (sys/sema.h>
#include <(sys/region.h>
#include <sys/psw.h>

psignalcur(p, sigmask)
struct proc *p;
int sigmask;

ARGUMENTS p pointer to the proc(D4X) structure of the process being signaled,
in other words, u.u_procp

sigmask mask of signal sent, defined as SIGBIT(SIGNO). The definition
of sigbit is:

#define sigbit(n) (1<<(n-1))

Valid signal numbers are listed in signal.h. The sigbit macro is
defined in proc.h.

DESCRIPTION psignalcur sends a valid signal number to the currently executing process. It
is significantly faster than psignal(D3X).

If the driver needs to do cleanup before the klongjmp, it should block with
the SEMCATCH flag, which implies SEMINTR. In this case, the driver
does any necessary cleanup, then issues the klongjmp call.

SEMAPHORE RAMIFICATIONS

No spin locks should be set when calling psignalcur.

RETURN VALUE None.

LEVEL Base or Interrupt
SOURCE FILE sys/proc.h
SEE ALSO psignal(D3X), psignalval(D3X), send_event(D3X), signal(D3X)

3-146 REAL/IX Kernel Reference Manual

psignalcur(D3X) psignalcur(D3X)

EXAMPLE In the following example:
O A base level routine detects the telephone carrier to a modem has
stopped (line 15).
. O The routine signals this event to the process (line 17).
1 struct device /* Layout of physical device registers */
2 {
3 int control; /* Physical device control word */
4 int status; /* Physical device status word */
5 short modem_status; /* Modem carrier (upper 8 bits) §& */
6 /* ring (lower 8 bits) status word */
7 short recv_char; /* Receive character from device */
8 short xmit_char; /* Transmit character to device */
9) /* end device */

10 extern struct device xx_addr[}; /* Physical device register location #*/
11

12 register struct device *rp = &xx _addr[minor(dev) >> 3];
13 register int port = minor(dev) & 0x07;

14

. 15 if ((rp—>modem_status & (0x0100 << port)) == 0)
16 {
17 pPsignalcur(u.u_procp, sigbit(SIGHUP)); */
18 return;
19 }

REAL/IX Kernel Reference Manual 3-147

psignalval(D3X) psignalval(D3X)

NAME psignalval — send a valid signal number to any process

SYNOPSIS #include<sys/signal.h>
#include <sys/immu.h>
#include <sys/sema.h)
#include <sys/region.h>
f#include <sys/psw.h>

psignalval(p, signum sigmask)
struct proc *p;
int signum, sigmask;

ARGUMENTS)4 pointer to the proc(D4X) structure of the process being signaled

signum signal macro name that expands to an integer constant expression;
refer to sigset(2) for a list of valid signals.

sigmask mask of signal sent, defined as sigtomask(signum). The defini-
tion of sigtomask is:

#define sigtomask(n) (1L<<(n—-1))
Valid signal names and numbers are listed in signal.h.

DESCRIPTION psignalval sends a valid signal number to any process. psignalval is faster
than psignal(D3X), but not as fast as psignalcur(D3X). If the process being
sent the signal is blocked by a psema(D3X) with the SEMINTR flag!,
psignalval makes the process executable by executing klongjmp(D3X), which
returns to u.u_qgsav.

If the driver needs to do cleanup before the klongjmp, it should block with
the SEMCATCH flag, which implies SEMINTR. In this case, the driver does

any necessary cleanup, then issues the klongjmp call.

SEMAPHORE RAMIFICATIONS

The p_lock member of the proc(D4X) structure must be locked by the caller
before psignalval is called.

RETURN VALUE None.

LEVEL Base or Interrupt

1f the driver is installed under CPU affinity, major-device semaphoring, or minor-device semaphoring, psignalcur
sends the signal unless the process has called sleep(D3X) to wait at a priority higher than PZERO. If PZERO
has not been ORed with PCATCH, psignalcur issues klongjmp. If PZERO has been ORed with PCATCH, the
driver does any necessary cleanup, then calls klongjmp. PZERO is defined in param.h and p_prl is explained on
the proc(D4X) manual page.

3-148 REAL/IX Kernel Reference Manual

psignalval(D3X) psignalval(D3X)

SOURCE FILE sys/proc.h. sigtomask is defined in sys/signal.h.

SEE ALSO psignal(D3X), psignalcur(D3X), send_event(D3X), signal(D3X)

l sigset(2)

REAL/IX Kernel Reference Manual 3-149

putc(D3X) putc(D3X)

NAME putc — put character on a clist(D4X)
SYNOPSIS #include(sys/types.h>
#include<sys/tty.h>

putc(c, clp)
char c;
struct clist *clp;

ARGUMENTS c character to be placed on a clist
clp pointer to the clist data structure
DESCRIPTION The pute function places a character onto the specified clist. If a new

cblock(D4X) is needed because none are allocated for the clist or because
the last clist is full, putc retrieves a new cblock from the
cfreelist(D4X).

SEMAPHORE RAMIFICATIONS
Drivers calling pute must be installed under the compatibility modes.
RETURN VALUE Under normal conditions, pute links the cblock to the clist, places the
character in the cblock, and increases the clist character count. Otherwise,

if the cfreelist is empty, the system panics. (Note that the number of
cblocks in the system can be specified with the tunable parameter NCLIST.)

LEVEL Base or Interrupt
SOURCE FILE io/vmelclist.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”

clist(D4X), gete(D3X), getch(D3X), getcf(D3X), putch(D3X), putcf(D3X)

3-150 REAL/IX Kernel Reference Manual

putc(D3X)

putc(D3X)

EXAMPLE The following example shows data can be moved one byte at a time between
the user data area and a clist using putc.

Q As long as there is data in the user data area, obtain the next byte
(line 6).

Q If the user area contains an invalid address, fubyte returns an error
code (line 7).

Q Otherwise, add the byte to the last cblock in the clist (line 10) and
update number of bytes remaining (line 11).

W

WO~ W

10

12

extern struct tty xx ttyl];

register struct tty *tp = &xx_tty[minor(dev)];
register int «c;

while(u.u_count > 0) {

if ((c = fubyte(u.u_baset+)) == -1) {
u.u_error = EFAULT;
return;

}
putc(c, &tp->t_outq);
u.u_count—;

REAL/IX Kernel Reference Manual

3-151

putcb(D3X) putcb(D3X)

NAME putcb - link a cblock(D4X) to the clist(D4X)
SYNOPSIS #include<sys/types.h>
#include<sys/tty.h>

putcb(cbp, clp)
struct cblock *cbp;
struct clist *clp;

ARGUMENTS cbp pointer to cblock data structure
clp pointer to clist data structure
DESCRIPTION The putcb function links the cblock specified by cbp to the clist specified

by clp and increases the character count in the clist head by the number of
the characters in the cblock.

SEMAPHORE RAMIFICATIONS
Drivers calling putc must be installed under the compatibility modes.

RETURN VALUE putcb always returns a 0 (zero).

LEVEL Base or Interrupt

SOURCE FILE io/vme/clist.c

SEE ALSO KPG, "Drivers in the TTY Subsystem”
cblock (D4X), clist(D4X), getc(D3X), getch(D3X), getcf(D3X), pute(D3X),
putcf(D3X)

EXAMPLE The following example shows data can be moved in a complete or a partial

cblock between a user data area and a clist using putch.

O As long as there is data in the user data area, obtain a cblock worth of
information (line 8).

O Get a free cblock from the cfreelist(D4X) (line 10).
O Copy the data from the user data area to the allocated cblock (line 11).

Q If an invalid address is detected in the user data area, return the
cblock to the cfreelist (line 13) and return an error code.

O Otherwise, change the input index c_last to the number of the charac-
ters in cblock (line 17).

3-152 REAL/IX Kernel Reference Manual

putcb(D3X) putcb(D3X)

O Change the output index c_first to show that no characters have been
removed from the cblock (line 18).

O Add the cblock to the end of the clist (line 19).
O The pointer to the user data area is advanced to the next starting byte

of data to be copied (line 20), and the remaining byte count is updated
(line 21).

1 extern struct chead cfreelist;
2 extern struct tty xx ttyl[];

3 register struct tty *tp = &xx_tty([minor(dev)];
4 register struct cblock *cp;
5 register int size;

6 while(u.u_count > = 0)

7 {

8 size = min(u.u_count, cfreelist.c_size); /* Get smaller buffer size */
9

10 cp = getcf() /* Get free cblock from freelist »/
11 if (copyin(u.u base, cp->c_data, size) == -1)

12

13 putcf(cp);

14 u.u_error = EFAULT;

15 return;

16 }

17 cp-?c_last = size;

18 cp-rc_first = 0;

19 putcb(cp, tp->t_outq);

20 u.u_base += size;

21 u.u_count —= size;

22)

REAL/IX Kernel Reference Manual 3-153

putcf(D3X) putcf(D3X)

NAME putcf — put cblock(D4X) on the free list
SYNOPSIS putcf(cbp)
struct cblock *cbp;
ARGUMENTS cbp pointer to cblock data structure
DESCRIPTION A pointer to a cblock is passed to the putef function. The putef function

returns the cblock to the cfreelist(D4X).
SEMAPHORE RAMIFICATIONS
Drivers calling putef must be installed under the compatibility modes.

RETURN VALUE None

LEVEL Base or Interrupt
SOURCE FILE io/vmelclist.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”

cblock(D4X), gete(D3X), getch(D3X), getcf(D3X), puteb(D3X), putef(D3X)

EXAMPLE Refer to the example given for geteb(D3X).

3-154 REAL/IX Kernel Reference Manual

rel_timer(D3X)

NAME

SYNOPSIS

. ARGUMENTS

DESCRIPTION

rel_timer(D3X)

rel_timer — release interval timer

int rel_timer(tp):
struct tmr *tp;

p pointer to tmr structure to be released

The rel_timer function releases the interval timer obtained with
get_timer(D3X) and returns it to the pool of available interval timers. The
resource is then available for use by another driver. If p does not point to
an allocated interval timer, rel_timer returns EINVAL; otherwise, it returns
0.

rel_timer performs minimal parameter checking. Calling rel_timer
with a bad value for tp or releasing the same timer more than
once will have undefined — and probably fatal - consequences.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL
SOURCE FILE

SEE ALSO

None.

If successful, rel_timer returns 0. rel_timer returns EINVAL if /p is not an
allocated timer.

Base or Interrupt
os/timer.c

get_timer(D3X), set_timer(D3X)

REAL/IX Kernel Reference Manual 3-155

rtuser(D3X) rtuser(D3X)

NAME rtuser — verify realtime permission mode

SYNOPSIS rtuser();

ARGUMENTS None. .
DESCRIPTION This function determines if the current user has realtime permissions.

SEMAPHORE RAMIFICATIONS

None.

RETURN VALUE If the current user has realtime permissions, 1 is returned. Otherwise, 0
(zero) is returned and the driver should set u.u_error is set to EPERM (not
owner).

LEVEL Base Only (Do not call from an interrupt routine)

SOURCE FILE sys/user.h

SEE ALSO suser(D3X), useracc(D3X)

EXAMPLE Using rtuser is straightforward, easy, and viable for many situations. The
following example shows such a test. Note that because the superuser per-
missions are adequate to do anything that requires realtime permissions, the
test for realtime permissions should be used in conjunction with suser(D3X);

the example shows a typical idiom of programs written to run under the
REAL/IX Operating System.

If suser(D3X) fails, u.u_error is set to EPERM by the operating system, so
the driver does not need to set this error.

if (V(rtuser() || suser())){
return;

}

3-156 REAL/IX Kernel Reference Manual

selwakeup(D3X) selwakeup(D3X)

NAME selwakeup — unblock processes waiting to select a device
SYNOPSIS selwakeup(proc, coll)
. ARGUMENTS proc address of process to be unblocked
coll collision flag; if set, more than one process simultaneously at-

tempted to select this device and needs to be awakened.

DESCRIPTION selwakeup is used in drivers that have a select(D2X) entry point to select
the select(2) system call. selwakeup is usually called from the driver's
intr(D2X) routine! when a device becomes accessible for the access required
(read or write) and status in the driver-specific select structure (described on
the select(D2X) manual page) indicates that one or more processes are
waiting for the device to become accessible for this type of access.

Processes that have attempted to select a device controlled by the driver and
found the device not selectable will update the data structures with the
appropriate information. The process may block sometime after calling the
driver's select(D2X) routine because none of the devices it tried to select
were selectable. selwakeup unblocks those processes. If the process is not
blocked, selwakeup just returns.

selwakeup is passed two arguments. The first argument is the address of the
proc(D4X) structure for the process that is trying to select the device. This
is the information in the "read-select” or "write-select” members of the
driver-specific select data structure, depending on whether the device be-
came readable, writable, or both.

selwakeup is called to unblock either a read select or a write select. If

NOTE a device interrupt occurs and it is determined that the device has
become both readable and writable and both conditions are being
selected for, selwakeup must be called twice.

After calling selwakeup, the driver should clear the appropriate proc
structure address field and collision flag within its data structures for the
device to prevent more unnecessary selwakeup calls.

All accesses to the driver's select data structure must be protected to avoid
race conditions while testing and modifying these fields because the same
fields are also accessed by the driver's select(D2X) routine. Fully-
semaphored drivers usually use a spin lock (spsema(D3X)), drivers installed
under CPU affinity usually use an spl(D3X) call, and drivers installed under

Iselwakeup can be called from the base level of the kernel as well. This approach is used for drivers that use a
daemon to process deferred interrupts.

REAL/IX Kernel Reference Manual 3-157

selwakeup(D3X) selwakeup(D3X)

major- or minor-device semaphoring do not need to explicitly protect the
structure. Note the following:

Q The protection must begin prior to the modification of the "this device
is readable/writable” fields (which are tested by the driver's select
routine).

O The protection may be abandoned after the "selecting proc address”
fields and the corresponding collision flags (which are modified by the
driver’s select routine) have been cleared.

SEMAPHORE RAMIFICATIONS

None.

RETURN VALUE None.

LEVEL Base or Interrupt (Usually called from the interrupt handling routine)
SOURCE FILE os/berk.c

SEE ALSO select(D2X)

EXAMPLE Refer to select(D2X) for an example of the selwakeup function.

3-158 REAL/IX Kernel Reference Manual

send_event(D3X) send_event(D3X)
NAME send_event — post event to user-level process
SYNOPSIS #include <sys/proc.h>
#include <sys/errno.h>
#include <sys/immu.h>
#include <(sys/region.h>
#include <(sys/evt.h>
send_event(p, eid, type, ditem)
struct proc *p;
uint eid;
int type;
long ditem;
ARGUMENTS p the process to which to post the event
eid the event identifier to post
type identifies the subsystem that sent the event. Valid values are:
EVI_TYPE_USER user-posted event
EVI_TYPE_ASNCIO asynchronous I/O completion event
EVI_TYPE_.TIMER timer expiration event
EVI_TYPE_INTR connected interrupt occurred
EVI_TYPE_RES resident process violation
ditem optional 32-bit data item to post with the event
DESCRIPTION send_event posts an event to the specified user-level process and event

identifier. Before calling send_event, the driver must lock p->p_lock.

Note that kernel-level processes (including drivers) can post events to any
user-level process on the system, mot just processes associated with the
driver. Caution should be exercised to ensure that no stray events are

posted.

SEMAPHORE RAMIFICATIONS

p—>p_lock must be locked when calling send_event, and slp_cnt_lock and

rqlock (defined in sys/systm.h) must not be locked.

RETURN VALUE If successful, send_event returns 0. If unsuccessful, send_event will return
one of the following error codes:

EAGAIN

ENOSPC

REAL/IX Kernel Reference Manual

process p is ignoring the signal

process could not allocate space for the event block

3-159

send_event(D3X) send_event(D3X)

LEVEL Base or Interrupt

SOURCE FILE oslevt.c

SEE ALSO Programmer's Guide
evget(2), evpost(2), evrev(2), evrevl(2)
psignal(D3X), psignaleur(D3X), psignalval(D3X), signal(D3X)

EXAMPLE The following code example is used to post a resident memory violation
event:

evtdataitem |= DATUNLOCK;

if ((change > 0) && (eid !'= -1)) [
register proc_t *p = u.u_procp;

/* post event eid */

pspsema(§p->p_lock);

send_event(p, eid, EVT_TYPE_RES, evtdataitem);
psvsema(&p—>p_lock;

3-160 REAL/IX Kernel Reference Manual

set_timer(D3X) set_timer(D3X)

NAME set_timer — set interval timer

SYNOPSIS int set_timer(tp,val, func, funcarg);
struct tmr *tp;
struct itimerstruc *val;

void (*func) ():
char *funcarg;

ARGUMENTS ip pointer to the tmr structure allocated to this driver
val pointer to the structure that holds the expire and delete time for
the timer
func pointer to the function to be executed when the timer expires

funcarg pointer to the argument to func

DESCRIPTION The set_timer function sets the interval timer expiration value relative to the
current time as specified in the structure pointed to by val and sets the timer
running.

The expiration time and the repeat interval are stored and maintained in
units of seconds and nanoseconds. If the expiration time in the structure
pointed to by val is 0, the timer is disabled and removed from the active
timer queue. It is not necessary to disable a timer before resetting its
expiration value; the driver simply issues set_timer again with val pointing to
the new expiration time.

point to an allocated interval timer, set_timer returns EINVAL. It also
returns EINVAL if either the delay or the repeat interval specified in the
structure pointed to by val is greater than the maximum supported by the
underlying timer type, or if either of the nanosecond fields of that structure
contains an invalid value.

. If the call to set_timer is successful, it returns 0. Otherwise, if fp does not

set_timer performs minimal parameter checking. Calling
set_timer with a tp parameter that was not obtained with
get_timer or after the timer has been released by rel_timer will
have undefined - and probably fatal — results.

When the timer expires, the user-supplied function (func) is called
in the context of a kernel daemon. At some point, the daemon will
be committed to calling this function. It is possible for a timer to
be cancelled after the daemon is committed to calling the function
but before the function completes execution. When writing a
driver, you must be aware of the race conditions that result from
this situation.

CAUTION

REAL/IX Kernel Reference Manual 3-161

set_timer(D3X) set_timer(D3X)

SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE If successful, set_timer returns 0. set_timer returns EINVAL under any of
the following conditions:

O rp is not an allocated timer

Q the delay value stored in val exceeds the maximum supported by the
timer type

O the repeat interval value stored in val exceeds the maximum supported
by the timer type

Q val contains an invalid value in one of its nanosecond fields

LEVEL Base or Interrupt; however, it is recommended that set_timer be used only
in base-level code because of the CPU time it uses

SOURCE FILE os/timer.c

SEE ALSO get_timer(D3X), rel_timer(D3X)

3-162 REAL/IX Kernel Reference Manual

signal(D3X)
NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

signal(D3X)

signal — send signal to process group

#include<sys/signal.h>

signal(pgrp, signal)
int pgrp, signal;

pgTp identification number of the process group being signaled

signal signal to send to the process group; refer to signal.h for a list of
the appropriate signal values

Some drivers need to signal processes on the occurrence of certain events.
For example, when a user presses the BREAK key, the driver controlling the
device that receives the character must signal all processes associated with
the device the BREAK was received. The signal function is called to send
signals to all the processes associated with a certain process group. All
signals are defined in the system header file signal.h.

SEMAPHORE RAMIFICATIONS

RETURN VALUE
LEVEL
SOURCE FILE

SEE ALSO

No spin locks should be held when calling signal.
None

Base or Interrupt

os/sig.c

Programmer's Guide

psignal(D3X), psignalcur(D3X), psignalval(D3X), send_event(D3X)
sigset(2)

REAL/IX Kernel Reference Manual 3-163

signal(D3X) signal(D3X)

EXAMPLE In a terminal interrupt routine (intr(D2X)), data is retrieved from the device

receive character register. The data word contains the port that transmitted
the character, and is used to locate the corresponding tty(D4X) structure.

Q If the received data word is marked with a framing error (the data is
not received correctly), but the character portion is binary Os (zeros),
this signifies a BREAK key was pressed (line 22).

O Therefore, send an interrupt signal to all processes in the process
group (line 24).

NGl Wi

O ®

10

struct device /* Physical device register location */
{
int control; /* Physical device control word */
int status; /* Physical device status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */
}:
extern struct tty xx ttyl[]; /* Logical device structure */
extern struct device xx addr(]; /* Physical device registers */
extern int xx ont; /* Physical device number =*/

xx_intr(board)

int board;

{

register struct device *rp = xx_addr[board]; /* Get device register */
register struct tty *tp;

register int ¢, port;

while((c = rp->recv_char) & DATAVALID) != 0)

{
port = (¢ >> 8) & 0x7; /* Get terminal’'s port number */
tp = &xx_tty[(board << 3) & port]; /* Get corresponding structure */
if ((c & FRERROR) != 0 && (c & Oxff) == 0)

{
signal(tp->t_pgrp, SIGINT);
ttyflush(tp, (FREAD | FWRITE));
continue;

}

3-164

REAL/IX Kernel Reference Manual

sleep(D3X) sleep(D3X)

NAME sleep — suspend process activity pending execution of a wakeup (not used in
fully semaphored drivers)
SYNOPSIS sleep(addr, priority)
caddr_t addr;
int priority
ARGUMENTS addr address (signifying an event) for which the process will wait to be
updated

priority priority value that is assigned to the process when it is awakened.
If priority is ORed with the defined constant PCATCH, the sleep
function does not call klongjmp(D3X) on receipt of a signal.
Instead, it returns the value 1 to the calling routine.

DESCRIPTION The sleep function suspends execution of a process to await certain events
such as reaching a known system state in hardware or software. For in-
stance, when a process wants to read a device and no data is available, the
driver calls sleep to wait for data to become available. This causes the
kernel to suspend executing the process that called sleep and schedule
another process. The process that called sleep can be restarted by a call to
the wakeup(D3X) function with the same addr specified as that used to call
sleep.

structure or one of the driver’s own data structures. The sleep address is an
arbitrary address that had no meaning except to the corresponding wakeup
function call. This does not mean that any arbitrary kernel address should be
used for sleep. Doing this could conflict with other, unrelated sieep/wakeup
operations in the kernel. A kernel address used for sleep should be the
address of a kernel data structure directly associated with the driver 1/0
operation (for example, a buffer assigned to the driver).

. The addr used when calling sleep should be the address of a kernel data

A driver should never use the address of the user(D4X) structure for sleep.

Before a process calls sleep, the driver usually sets a flag in a driver data
structure indicating the reason why sleep is being called.

The priority argument, called the sleep priority, is used for scheduling
purposes when the process awakens. This parameter has critical effects on
how the process that called sleep reacts to signals. The sleep priorities range
from 0 to 39, where higher numerical values indicate lower priority levels. If
the numerical value of the sleep priority is less than or equal to the constant
PZERO (generally set to 25 and defined in the param.h header file), then the
sleeping processes will not be awakened by a signal. However, if the numeri-
cal value is greater than PZERO (values 26 to 39), the system awakens the
process that called sleep prematurely (that is, before the event on which
sleep was called occurred) on receipt of a non-ignored signal by doing a

REAL/IX Kernel Reference Manual 3-165

sleep(D3X)

COMPATIBILITY

3-166

sleep(D3X)

klongjmp(D3X) back to the system call entry code. It returns the value 1 to
the calling routine.

To pick the correct sleep priority, decide whether or not the process should
be awakened on the receipt of a signal. If the driver calls sleep for an event
that is certain to happen, the driver can use a priority numerically less than
PZERO. (However, priorities less than or equal to PZERO should be used
only if the driver is crucial to system operation.)

If the driver calls sleep while it awaits an event that may not happen, use a
priority numerically greater than PZERO. An example of an event that may
not happen is the arrival of data from a remote device. When the system
tries to read data from a terminal, the terminal driver might call sleep to
suspend the current process while waiting for data to arrive from the
terminal. If data never arrives, the sleep call will never return. When a user
at the terminal presses the BREAK key or hangs up, the terminal driver
interrupt handler sends a signal to the reading process, which is still execut-
ing sleep. The signal causes the reading process to finish the system call
without having read any data. If sleep is called with a priority value that is
not awakened by signals, the process can be awakened only by a specific
wakeup call. If that wakeup call never happened (the user hung up the
terminal), then the process executes sleep until the system is rebooted.

Drivers calling sleep must occasionally perform cleanup operations before
klongjump is called. Typical items that need cleaning up are locked data
structures that should be unlocked when the system call completes. This is
done by ORing priority with PCATCH and executing sleep. If sleep returns
a 1, then you can clean up any locked structures before calling klongjmp.

If sleep is called from the driver strategy(D2X) routine, you
should OR the priority argument with PCATCH or select a
priority of PZERQ or less.

CAUTION

The sleep function is one of the traditional UNIX synchronization mecha-
nisms; for compatibility with other UNIX-based operating systems, it is sup-
ported on computers that run under the REAL/IX Operating System. Driv-
ers being ported to the REAL/IX Operating System from another system
can use sleep if they are installed under one of the compatibility modes.
Drivers that are not installed under a compatibility mode should not use
sleep but should use semaphore operations to block a process. The Driver
Development Guide describes the compatibility modes and how to provide
sleep/wakeup functionality with kernel semaphores.

REAL/IX Kernel Reference Manual

sleep(D3X) sleep(D3X)

Note that a driver that calls sleep should avoid calling any semaphoring
functions and vice versa. Mixing synchronization methods in one driver may
result in deadlocks.

SEMAPHORE RAMIFICATIONS
Drivers that call sleep must be installed under the compatibility modes.

RETURN VALUE If the sleep priority argument is ORed with the defined constant PCATCH,
the sleep function does not call klongjmp on receipt of a signal; instead, it
returns the value 1 to the calling routine. If the process put in a wait state
by sleep is awakened by an explicit wakeup call rather than by a signal, the
sleep call returns 0 (zero).

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/slp.c
SEE ALSO KPG, "Synchronization”

DDG, "Porting Drivers”
delay(D3X), iodone(D3X), iowsit(D3X), psema(D3X), timeout(D3X),
ttywait(D3X), untimeout(D3X), wakeup(D3X)

EXAMPLE The following code is from a TTY driver that supports a dual console. It tests
whether the port is currently being used as a dual console and, if it is, puts
the process to sleep.

if (Dconcurrent) {
while (xxxx_state[dev] & DCON) {
sleep((caddr_t) & tp->t_canqg, TTIPRI);
}

The second argument to sleep (the sleep priority) is set to TTIPRI. This is
defined to be 28 (PZERO+3) in #iy.h, so is an interruptible sleep.

REAL/IX Kernel Reference Manual 3-167

spl*(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

spl*(D3X)

spl ~ block/allow interrupts for driver installed under CPU affinity
int oldlevel;
oldlevel=splO(); /* IPL O; allow all interrupts */
oldlevel=spll(); /* IPL 1; masks context and process switch */
oldlevel=spl2(); /* IPL 2; blocks all level 1 interrupts */
oldlevel=spl3(); /* IPL 3; blocks all level 1 and level 2 interrupts */
oldlevel=spl4d(); /* IPL 4; blocks all level 3 and lower interrupts */
oldlevel=spl5(); /* IPL §; blocks all level 4 and lower interrupts */
oldlevel=spl6(); /* IPL 6; biocks all level 5 and lower interrupts */
oldlevel=spl7(); /* IPL 7; blocks all interrupts */
oldlevel=splhi(); /* same as spi7 */
oldlevel=spltty(); /* used to protect critical code in TTY drivers */
splx(oldlevel); /* terminates section of protected critical code */

/* and restores interrupt level to previous level */
splx_fast(oldlevel); /* faster version of spix */

oldlevel last set priority value (only splx and splx_fast have input argu-
ments)

The spl* function sets the priority level of the processor on which the code
is executing. splhi (or other spl* function that sets the processor priority
level above the level at which the device interrupts) disables interrupts while
a section of critical code executes; splx or splx_fast then restores the
processor priority level so that interrupts can be received and handled.

The spl* function should not be called directly in drivers installed as fully
semaphored. Instead, use semaphores and spin locks to protect resources
from unwanted concurrent access. Drivers being ported from other operat-
ing systems can be executed without removing the spl* code! if they are in-
stalled under one of the compatibility modes (CPU affinity,? major-device
semaphoring, or minor-device semaphoring) as described in the Driver Devel-
opment Guide.

spl* is one of the major synchronization functions on traditional UNIX
systems, where the system will not switch context from driver code being
executed to another executing process unless it is explicitly told to do so by
the driver or it receives a device interrupt. By disabling interrupts while
executing a piece of critical code (a section of code that updates a shared
data structure), the integrity of the kernel is ensured. Because of the
preemptive kernel and the multiprocessor configuration of the REAL/IX
Operating System, the spin lock and semaphore mechanisms are used to
protect critical code in fully-semaphored drivers.

INote that the interrupt latency of drivers installed under major- or minor-device semaphoring can be improved
by removing ali spl* functions from the driver code. The lock on the switch table entry point is adequate to
protect critical code sections without the spl* functions.

ZNot all machines support CPU affinity. Refer to the Release Notes shipped with your system.

3-168

REAL/IX Kernel Reference Manual

spl*(D3X) spl*(D3X)

The splx_fast and splx functions restore the interrupt level to the previous
level; splx_fast is faster than splx because it uses the return value of another
spl* function (such as splhi) and does not return the old priority level.

The selection of the appropriate spl* function is important. The execution
level to which the processor is set must be high enough to protect the region
of code, but this level should not be so high that it unnecessarily locks out
interrupts that need to be processed quickly. By using the appropriate spl*
function, a driver can inhibit interrupts from its device or other devices at
the same or lower interrupt priority levels.

spl* functions should not be used in interrupt routines unless you
save the old interrupt priority level in a variable as it was
returned from an spl* call. Later, spix or spix_fast must be
used to restore the saved oldlevel.

Never drop the interrupt priority level below the level at which an
interrupt routine was entered. For example, if an interrupt
routine is serviced at an interrupt priority level of 5, do not call
spl0 through spl4 or the stack may become corrupted.

The spl-to-IPL correspondence varies widely from computer to
computer. Before executing a ported driver under CPU affinity, it
may be necessary to change the values of the spl*® calls to
obtain the same interrupt disabling you had on the other
machine.

Drivers that use spl* calls must be compiled with sed(l) scripts. The
custom/custom.mk file handles this automatically.

SEMAPHORE RAMIFICATIONS

Drivers that call spl* should be installed under one of the compatibility
modes.

RETURN VALUE All spl* functions (except splx_fast) return the former priority level.

LEVEL Base or Interrupt

SOURCE FILE os/*/interrupt.c

SEE ALSO KPG, "Synchronization”
disable(D3X), enable(D3X)

REAL/IX Kernel Reference Manual 3-169

spsema(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

spsema(D3X)

spsema, rspsema, pspsema — lock a spin lock

#include <(sys/types.h>
#include <sys/sema.h>

spsema(lock_addr) .
lock_t *lock_addr

The synopses of rspsema and pspsema are the same as the synopsis of
spsema.

lock_addr pointer to a spin lock data structure

The spsema family of macros sets a spinning lock on the semaphore speci-
fied by lock_addr and disables all interrupts. It is appropriate when the lock
will be set for a short period of time (less than 50 microseconds); most
often, it is used to protect device registers or a region of critical code.
Because the stack is used to store old spl values, the same routine that sets
a spin lock must also unlock that semaphore.

The rspsema and pspsema macros are faster than spsema and can be used
to optimize the performance of the driver. rspsema can be used if interrupts
are already disabled; it is faster than spsema because it does not change the
spl value. pspsema can be used if all interrupts are enabled; it is faster than

spsema because it does not save the spl value. .

Semaphores locked with one of the spsema macros must be unlocked with
one of the svsema macros in the same routine.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-170

Drivers that call spsema should be installed fully semaphored.
None

Base or Interrupt

sys/sema.h

KPG, "Synchronization”
initlock(D3X), svsema(D3X), valulock(D3X)

REAL/IX Kernel Reference Manual ‘

sptalloc(D3X) sptalloc(D3X)

NAME sptalloc - allocate memory pages

SYNOPSIS #include<sys/immu.h>
unsigned int
sptalloc(size, mode, base)

int size, mode, base;
ARGUMENTS size the number of pages to be allocated

mode page descriptor table entry field mask. Only valid value is
PG_VALID, which indicates that the page descriptor is valid.
PG_VALID is defined in sys/*/immu.h.

base If base==0, sptalloc allocates physical memory. Otherwise, the
value of base represents a physical address that is mapped into
kernel virtual space.

DESCRIPTION This function allocates and links virtual memory pages. The normal return
value is the kernel virtual address of the allocate space. Allocated space is
virtually, but not physically contiguous.

Except for page alignment, using sptalloc does not guarantee any alignment
of allocated space.

. COMPATIBILITY On some UNIX systems (i.e., other than the REAL/IX Operating System),
sptalloc takes a fourth parameter, which is a flag indicating whether the
function allocating memory can call sleep.

Note also that on some UNIX systems, sptalloc can use one of several mode
fields that are not functional on the REAL/IX Operating System.

Allocating and freeing pages should be done very carefully. If
done incorrectly, it can crash the system or corrupt user
processes and the disk. Performance degradation may not show

T up until heavy loads are applied, and it may be intermittent.

In most cases, it is better to use the direct I/0 mechanism to
NOTE move data directly from user address space into the device
registers or to allocate memory statically in the driver code.

REAL/IX Kernel Reference Manual 3-171

sptalloc(D3X) sptalloc(D3X)

Drivers that allocate memory dynamically are unlikely to be
NOTE portable.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling sptalloc.
RETURN VALUE Under normal conditions, the kernel virtual address of the allocated buffer is

returned. Otherwise, NULL is returned when either virtual or physical
memory cannot be allocated.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/page.c
SEE ALSO KPG, "Memory Management”

sptfree(D3X)

3-172 REAL/IX Kernel Reference Manual

sptfree(D3X) sptfree(D3X)

NAME sptfree — free allocated memory

SYNOPSIS sptfree(vaddr, size, mode)
unsigned int vaddr;
int size, flag;

ARGUMENTS vaddr base virtual address of memory to be released
size number of pages to be released
mode must be the same as the mode specified in the corresponding call

to sptalloc(D3X)

DESCRIPTION This function releases memory or performs garbage cleanup to free allocated
memory for reuse. This function is called after sptalloc(D3X) to free allo-
cated memory.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling sptfree.

RETURN VALUE None

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/page.c
SEE ALSO KPG, "Memory Management”

sptalloc(D3X)

REAL/IX Kernel Reference Manual 3-173

strecmp, strncmp(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

strcmp, strncmp — compare strings

strcmp(sl, s2)
register char *sl, *s2
size t n;

strncmp(sl, s2, n)
register char *sl, *s2;

strcmp, strncmp(D3X)

s1 first string

52 second string

n maximum number of characters to compare; used with strnemp
only

stremp and strncmp are the equivalent of the 3C routines with the same
names. They compare two strings and determine if s7 is lexicographically less
than, equal to, or greater than s2. stremp evaluates all characters in the

string.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-174

None.

These functions return an integer value that indicates the results of the

comparison:
< 0 slis less than 52
0 slis equal to 52
> 0 sl is greater than s2
Base or Interrupt
os/string.c

string(3C)

REAL/IX Kernel Reference Manual

strcpy, strncpy(D3X) strcpy, strncpy(D3X)

NAME strcpy, strncpy ~ copy s2 to sl

SYNOPSIS strcpy(sl, s2)
register char *sl, *s2;

. strncpy(sl, s2, n)
register char *sl, *s2;
size_t n;
ARGUMENTS sl destination string
52 source string

n number of characters to copy; used with strnepy only

DESCRIPTION strcpy and strnepy are the equivalent of the 3C routines with the same
names. These functions copy the s2 string to sI. strepy stops only after the
null character has been copied; strncpy copies exactly n characters, truncat-
ing s2 or adding null characters to sI if necessary. These functions do not
check for overflow of the array pointed to by s1.

SEMAPHORE RAMIFICATIONS

None.
. RETURN VALUE New value of s1.
LEVEL Base or Interrupt
SOURCE FILE os/string.c
SEE ALSO string(3C)

REAL/IX Kernel Reference Manual 3-175

strlen(D3X) strlen(D3X)

NAME strlen — return length of specified string
SYNOPSIS strlen(s)
char *s;
ARGUMENTS s string whose length is to be calculated .
DESCRIPTION strlen is equivalent to the 3C routine with the same name. It returns the

number of characters in s, not counting the terminating null character.
SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE The number of characters in s.

LEVEL Base or Interrupt
SOURCE FILE os/string.c
SEE ALSO string(3C)

3-176 REAL/IX Kernel Reference Manual

subyte(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

subyte(D3X)

subyte ~ copy a byte from a driver to the user data space

subyte(userbuf, c)
caddr_t *userbuf, c;

userbuf address of the user buffer
c byte to be copied
The subyte function copies a byte from the driver to user space.

When a driver read(D2X) or write(D2X) (not ioctl(D2X)) routine is entered,
the u.u_base member of the user(D4X) structure contains the address of
the buffer in the user address space, and the u.u_count member contains the
number of bytes remaining to be transferred. After the subyte function
completes, the driver should increase the value of the u.u_base member and
decrease the value of the u.u_count member by the number of bytes
transferred.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

No spin locks should be held when calling subyte.

subyte returns 0 (zero) if the transfer is successful. If a -1 is returned (an
error occurred), set u.u_error to EFAULT to indicate that userbuf is a bad
address.

Base Only (Do not call from an interrupt routine)

ml/*/userio.s

beopy(D3X), copyin(D3X), copyout(D3X), fubyte(D3X), fuword(D3X),
iomove(D3X), suword(D3X)

REAL/IX Kernel Reference Manual 3-177

subyte(D3X) subyte(D3X)

EXAMPLE Data can be moved between a clist(D4X) and a user data area one byte at
a time.

O As long as there is space in the user data area, and there is data in the
clist, obtain a single byte from the first cblock(D4X) in the clist
(line 8)

O and copy it to the user data area (line 11).

Q If an error occurs, set u.u_error (line 12).

1 extern struct tty xx ttyl[];

3 register struct tty *tp = sxx_tty[minor(dev)];
4 register int c;

5

6 while(u.u_count > 0)

7 1

8 if ((c = getc(stp—>t_canqg)) == -1) {
9 return;

10 }

11 if (subyte(u.u base++, ¢) == -1) [
12 u.u_error = EFAULT;

13 return;

14 }

15 u.u_count—-;

16)

3-178 REAL/IX Kernel Reference Manual

suser(D3X)

NAME
SYNOPSIS
ARGUMENTS

DESCRIPTION

suser(D3X)

suser — verify superuser permission mode
suser();
None.

This function determines if the current user has superuser permissions.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

EXAMPLE

REAL/IX Kernel Reference Manual

None.

If the current user is a superuser, 1 is returned. Otherwise, 0 (zero) is
returned and u.u_error is set to EPERM (not owner).

Base Only (Do not call from an interrupt routine)
osl/fio.c
rtuser(D3X), useracc(D3X)

The use of suser is straight forward, easy to use, and viable for many
situations. The following example shows such a test.

if (suser()==0) [
return;

)

On the REAL/IX Operating System, it is more common to check for both
realtime privileges and superuser privileges; refer to rtuser(D3X) for an
example of this use.

3-179

suword(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

suword(D3X)

suword — copy a word of data from a driver to user data space

suword(userbuf, i)
int *userbuf, i;

userbuf address of the user buffer
i integer to be copied
The suword function copies a single word from the driver to user space.

When a driver read(D2X) or write(D2X), (not ioctl(D2X)) routine is entered,
the u.u_base member of the user(D4X) data structure contains the address
of the buffer in the user address space. The u.u_count member contains the
number of bytes remaining to be transferred.

After suword completes, the driver should increase the value of the
u.u_base member and decrease the value of the u.u_count member by the
number of bytes transferred.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-180

No spin locks should be held when calling suword.

suword returns a 0 (zero) if the transfer is successful. If a ~1 is returned (an
error occurred), set v.u_error to EFAULT to indicate that userbuf is a bad
address.

Base Only (Do not call from an interrupt routine)

ml/*/userio.s

beopy(D3X), copyin(D3X), copyout(D3X), fubyte(D3X), fuword(D3X),
iomove(D3X), suword(D3X)

REAL/IX Kernel Reference Manual

suword(D3X)

suword(D3X)

EXAMPLE To debug a driver, a driver ioctl(D2X) routine can be used to examine
settings in the device registers such as the device status word.

Q If a request is made for a device status word and the arg parameter
contains a NULL pointer (line 19), return the value of the status word
as the return code value of the ioctl system call (line 20).

Q Otherwise, copy the value of the status word to the user data area
specified by arg (line 23).

Q If arg contains an invalid address, an error code is returned.

1 struct device /* Layout of physical device registers */
2 {

3 int control; /* Physical device control word */
4 int status; /* Physical device status word */

5 short recv_char; /* Receive character from device */
6 short xmit_char; /* Transmit character to device */
7)

8 extern struct device xx_addr([]; /* Physical device register location */
9

10 xx_ioctl(dev, cmd, arg, flag)

11 dev_t dev;

12 caddr_t arg;

13 |

14 register struct device *rp = &xx_addr(minor(dev) >> 4];

15

16 switch(cmd)

17 {

18 case XX _GETSTATUS:

19 if (arg == NULL) {

20 u.u_rvall = rp->status;

21

22

23 lelse if(suword(arg, rp->status) == -1) [

24

25 u.u_erroxr = EFAULT;

26 return;

27 }

28 break;

29

30 }

REAL/IX Kernel Reference Manual

3-181

svsema(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

svsema, rsvsema, psvsema — unlock a spin lock

#include (sys/types.h>
#include <sys/sema.h)

svsema(lock_addr)
lock_t *lockaddr;

svsema(D3X)

The synopses for rsvsema and psvsema are the same as that of svsema.

lock_addr identifies the semaphore to be unlocked; must match the
lock_addr used in the corresponding locking function

The svsema family of macros unlocks the spin lock specified by lock_addr
and sets the interrupt level to the interrupt level that was in effect when the
last spsema (not rspsema or pspsema) operation was performed. Because
the stack is used to store old SPL values, svsema must be called from the

same routine that called the locking macro.

rsvsema and psvsema perform functionality similar to that of svsema, but
are faster. rsvsema does not modify the interrupt level. psvsema sets the

interrupt level to have all interrupts enabled.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-182

Drivers that call svsema should be installed fully semaphored.

The svsema macros do not return a value under any conditions.

Base or Interrupt
sys/sema.h

KPG, "Synchronization”
initlock(D3X), spsema(D3X), valulock(D3X)

REAL/IX Kernel Reference Manual

timeout(D3X) timeout(D3X)

NAME timeout, timeoutpri, timeoutfs, timeoutfspri — execute a function after a
specified length of time

. SYNOPSIS For drivers installed under the compatibility modes:

timeout(func, arg, ticks)
int (*func)();

caddr_t arg;

int ticks;

For fully-semaphored drivers:

timeoutfs(func, arg, ticks)
int (*func)();

caddr_t arg;

int ticks;

The parameters for timeoutpri are the same as for timeout; the parameters
for timeoutfspri are the same as for timeoutfs.

ARGUMENTS func kerne! function to invoke when the time increment expires
arg argument to the function
ticks number of clock ticks to wait before the function is called
. DESCRIPTION The timeout family of functions calls the specified function after a specified
time interval. After the specified number of clock ticks, the function speci-

fied by func is invoked with all interrupts disabled; it may choose to reenable
interrupts by invoking enable(D3X). Control is returned immediately to the
caller.

The timeout functions are useful when an event is known to occur within a
specific time frame, or when you want to wait for I/O processes when an
interrupt is not available or might cause problems. For example, some
robotics applications do not provide a status flag for determining when to
pump information to the robot’s controller. By using one of the timeout
functions, the driver can wait a predetermined interval and then begin
transferring data to the robot.

The system guarantees that the time that elapses between the call to timeout
and the execution of func is not less than the value specified by ticks. The
function is scheduled ficks after the next clock tick; thus, the average delay
typically is half a clock tick more than was requested. Note also that other
processing may cause the execution of func to take place some time after it
was scheduled. The delay is given in terms of a notional system clock that

. ticks at a rate determined by the constant HZ, which is defined in the
param.h header file (the actual tick rate of the system clock may be higher
than the value of HZ).

REAL/IX Kernel Reference Manual 3-183

timeout(D3X) timeout(D3X)

When the specified time has elapsed, the system arranges for the user-

defined function func to be called. The function is actually called from a

system daemon. The daemon is responsible for servicing other timer func-

tions, which means func cannot be allowed to block.! For these reasons,

func must adhere to the same restrictions as a driver interrupt handler: it .
can neither access the user(D4X) structure, nor use previously set local

variables. Furthermore, func should not call sleep(D3X), delay(D3X), or

psema(D3X). However, in a fully-semaphored driver, data in func can be

protected, if necessary, with spin locks (spsema(D3X) and svsema(D3X)).

When called from a driver using major- or minor-device semaphoring, the
semaphore used for timeout or timeoutpri is recorded in the kernel data
structure that controls the timeout. When the timeout period expires, an
attempt is made to lock the driver semaphore before calling the specified
function. If the lock attempt fails, the entry will be processed again on the
next clock interrupt.

SEMAPHORE RAMIFICATIONS

Drivers that call timeout or timeoutpri must be installed under the compati-
bility modes.

RETURN VALUE Under normal conditions, an integer timeout identifier is returned (which
may, in unusual circumstances, be set to 0). Otherwise if the timeout table is

full, the following panic message results: .

PANIC: Timeout table overflow
The size of the table is determined by the sysgen parameter NCALL. The
default setting should be sufficient for all but the most unusual

configuration.

All the timeout functions return an identifier that can be passed to the
untimeout(D3X) function to cancel a pending request.

Note that no value is returned from the called function.

LEVEL For timeout and timeoutfs - Base or Interrupt
For timeoutpri and timeoutfspri — Base only

daemon handling a particular timeout must be higher than the priority of the initiating process. Therefore, there
must be at least one such daemon at very high priority, usually at priority 0. The timeout and timoutfs calls
implicitly request the use of this high-priority daemon. The timeoutprl and tmeoutfsprl calls are for use only
from the base level of a process; these functions allow the REAL/IX Operating System to examine the priority
of the calling process and to arrange for a daemon of appropriate priority to handle the timeout processing. The
use of timeoutpri and timeoutfspri is preferred.

!System daemons typically operate at high priorities. For timeout processing to work correctly, the priority of the .

3-184 REAL/IX Kernel Reference Manual

| timeout(D3X) timeout(D3X)

SOURCE FILE os/clock.c
SEE ALSO KPG, "Synchronization”
delay/delayfs(D3X), iodone(D3X), lowait(D3X), sleep(D3X), spsema(D3X),
. svsema(D3X), ttywait(D3X), untimeout(D3X), wakeup(D3X)

EXAMPLE Refer to the untimeout(D3X) examples for an example of how to call
timeout family of functions.

REAL/IX Kernel Reference Manual 3—-185

ttclose(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

ttclose(D3X)

ttclose — close a TTY device

#include<sys/types.h>
#include<sys/tty.h>

ttclose(tp)
strxuct tty *tp;

ip address of the tty(D4X) structure associated with the device
being closed

The line discipline close function, ttclose, is called by the device driver
close(D2X) routine.

The ttclose function dissociates the device from the process that opened it
and resets the ISOPEN flag in the device internal state register
(tp->t_state). ttclose calls ttioctl, which calls the driver proe(D2X) rou-
tine with T_RESUME set to transmit any characters in the output queues
(tp—>t_outq and tp->t_buf) out to the terminal, clears out all the TTY
buffers and queues, and returns to the cfreelist(D4X) all cblock(s)
allocated to the device.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-186

Drivers calling ttclose must be installed under the compatibility modes.

None

Base Only (Do not call from an interrupt routine)

io/vmelttl.c

KPG, "Drivers in the TTY Subsystem”
ttopen(D3X)

REAL/IX Kernel Reference Manual

ttclose(D3X) ttclose(D3X)

EXAMPLE On the last close of a terminal device, the driver close(D2X) routine termi-
nates the logical data connection and disassociates the device from a process
that is specified in the tty structure (ttclose).

O In order to allow other protocols, a driver must access the ttclose
routine indirectly through the line discipline switch table (I_close is
defined in conf.h) (line 6).

Q The t_Jine member of the tty structure contains the line discipline (in
this case 0 (zero)) and serves as the index to the line discipline switch
table.

Q After the logical data connection is terminated, the driver would break
the physical connection (such as instructing the modem to drop car-

rier).
1 extern struct tty xx ttyl[l; /* Location of logical device structure */
2 xx_close(dev)
3 dev_t dev;
4 I
5 register struct tty *tp = xx_tty[minor(dev)];
6 (*linesw[tp->t_line].1l_close)(tp);
7

REAL/IX Kernel Reference Manual 3-187

ttin(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

ttin(D3X)

ttin — move a TTY character to the raw queue

#include<sys/types.h>
#include<sys/tty.h>

ttin(tp, code)
struct tty *tp;
int code;

p pointer to the tty(D4X) structure for a device

code [optional] set to L_.BREAK if the BREAK key was entered. Upon
receiving this code, ttin signals the processes identified by t_pgrp
that the key was received, then calls ttyflush(D3X) to release all
buffers and wake up any processes sleeping on t_outq, t_oflag,
and t_rawq.

The ttin function works through the tty receive buffer to convert newline,
carriage return, and uppercase characters and place them in the raw queue
t_rawq. The mode members of the tty structure define how these charac-
ters are converted.

If the number of characters in the raw queue exceeds the high water mark,
ttin calls the driver proc(D2X) routine (with the T_BLOCK flag set) to send
a stop character to the device.! When the raw queue character count exceeds
the TTYHOG level, ttin calls ttyflush to flush the tty input queue.
TTYHOG is defined in the #y.h header file of this manual. If the interrupt
character (typically DELETE) or the quit character is found, ttin sends the
appropriate signal to the process group associated with the device. If proc-
esses associated with the device are sleeping and ttin finds a line delimiter
character, ttin awakens the sleeping processes.

The ttin function also transmits characters to the terminal for display, if
ECHO is enabled.

When the terminal operates in a raw or non-canonical mode, the fifth and
sixth elements of the tty structure control character array indicate the
number of characters needed and the length of time waited before processes
associated with the device should be awakened. If the minimum character
count has been met, ttin awakens processes associated with the terminal.

!The high water mark is the point at which data being processed in the output queue of a clist(D4X) is

transmitted to the terminal.

3-188

REAL/IX Kernel Reference Manual

ttin(D3X) ttin(D3X)

SEMAPHORE RAMIFICATIONS

Drivers calling ttin must be installed under one of the compatibility modes.!

. RETURN VALUE None

LEVEL Base or Interrupt

SOURCE FILE io/lvme/ttl.c

SEE ALSO KPG, "Drivers in the TTY Subsystem”
getc(D3X), getch(D3X), getef(D3X), pute(D3X), putcb(D3X), putef(D3X),
ttread(D3X)

EXAMPLE When a driver is controlling a terminal device, it should use the TTY

subsystem. This subsystem is a set of routines that provide terminal inter-
face. Using the clist(D4X) and TTY data structures, the TTY subsystem
provides both buffering and semantic processing of character data. All the
information needed to perform I/O operations to a terminal is maintained in
the tty structure. Therefore, a tty structure exists for every possible
terminal device in the system.

Q After a driver receive interrupt routine validates an input character, it
stores the character in the receive buffer (t_rbuf) (line 24).

. O When the receive buffer is filled (line 25), it is added to the raw queue
and a new receive buffer is allocated (ttin) (line 29).

Q In order to allow other protocols, a driver must access the ttin routine
indirectly through the line discipline switch table (Linput is defined in
conf.h).

Q The tline member of the tty structure (line 29) contains the line

discipline (in this case 0 (zero)) and serves as the index to the line
discipline switch table.

INot all compatibility modes are supported on all machines. Refer to the Release Notes shipped with your
system.

REAL/IX Kernel Reference Manual 3-189

ttin(D3X) ttin(D3X)

Nk W

o

10

29
30
31
32

33

struct device /* Layout of physical device register */
{
int control; /* Physical device control word */
int status; /* Physical device status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */
}; /* End device */
extern struct tty xx_ttyll; /* Logical device structure location */
extern struct device xx_addr[]; /* Physical device register location */
extern int XX_cnt; /* Number of physical devices */

xx_rint(board)

int board; /* The hardware board causing interrupt */
{

register struct device *rp = xx_adddr([board]; /* Get device registers */
register struct tty *tp;

register int ¢, port;

while((c = rp->recv_char) & DATAVALID) != 0)
{ .
port = (c >> 8) & 0x7;

tp = &xx_ttyl(board << 3) & port];

/* After the character has been checked for errors and stripped to */
/* proper bit size, character is stored in receive buffer. */

*tp—>t_rbuf.c ptr++ = ¢;

if (-—tp->t_rbuf.c _count == 0)

{
/* driver must do operation to ensure the buffer added */
tp->t_rbuf.c_ptr —-= tp—>t_rbuf.c_size; /* to raw queue correctly */

(*linesw([tp->t_line] .l input)(tp);

3-190

REAL/IX Kernel Reference Manual

ttinit(D3X) ttinit(D3X)

NAME ttinit — initialize line discipline 0

SYNOPSIS #include<sys/types.h>
#include<sys/tty.h>
ttinit(tp)

struct tty *ty;

ARGUMENTS tp pointer to the tty(D4X) structure associated with the device
being opened
DESCRIPTION The TTY subsystem provides two functions, ttinit(D3X) and ttopen(D3X),

for the driver open(D2X) routine. The driver calls ttinit function the first
time a device is opened. ttinit resets the tline, t_iflag, t_oflag, ¢ lflag
members of the tty data structure. It also sets the default control modes
(t_cflag) and control characters (t_cc), and sets t_rsel and t_wsel to 0 for

select(D2X).

ttinit /s usable only for resetting line discipline 0. Using ttinit on
NOTE any other line discipline requires resetting t_line to a new value
after ttinit is called.

SEMAPHORE RAMIFICATIONS

Drivers calling ttinit must be installed under the compatibility modes.

RETURN VALUE None

LEVEL Base or Interrupt
SOURCE FILE io/vmeltty.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”

open(D2X), ttopen(D3X)

REAL/IX Kernel Reference Manual 3-191

ttinit(D3X) ttinit(D3X)

EXAMPLE When a driver open routine is called for a terminal device, the logical state
of the device is checked.

O If the device has not previously been opened (ISOPEN) and is not
currently being opened, the tty structure is initialized to its default
values (line 13).

O The address to the device command processing routine is provided for
the line discipline routines; and the hardware is initialized to the
present baud rate and error checking settings specified in the tty
structure. The defaults from ttinit are 9600 baud and 8-bit characters.
These defaults enable receiver and hang up on last close.

1 extern struct tty xx tty[]; /* Location of logical device structures */

3 xx_open(dev, flag)

4 dev_t dev;

5

6 register struct tty *tp;

7 register struct device *rp = &xx_addr[minor(dev) >> 3}; Get device regs */
8 register int port = minor(dev) & 0x07; /* Get port number */

9

10 tp = &xx_tty[minor(dev)];

11 if ((tp->t_state & (ISOPEN | WOPEN)) == 0)

12 {

13 ttinit(tp);

14 tp—>t_proc = xx proc;

15

16 /* The appropriate device registers would be set to match the */
17 /* values stored in the tty structure - hardware dependent. x/
18 } /* endif */

19

3-192 REAL/IX Kernel Reference Manual

ttiocom(D3X)

NAME

SYNOPSIS

ARGUMENTS

ttiocom(D3X)

ttiocom ~ common ioctl code for TTY drivers

#include(sys/types.h>
#include<sys/tty.h>
#include<sys/termio.h>

ttiocom(tp, cmd, arg, mode)
struct tty *tp;
int cmd, arg, mode;

ip

cmd

arg

mode

REAL/IX Kernel Reference Manual

pointer to the tty(D4X) structure associated with the device to

be controlled

command regulates a device's input or output controls; refer to
termio(7) for more information about the commands described

here

Valid commands (listed in alphabetic order) are

TCSBRK

TCFLSH

TCGETA

TCSETA

TCSETAW

TCXONC

Waits for the output to drain. If arg is 0, then sends a
BREAK character

If arg is 0, flushes the input queue; if 1, flushes the
output queue; if 2, flushes both the input and output
queues.

Gets the parameters associated with the terminal and
stores in the termio structure referenced by arg.

Sets the parameters associated with the terminal from
the structure referenced by arg. The change is
immediate.

The same as TCSETA except that you wait for the
output to drain before setting the new parameters.
This form should be used when changing parameters
that will affect output.

Starts/stops control. If arg is 0, suspends output; if 1,
restarts suspended output.

Flag indicates the subordinate form of a command that should be
selected, or pointer to the termio structure associated with the

device

Contains the value of the f_flag member of the associated special
device file (see file.h)

3-193

ttiocom(D3X)

DESCRIPTION

ttiocom(D3X)

Note that the ttiocom function determines if an integer or an address is present
in arg by the value of the cmd argument.

Changing the many parameters associated with terminal devices requires close
cooperation between the driver and the TTY subsystem. The ttiocom function
provides access to reading and changing the various TTY parameters contained
in the tty structure. Changing such parameters usually requires that device
registers also be altered. The driver is responsible for changing these registers.

A request to read or change terminal parameters is initiated by an ioctl(2)
system call from a user process. This causes the driver foctl(D2X) routine to be
called. The driver locates the tty structure associated with the device and calls
the common foetl routine ttiocom.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-194

Drivers calling ttiocom must be installed under the compatibility modes.

Under normal conditions, 0 (zero) is returned. Otherwise, 1 is returned to
indjcate the device registers must also be changed (1 is not an error code).

The following error values (set in u.u_error) are also possible:

O EFAULT bad address. This value is set under the following conditions for
the specified commands:

= TCGETA copyout failed
» TCSETA copyin failed

O EINVAL invalid argument. This value is set under the following condi-
tions for the specified commands:

= TCFLSH arg not in the range of 0 to 2

= TCSETA line discipline value in the c_line member of the
termio structure not O

» TCXONC arg not in the range of 0 to 3
Base Only (Do not call from an interrupt routine)
io/vmeltty.c

KPG, "Drivers in the TTY Subsystem”
ioctl(D2X), ttioctl(D3X)

REAL/IX Kernel Reference Manual

ttiocom(D3X)

EXAMPLE

ttiocom(D3X)

A process can get or set terminal parameters with the foctl(2) system call.

Q All standard termio(7) commands access parameters in one or more of the

members in the tty structure, and possible changes to these parameters
are made first (line 8).

The switch statement (line 9) should contain cases that handle driver-
specific commands, such as getting the device registers.

The default is to handle termio(7) commands. If an invalid command is
present, ttiocom will update u.u_error with EINVAL.

If changes are made in the parameters of the tty structure (line 13), then
the device registers may also need to be altered (lines 14 and 15); the
driver would make the necessary changes upon return from the ttiocom
function.

Changes are usually determined by examining the parameter settings in the
t_iflag, t_oflag, t_cflag, and t_Jflag members of the tty(D4X) structure
for changes such as baud rate, parity type, testing, and so forth. These

values are hardware dependent.

The line discipline switch table is mot to be used for a line discipline 0 ioctl

request.

1 extern struct device xx_addr(]: /* Physical device register location */
2 extern struct tty xx_ttyll; /* logical device structure location */

4 xx_ioctl(dev, cmd, arg, flag)
5 dev_t dev;

6 caddr_t arg;
7

8

9

/* Get device regs

*/

{

register struct tty *tp = &xx_tty[minor(dev)]; /* Get tty structure */
switch(emd) {

10 case statements for driver-specific commands

11 default:

12 handle termio(7) commands

13 if (ttiocom(tp, cmd, arg, flag) == 1) {

14 register struct device *rp;

15 rp = &xx_addr{minor(dev) >> 3];

16 1

17]

18)

REAL/IX Kernel Reference Manual

3-195

ttioctli(D3X)

NAME

SYNOPSIS

ARGUMENTS

3-196

ttiocti(D3X)

ttioctl — default line discipline ioctl routine

#include(sys/types.h>

#include<sys/tty.h>

#include<sys/termio.h>

ttioctl(tp, comd, arg, mode)
struct tty *tp;
int cmd, arg, mode;

p

cmd

arg

mode

pointer to the tty(D4X) structure associated with the device

controlled

ttioctl cmds are

LDOPEN

LDCLOSE

LDCHG

allocates a receive buffer, a single cblock, to the
t_rbuf character control block (ccblock), and calls the
driver proc routine with the T_INPUT command so
input can be initiated. For drivers that use ttyd (the tty
daemon), it then allocates another cblock for the raw
input buffer (t_ribuf).

resume output by calling the driver proc(D2) routine
with the T_RESUME command, wait for all characters
remaining in the output queue to drain, flushes the
receive buffer (t_rbuf), and deallocates the cblocks
assigned to the receive and transmit character control
blocks (t_rbuf and t_tbuf).

moves the entire character list of cblocks on the
canonical queue to the raw queue if ICANON has been
changed by a previous ioctl calling the t_flag member
of the tty structure.

flag indicates the subordinate form of a command that should be
selected, 0 is for LDOPEN and LDCLOSE. arg is the previous value
of t_Mlag if cmd is LDCHG.

contains the value of the f_flag member of the associated special
device file (see file.h).

Note that ttioctl function determines if an integer or an address is present in arg
by the value of the cmd argument.

REAU/IX Kernel Reference Manual

ttioctl(D3X) ttiocti(D3X)

DESCRIPTION Changing the many parameters associated with terminal devices requires close
cooperation between the driver and the TTY subsystem. The ttioctl function
provides access to reading and changing the various TTY parameters contained
in the tty structure. Changing such parameters usually requires that device

. registers also be altered. The driver is responsible for this.

Internally, ttioctl is called by ttiocom(D3X). These two functions both affect the
appropriate parameter settings and return to the driver. ttioctl is specialized
because it deals with parameters related to buffering and character processing.
It is associated with the terminal protocol or line discipline.

SEMAPHORE RAMIFICATIONS
Drivers calling ttioctl must be installed under the compatibility modes.

RETURN VALUE None

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE io/vmelttl.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”

foctl(D2X), ttiocom(D3X)

REAL/IX Kernel Reference Manual 3-197

=

ttopen(D3X) ttopen(D3X)

NAME ttopen — open a TTY device

SYNOPSIS #include<sys/types.h>
f#include<sys/tty.h>
ttopen(tp) .
struct tty *tp;

ARGUMENTS tp pointer to the tty(D4X) structure associated with a device

DESCRIPTION The TTY subsystem provides the ttinit(D3X) and ttopen(D3X) functions for the

driver open(D2X) routine. The driver calls ttinit the first time a device is opened
to set the tty structure to default values (including setting the line discipline to
zero). The ttopen function is called each time the driver open(D2X) routine is
called.

ttopen establishes the connection between the process and the device (t_pgrp),
then calls ttioctl with the LDOPEN command, which calls the driver proc(D2X)
routine with T_INPUT set.

SEMAPHORE RAMIFICATIONS

Drivers calling ttopen must be installed under the compatibility modes.

RETURN VALUE None. ttopen sets t_state to ISOPEN.

LEVEL Base Only (Do not call from an interrupt routine) .
SOURCE FILE io/vme/ntl.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”

linesw(D4X), open(D2X), ttclose(D3X), ttinit(D3X)

EXAMPLE When a terminal device is being opened, the driver open routine is responsible
for establishing a physical and logical data connection.

Q After the default settings are made in the tty structure, and the device
registers have been set (refer to ttinit(D3X)), the driver determines if a
physical connection has been made by testing carrier from the modem
(line 20).

O If a carrier is present (line 22), the tty structure indicates a physical
connection has been made (line 24). Otherwise, the tty structure indicates
a physical connection has not been made. If the process wishes to wait for
carrier, and carrier is not present, the driver waits for carrier (line 30).

3-198 REAL/IX Kernel Reference Manual

ttopen(D3X) ttopen(D3X)

Q The last operation in the driver's open routine establishes a logical data
connection and associates the device with a process by making the
appropriate settings in the tty structure (line 34).

. O In order to allow other protocols, a driver must access the ttopen routine
indirectly through the line discipline switch table (I_open is defined in
conf.h). The t_line member of the tty structure contains the line dis-
cipline (in this case 0 (zero)) and serves as the index to the line discipline
switch table.

1 struct device /* Layout of physical device registers */
2

3 int control; /* Physical device control word *

4 int status; /* Physical device status word */

5 short modem_status; /* Modem carrier (upper 8 bits) */

6 /* and ring (lower 8 bits) status word */
7 short recv_char; /* Receive character from device */

8 short xmit_char; /* Transmit character to device */

9)

10 extern struct device xx_addr([]; /* Physical device register location */
11 extern struct tty xx ttyl]; /* Logical device structure location */
12 :

13 xx_open(dev, flag)

14 dev_t dev;

15 {

16 register struct tty *tp = &xx_tty[minor(dev)];
17 register struct device *rp = &xx_addr[minor(dev) >> 3];
/* Get device regs */

18

19

20 if ((rp—>modem_status & (0x010 << port)) != 0) {
22 tp->t_state |= CARR_ON;

23 } else |

24 tp->t_state &= "CARR ON;

25 }

26 if ((flag & FNDELAY) == 0) {

27 while((tp—>t_state & CARR_ON) == 0) {
29 tp->t_state |= WOPEN;

30 sleep((caddr_t)&tp—>t_cang, TTIPRI);
31 }

32 }

33 }

34 (*linesw([tp—>t_line].l_open)(tp);

REAL/IX Kernel Reference Manual 3-199

ttout(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

ttout(D3X)

ttout — move TTY characters from t_outq to t_tbuf

#include<(sys/types.h>
#include<sys/tty.h>

ttout (tp)
struct tty *tp;

p pointer to the tty(D4X) structure associated with the device

The ttout function is called by the transmit portion of the driver’s intr(D2X)
routine. ttout is passed the address of the tty structure associated with the
device.

The ttout function moves characters from the output queue to the transmit
buffer in preparation for output by the driver. The ttout function imple-
ments the actual timing delays needed during output. When it detects a delay
in the output queue, it uses the timeout(D3X) function to arrange for a
restart of the output after the appropriate time has elapsed. This delayed
entry invokes the driver proc(D2X) routine with T_TIME set to resume
output.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-200

Drivers calling ttout must be installed under the compatibility modes.

Under normal conditions, 0 (zero) is returned when there is no more data to
process. CPRES is returned if there are characters in the output queue.
{CPRES is set to octal 100000 in #y.h).

Base or Interrupt

io/vmel/itl.c

KPG, "Drivers in the TTY Subsystem”
linesw(D4X), ttin(D3X)

REAL/IX Kernel Reference Manual

ttread(D3X) ttread(D3X)

NAME ttread — read characters from the canonical input queue
SYNOPSIS #include¢sys/types.h>

#include<sys/tty.h>

ttread(tp)

struct tty *tp;

ARGUMENTS ip pointer to the tty(D4X) structure associated with the device
from which the character is read

DESCRIPTION The driver read(D2X) routine receives a device number as an argument. It
uses this device number to determine the tty structure for the device being
read. Then it uses the address of the tty structure as an argument to
ttread.

ttread transfers data from the canonical input queue into user data space. If
there are no characters in the canonical queue, an attempt is made to move
characters into the canonical from the raw input queue. If there are still no
characters available to be read, the calling process is put to sleep until
sufficient characters arrive to satisfy the read, or the read times out via the
VTIME option (termio(7)). If input to the raw queue was previously
blocked (t_state & T_BLOCK) and the number of characters in the raw
queue falls below the low water mark, ttread calls the driver’'s proc(D2X)
routine with T_UNBLOCK to allow input into the raw queue to continue.

SEMAPHORE RAMIFICATIONS
Drivers calling ttread must be installed under the compatibility modes.

RETURN VALUE Under normal conditions, no value is returned. Otherwise, ttread sets
u.u_error to EFAULT if an error occurs when data is being transferred to
the user data area. It is the driver's responsibility to check u.u_error when
ttread is called.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE io/vmelitl.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”

gete(D3X), getch(D3X), getef(D3X), linesw(D4X), putc(D3X), putcb(D3X),
putef(D3X), read(D2X), ttin(D3X)

REAL/IX Kernel Reference Manual 3-201

ttread(D3X) ttread(D3X)

EXAMPLE When a process requests data from a terminal device, the driver read

routine locates the tty structure associated with the device.

O The character data is copied from the input queues to the user data
area (line 7). In order to allow other protocols, a driver must access
the ttread function indirectly through the line discipline switch table .
(L_read is defined in conf.h).

O The t_line member of the tty structure contains the line discipline (in
this case, 0 (zero)) and serves as the index to the line discipline switch
table.

1

U W

®

extern struct tty xx ttyl[l; /* Logical device structures location */

xx_read(dev)
dev_t dev;
{
register struct tty *tp = &xx tty[minor(dev)];

(*linesw[tp—>t_line].l_read)(tp);

3-202

REAL/IX Kernel Reference Manual

ttrstrt(D3X) ttrstrt(D3X)

NAME ttrstrt — restart TTY output after delay timeout
SYNOPSIS ttrstrt(tp)
struct tty *tp:
ARGUMENTS tp pointer to the tty(D4X) structure
DESCRIPTION This function restarts TTY output following a delay timeout. ttrstrt calls the

driver proc(D2X) routine with the T_TIME command.
SEMAPHORE RAMIFICATIONS
Drivers calling ttrstrt must be installed under the compatibility modes.

RETURN VALUE None

LEVEL Base or Interrupt
SOURCE FILE io/vmeltty.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”
timeout(D3X)
EXAMPLE When a TCSBRK command is issued in a ioctl(2) system call:

Q The line discipline routine ttiocom(D3X) calls the driver proc routine
with the T_BREAK command (enters the xx_proc routine at line 33).

Q The driver proc routine sends a break to the device (line 34).

QO After the break is sent, output must be suspended for 250 milliseconds
(HZ divided by 4).

O The timeout(D3X) function is used to call ttrstrt after the 250 milli-
seconds have elapsed (line 37).

O The ttrstrt function calls the driver proc routine with the T_TIME
command so that output can be resumed (this call enters xx_proc at
line 23).

O Refer to the following figure (lines 52 through 67) for the code for the

T_OUTPUT case that is shown as comments in lines 29 and 30 of this
example.

REAL/IX Kernel Reference Manual 3-203

ttrstrt(D3X) ttrstrt(D3X)

HFEOONNAOS WM

R o

struct device /* Layout of physical device registers */
{

int control: /* Physical device control word */

int status; /* Physical device status word */

short modem_status; /* Modem carrier (upper 8 bits) */

/* and ring (lower 8 bits) status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */

}:

extern struct device xx_addr(]; /* Physical device registers */

extern struct tty xx ttyll; /* Logical device structures location */
xx_proc(tp, cmd) /* Driver command processing routine */
register struct tty *tp;

int cmd;

{

register int dev = tp - xx_tty; /* Compute minor device number */

register struct device *rp = &xx_addr[dev >> 3]; /* Get device regs */
register int portmask = 0x0100 << (dev & 0x7);
/* Setup output port mask */
switch(cmd)
{
case T_TIME:
tp->t_state &= "TIMEOUT;
goto resume_output; /* Resume normal character output */

case T_OUTPUT: /* Perform output processing of data to the device */
resume_output:
/* Transmit next tbuf character of the tty structure */
/* Refer to ttout(D3X) for example program code */
break;

case T_BREAK:
rp->control |= XX_BRK;
rp->xmit_char |= portmask;
tp—>t_state |= TIMEOUT;
timeout (ttrstrt, tp, HZ/4); /* Disable timeout condition 1/4 of */
/* a second (HZ) or 250 milliseconds */
break;

3-204

REAL/IX Kernel Reference Manual

tttimeo(D3X) tttimeo(D3X)

NAME tttimeo — time a character-at-a-time terminal read request
SYNOPSIS #include<sys/types.h>
#include<sys/tty.h>
. #include<sys/termio.h>
tttimeo(tp)
struct tty *tp;
ARGUMENTS ip pointer to the current tty structure
DESCRIPTION This function times a character-at-a-time terminal read request. A terminal

may select to process characters a character at a time or a line at a time.
Canonical processing is used on the latter. One method of handling charac-
ters that are received one at a time, is to set a time limit to wait until a
character is received. This lets the program interpreting the input differenti-
ate between characters keyed in and those that are transmitted by terminal
protocol. The TIME constant defined in termio(7) provides more insight into
timing data input.

The time limit is expressed in tenths of a second and is set in the constant
t_cc[VTIME] variable of the tty structure. tttimeo is called by a subroutine
set up to receive characters after t_cc[VIIME] tenths of seconds. After
tttimeo is called, the caller must turn on IASLP in t_state and then call
sleep using (caddr_t)stp~>t_rawqg as the sleep event address and TTIPRI
. as the sleep priority.

tttimeo requires the following for input:

O RTO (timeout flag) must be disabled (in t_state in the tty structure)

O TACT (timeout in progress) must be set (in t_state)

Q VTIME must be greater than zero

O ICANON must be disabled (in t_lflag of the tty structure)
tttimeo works by setting t_state to RTO and TACT, and then calling
timeout to restart tttimeo in VIIME times HZ/10 ticks. When tttimeo is
restarted, t_state is checked for RTO. If it is on, t_state is then checked for
IASLP. If TASLP is on, tttimeo turns off IASLP in t_state, and wakes up
any processes sleeping on the t_rawq taw input buffer.

SEMAPHORE RAMIFICATIONS

. Drivers calling tttimeo must be installed under the compatibility modes.

REAL/IX Kernel Reference Manual 3-205

tttimeo(D3X)

RETURN VALUE

tttimeo(D3X)

tttimeo returns prematurely if t_state is set to ICANON or t_cc[VTIME] is
zero, or if t_rawgq.c_cc is zero and t_ce[VMIN] is on (timing does not begin
until the first character is input). If the system callout table is corrupted
(and presumably the system in general), timeout panics the system. Upon
completion, t_delct is set to 1.

Base or Interrupt

KPG, "Drivers in the TTY Subsystem”
canon(D3X), timeout(D3X)

The following example shows the use of tttimeo (line 15) in a terminal input

/* line discipline input routine - transfer characters into rawq */

/* transfer characters into rawq from t_rbuf, doing any input
translations necessary at this point. Echo character to outq if

if(tp—>t_rawg.c_cc >= tp->t_cc[VMIN]){
tp—>t_delct = 1;

else if (tp—>t_cc[VTIME]) [
if(!(tp->t_statesTACT))
tttimeo(tp);

LEVEL
SOURCE FILE io/lvme/ttl.c
SEE ALSO
EXAMPLE
routine.
1
2 xxin(tp, code)
3 register struct tty *tp;
4 {
5
6
7 appropriate */
8 if(1(flg & ICANON)){
9 tp—>t_state &= "RTO;
10
11
12 }
13
14
15
16 }
17 }
18)}
3-206

REAL/IX Kernel Reference Manual

ttwrite(D3X) ttwrite(D3X)

NAME ttwrite — move a TTY character from user address space to the output
queue
SYNOPSIS #include<¢sys/types.h>

. #include<sys/tty.h>
ttwrite(tp)
struct tty *tp;

ARGUMENTS ip pointer to the tty(D4X) structure associated with the device

DESCRIPTION Displaying a character on the screen of a terminal is simpler than reading
information from the keyboard because only one queue, the output queue
(t_outq), is involved. Still, activities at both base and interrupt levels are
involved. A transmit buffer provides the buffering of characters between the
base and interrupt portions.

A terminal driver’'s write(D2X) routine calls ttwrite to move the characters
output from the user’s data space to the output queue. ttwrite also calls the
driver's access routine to initiate actual output.

Once initiated, output is sustained by interrupts from the device. A transmit

complete interrupt causes control to be passed to the driver transmit inter-

rupt handler. The driver outputs the next character in the transmit buffer to

the device. If the output buffer is empty, ttout(D3X) is called to move
. characters from the output queue to the buffer.

The driver write routine receives the device number as an argument. It uses
this number to determine the tty structure for the device being written.
The address of this structure is then passed to ttwrite.

The ttwrite function transfers characters from user data space to the output
queue as long as the output queue high water mark has not been exceeded.
The characters are processed as they are put on the output queue to expand
tabs and to add appropriate delays for newline, carriage return, and back-
space characters. When the high water mark is reached, ttwrite calls
sleep(D3X) to wait on the output queue. The ttwrite function calls the driver
proc(D2X) routine with T_OUTPUT set to initiate or resume output to the
device.

SEMAPHORE RAMIFICATIONS

Drivers calling ttwrite must be installed under the compatibility modes.

REAL/IX Kernel Reference Manual 3-207

ttwrite(D3X)

RETURN VALUE

LEVEL
SOURCE FILE

SEE ALSO

EXAMPLE

ttwrite(D3X)

Under normal conditions, no value is returned. Otherwise, ttwrite sets
u.u_error to EFAULT if an error occurs when data is being transferred
from the user data area.

An EFAULT (bad address) error can be returned in u.u_error if the
remaining characters cannot be written from user program space (u.u_base)

to a cblock(D4X). This indicates that the ublock is corrupted, or that the

cblock addresses are garbled.

Base Only (Do not call from an interrupt routine)
io/vmel/ttl.c

KPG, "Drivers in the TTY Subsystem”
linesw(D4X)

When a process requests data be transferred to a terminal device, the driver
write routine locates the tty structure associated with the device. The data
is copied from the user data area to the output queues (line 7) with a call
through the line switch table 1inesw(D4X).

1 extern struct tty xx ttyll; /* Location of logical device structures *x/

register struct tty *tp = sxx_tty[minor(dev)];

(*linesw([tp—>t_line].l write)(tp):
/* Copy character data from user data area to output queues */

2

3 xx_write(dev)
4 dev_t dev;

5

6

7

8

9

3-208

REAL/IX Kernel Reference Manual

ttxput(D3X) ttxput(D3X)

NAME ttxput — put characters into the TTY output buffer (t_outq)

SYNOPSIS #include<sys/types.h>
#include<sys/tty.h>

. ttxput(tp, ucp, ncode)
struct tty *tp;
union {
ushort ch;
struct cblock *ptr;
} ucp;
int ncode;

ARGUMENTS tp pointer to the tty(D4X) structure for the terminal being
addressed

ucp either an unsigned short with the character to be output in the
least significant byte, or a pointer to a cblock(D4X) structure
containing the characters to be output on the terminal screen

ncode set to zero if ucp is an unsigned short, or set to the number of
characters to be output if ucp is a pointer to a cblock

DESCRIPTION This function transfers character passed to it to the output queue, t_outq.
ttxput also does output character translation if

. O t_state does not have EXTPROC (external processing) on and t_oflag
has OPOST set.

Q t_state has EXTPROC set, but t_lflag has XCASE set. XCASE
processing is always done in ttxput if EXTPROC is set.

ttxput places all characters passed to it into t_outq. In addition, if
EXTPROC is not on and OPOST is set, ttxput performs the output proc-
essing described under the t_oflag member of the tty structure. This struc-
ture is documented under termio(7). This processing includes any transla-
tions of characters to the t_outq (for example, translating a "\n" to both "\n"
and "\r"), and setting up for any delays necessary in outputting a special
character like vertical tab, form feed, or carriage return. The delaying
technique is then left to the line discipline output routine. ttxput places a
QESC “character” into the t_outq followed by the actual character ORed
with an 0200 (octal), if the character is a delayed character. When processing
QESC character, the line discipline output routine should perform any
appropriate delaying technique after outputting the character.

terminal. The line discipline input routine calls ttxput to echo characters to
the terminal if the ECHO bit of t_)flag is set. The line discipline write
routine also calls ttxput to output characters to the terminal.

. ttxput is called from any routine wishing to output a character to the

REAL/IX Kernel Reference Manual 3-209

tixput(D3X) ttxput(D3X)

SEMAPHORE RAMIFICATIONS

Drivers calling ttxput must be installed under the compatibility modes.

RETURN VALUE None. .

LEVEL Base or Interrupt
SOURCE FILE io/vmelttl.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”

ttin(D3X), ttwrite(D3X)

EXAMPLE The following example uses ttxput (line 13) in a terminal input routine to
echo characters to the terminal.

1 /* line discipline input routine - transfer

2 * characters to rawq from rbuf

3 */

4 xxin(tp, code)

5 register struct tty *tp;

6 I

7 register c;

8 c = *tp->t_rbuf.c ptr++;

9 /* transfer characters from t_rbuf to t_rawqg performing input
10 translation if necessary */

11 if (flg & ECHO) |

12 /* place character - ‘¢’ - on t_outq */

13 ttxput(tp, ¢, 0);

14 /* initiate physical output */

15 (*tp->t_proc)(tp, T_OUTPUT);

16 }

17 /* check to see if non—canonical timing should be done */
18 }

3-210 REAL/IX Kernel Reference Manual

ttyflush(D3X) ttyflush(D3X)

NAME ttyflush — release TTY buffers
SYNOPSIS #include<sys/types.h>
#include<lsys/tty.h>

ttyflush(tp, rwflaqg)
struct tty *tp;
int rwflag;

ARGUMENTS p pointer to the tty(D4X) structure associated with the device

rwflag flag indicates whether use is in conjunction with a read or write
operation. Valid values for this flag are FREAD and FWRITE.

DESCRIPTION This function releases TTY buffers.
If cmd is FREAD, ttyflush
1. releases the buffers in t_canq and t_rawq to the cfreelist(D4X)
2. calls the driver proc(D2X) routine with T_RFLUSH set
3. awakens any processes sleeping on t_rawq
If cmd is FWRITE, ttyflush
1. releases the buffers in t_outq to the cfreelist
2. calls the driver proc routine with T_WFLUSH set
3. awakens any processes sleeping on t_outq
SEMAPHORE RAMIFICATIONS
Drivers calling ttyflush must be installed under the compatibility modes.

RETURN VALUE None

LEVEL Base or Interrupt
SOURCE FILE io/fvmel/tty.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”

cblock(D4X), cirbuf(D3X)

REAL/IX Kernel Reference Manual 3-211

ttywait(D3X) ttywait(D3X)

NAME ttywait — delay a process until character 1/0 operation is complete |
|

SYNOPSIS #include<sys/types.h> |
#include<(sys/tty.h>
ttywait(tp) .
struct tty *tp;

ARGUMENTS Ip pointer to the tty(D4X) structure associated with the device

DESCRIPTION This function delays the execution of a process until the output of the serial

device is drained.
SEMAPHORE RAMIFICATIONS

Drivers calling ttywait must be installed under the compatibility modes.

RETURN VALUE None

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE io/vme/ity.c
SEE ALSO KPG, "Drivers in the TTY Subsystem”
delay(D3X), iodone(D3X), iowait(D3X), sleep(D3X), timeout(D3X),
untimeout(D3X), wakeup(D3X) .

3-212 REAL/IX Kernel Reference Manual

undma(D3X) undma(D3X)

NAME undma - unlock memory locked with userdma(D3X)

SYNOPSIS undma(base, count, rw)
int base, count, rw;

ARGUMENTS All arguments must match exactly the arguments used with the corre-
sponding userdma call.

base the start address of the user data area
count the size of the data transfer, in bytes
w flags to determine whether the access is a read or write operation

and whether to lock down the memory. Refer to userdma(D3X)
for the valid values.

DESCRIPTION undma reverses the effect of userdma(D3X).

undma assumes that the parameters it is given are exactly as
per the original call to userdma. In any case, it has no ready
means by which to validate them. Passing incorrect parameters
to the undma function will give undefined and potentially

e catastrophic results.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling undma.

RETURN VALUE None.

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE os/probe.c
SEE ALSO klock(D3X), kunlock(D3X), useracc(D3X), userdma(D3X)

REAL/IX Kernel Reference Manual 3-213

untimeout(D3X) untimeout(D3X)

NAME untimeout - cancel prior timeout/timeoutfs/timeoutpri/timeoutfspri(D3X)
function call

SYNOPSIS untimeout (id)
int id;
ARGUMENTS id identification value generated by a previous timeout/timeoutfs

function call
DESCRIPTION The untimeout function cancels a pending timeout request.
SEMAPHORE RAMIFICATIONS
None.

RETURN VALUE None.

LEVEL Base or Interrupt
SOURCE FILE os/clock.c
SEE ALSO KPG, "Synchronization”

DELAY(D3X), delay/delayfs(D3X),
timeout/timeoutfs/timeoutpri/timeoutfspri(D3X), ttywait(D3X)

EXAMPLE A driver may have to repeatedly request outside help from a computer
operator. The timeout function is used to delay a certain amount of time
between requests. However, once the request is queued, the driver may want
to cancel the timeout operation before it expires. This is done with the
untimeout function.

In a driver open(D2X) routine, after the input arguments have been verified,
the status of the device is tested. If the device is not online, a message is
displayed on the system console. The driver schedules a wakeup call (line 41)
and waits for 5 minutes. If the device is still not ready, the procedure is
repeated.

When the device is made ready, an interrupt is generated. The driver
interrupt handling routine notes there is a suspended process. It cancels the
timeout request (line 61) and wakens the suspended process (line 63). There
is also code (lines 42 through 48) to cancel the timeout if the process that is
sleeping while waiting for the device receives a signal, In this case, cleanup is
effected by canceling the pending timeout request and issuing a
klongjmp(D3X) to return.

3-214 REAL/IX Kernel Reference Manual

untimeout(D3X)
1 struct mtu_device /*
2
3 int control; /*
4 int status; /*
5 int byte_cnt; /*
6 paddr_t baddr; /*
7) /*
8 struct mtu Vad
9 {
10 struct buf *mtu_head; /*
11 struct buf *mtu_tail; /*
12 int mtu_flag; /*
13 int mtu_to_id; /*
14
15) /*
16 extern struct mtu_device *mtu_addr[];
17 extern struct mtu mtu_tbl[};
18 extern int mtu_cnt;
19
20 mtu_open(dev, flag)
21 dev_t dev;
22 {
23 register struct mtu *dp;
24 register struct mtu_device *rp;
25 if ((minor(dev)>> 3) > mtu_cnt) [/*
26 u.u_error = ENXIO; /*
27 return;
28 } /*
29 dp = &mtu_tbl[minor(dev)];
30 if (dp~>mtu_flag & MTU_BUSY) != 0) {
31 u.u_error = EBUSY;
32 return;
33 }
34 dp->mtu_£flag = MTU_BUSY; /*
35 rp - xx_addr[minor(dev) >> 3]; /*
36 oldlevel2 = splhi();

REAL/IX Kernel Reference Manual

untimeout(D3X)

Layout of physical device registers %/

Physical device control word */
Physical device status word */
Number of bytes to be transferred */~
DMA starting physical address */

end device */

Magnetic tape unit logical structure */
Pointer to I/O queue head */
Pointer to buffer I/O0 queue tail */

Logical status flag */
Time out id number */

end mtu */

/* Location of device registers */
/* Location of device

structures */

If device does not exist, */
then return error condition */
endif */

/* Get logical device struct */
/* If device is in use, */

/* return busy status */

/* endif =*/

Indicate device In use & clear flags */
Get device regs */

3-215

untimeout(D3X) untimeout(D3X)

37 /* While tape not loaded, display mount request on console */
38 while((rp->status & MTU_LOAD) == 0) {

39 cmn_err(CE_NOTE, “Tape MOUNT request for driver $d”, minor(dev) & 0x3);
40 dp->mtu_flag |= MTU_WAIT; /* Indicate process suspended */
41 dp—>mtu_to_id = timeoutpri(wakeup, dp, 5*60*HZ); /* Wait 5 min */
42 /* Wait on tape load. If user aborts process, release tape device by clearing flags */
43 if (sleep(dp, (PCATCH | PZERO + 2)) == 1) [

44 dp->mtu_flag = 0;

45 untimeout (dp->mtu_to_id);

46 splx_fast(oldlevel2);

47 klongjmp(); /* Abort open(2) system call */

48 }

49] /* end while »/

50 splx(oldlevel2);

51 }

52

53 mtu_int(cntr)

54 int cntr; /* Controller that caused the interrupt */
55 {

56 register struct mtu_device *rp = xx addr|cntr]; /* Get device regs */
57 register struct mtu *fp = smtu_ tblicntr >> 3 | (rp—>status & 0x3)];

59 /* If process is suspended waiting for tape mount, */
60 if ((dp->mtu_flag & MTU_WAIT) != 0) {

61 untimeout(dp—>mtu_to_id); /* cancel timeout request */
62 dp—>flag &= “MTU_WAIT; /* Clear wait flag =*/

63 wakeup(dp) ; /* Awaken suspend process */
64 }

65

3-216 REAL/IX Kernel Reference Manual

upath(D3X) upath(D3X)

NAME upath — copy data from user space to kernel space

SYNOPSIS upath(userbuf, kernelbuf, maxbufsz)
caddr_t userbuf, kernelbuf:;

. int maxbufsz;

ARGUMENTS userbuf user program source address from which data is transferred
kemnelbuf kernel destination address to which data is transferred

maxbufsz maximum number of bytes to move (determined by buffer that
was allocated)

DESCRIPTION The upath function copies data from a user process to a kernel process. It is
similar to copyin(D3X), except that copyin moves the specified number of
bytes, whereas upath copies until it encounters a NULL character (the
NULL is copied) or reaches the number of bytes specified by maxbufsz.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling upath.

RETURN VALUE If successful, upath returns the number of bytes copied, not including the
NULL. Otherwise, it returns one of the following:

. O -1 indicates a paging fault (the driver tried to access a page of memory
for which it did not have read access);!the driver should set the
u.u_error member of user(D4X) to EFAULT.

Q -2 indicates that no NULL character was found; the driver should set
the u.u_error member of user(D4X) to E2BIG.

LEVEL Base Only (Do not call from an interrupt routine)

SOURCE FILE ml/*/userio.s

REAL/IX Kernel Reference Manual 3-217

upath(D3X) upath(D3X)

SEE ALSO copyin(D3X)

EXAMPLE The following code illustrates how upath is called:

len = upath((caddr_t)ap, vaddr, cc);
if (len == -1) {
u.u_errxor = EFAULT;
return;
}
if (len == -2)
u.u_error = E2BIG;
return;

—

3-218 REAL/IX Kernel Reference Manual

useracc(D3X) useracc({D3X)

NAME useracc — verify whether user has access to memory

SYNOPSIS #include<sys/types.h>
finclude<sys/buf.h>

int

useracc(base, count, access)
int base;

int count, access;

ARGUMENTS base the start address of the user data area (typically taken from the
u.u_base member of the user structure).

count the size of the data transfer in bytes (for example, the u.u_count
member of the user(D4X) structure).

w flags to determine whether the access is a read or write opera-
tion, and whether or not to lock down the memory. Valid values
are:

B_READ specifies a write into memory (the user is per-
forming a read operation). This requires that the
user have write access permission for the speci-
fied data area.

B_WRITE specifies a read from memory. It requires read
access permission for the data area. (B_LREAD
and B_WRITE are defined in the system header
file buf.h).

B_PHYS causes the user virtual memory (described by base
and count) to be faulted, if necessary, and then
locked. This guarantees that the buffer will not be
paged out during the I/0O transfer.

SEMAPHORE RAMIFICATIONS
No spin locks should be held when calling userace.

DESCRIPTION For raw 1/0, a driver must verify that a user has access permission to the
memory area specified in a read(D2X), write(D2X), or ioctl(D2X) system
call. The kernel function useracc performs this verification. It is not neces-
sary to use useracc for buffered I/0 (including use of the copyin(D3X) and
copyout(D3X) functions).

Note that, when used with the B_PHYS flag, useracc is equivalent to the
userdma(D3X) function.

REAL/IX Kernel Reference Manual 3-219

useracc(D3X)

RETURN VALUE

LEVEL
SOURCE FILE

SEE ALSO

EXAMPLE

3-220

useracc(D3X)

If successful, useracc returns 1. Otherwise, 0 (zero) is returned and an error
code is set in w.u_error. Possible errors are:

EAGAIN Insufficient kernel resources to lock page. .

EFAULT B_READ is set, but the memory is marked as being read-
only (a read from a device has to write to memory, which is
not allowed).

EFAULT The memory described by base and count is not within the
user’s address space.

Base Only (Do not call from an interrupt routine)
os/probe.c

klock(D3X), kunlock(D3X), rtuser(D3X), suser(D3X), undma(D3X),
userdma(D3X)

With a RAM disk, direct I/O requests can be handled in the driver read and
write routines, as long as the I/O requests are for one or more complete
blocks of information.

Q nblks defines the blocks to be read (line 8) or written (line 37) with
direct 1/0 (physio(D3X)) to or from a block device. The data must be .
moved as a single complete block or multiples of complete blocks

O For a read request, a test is made to determine if the I/0 request is in
the limits of the RAM disk (line 12) and, if so, the driver computes
the number of blocks that can be copied (line 14).

U For a write request, a test is made to ensure that there are one or
more complete blocks to be copied (line 41). If not, the driver sets
u.u_error to EFAULT (line 45).

O With a demand paging system, the driver must ensure that the user's
program data pages are in memory by calling userace (lines 19
and 48). If an error occurs, userace will set u.u_error to an error
code; the driver does not need to do it.

Q The driver then computes the starting block number and copies the
data to the user (lines 25 through 30 and lines 54 through 59).

is valid on the REAL/IX Operating System, the use of userace with copyin
and copyout is redundant because those functions handle any page faults
that might occur.

This example is based on an example in the AT&T documents. Although it .

REAL/IX Kernel Reference Manual

useracc(D3X) useracc(D3X)

1 #define RAMDNBLK 1000 /* RAM disk block number */

2 #define RAMDBSIZ 512 /* Bytes per block */

3 char ramdblks[RAMDNBLK] [RAMDBSIZ]; /* Blocks forming RAM disk */
ramdread(dev)
dev_t dev;
{
register daddr_t blkno; /* Starting block number */
register int nblks; /* Number of logical blocks */

if (u.u_count % RAMDBSIZ) {
u.u_error = EFAULT;
return;

}

if (u.u _offset % RAMDBSIZ) ({
u.u_error = EFAULT;
return;

}
if (physck(RAMDNBLK,B_READ)) {
if (useracc(u.u_base, u.u_count, B_READ) == 0) {
return;
}

blkno = u.u_offset % RAMDBSIZ;
copyout (u.u_base, (caddr_t)sramdblks[blkno] [0], u.u_count);

u.u_base += u.u_count; /* Increment virtual base addr */
u.u_offset += u.u_count; /* Increment file offset */
u.u_count = 0; /* No more bytes to be transferred »/
}

}

ramdwrite(dev)

dev_t dev;

{

register daddr_t blkno; /* Starting block number */

register int nblks; /* Number of logical blocks to be written %/

if (u.u_count $ RAMDBSIZ != 0) {
u.u_error = EFAULT;
return;

}

if (u.u_offset % RAMDBSIZ i= 0) {
u.u_error = EFAULT;
return;

}

if (physck(RAMDNBLK,B_WRITE)) {
if(useracc(u.u_base, u.u_count, B_WRITE) == 0) {

return;

}

blkno = u.u_offset / RAMDBSIZ;
copyin (u.u_base, (caddr_t)sramdblks{blkno] [0], u.u_count);

u.u_base += u.u_count; /* Increment virtual base addr */
u.u_offset += u.u_count; /* Increment file offset */
u.u_count = 0; /* No more bytes to be transferrxed */

REAL/IX Kernel Reference Manual

3-221

userdma(D3X) userdma(D3X)

NAME userdma — lock user virtual memory for DMA transfer

SYNOPSIS #include <¢sys/klock.h>

userdma(base, count, rw)
int base, count, rw;

ARGUMENTS base the start address of the user data area (typically taken from the
u.u_base member of the user structure).

count the size of the data transfer in bytes (for example, the w.u_count
member of the user(D4X) structure).

w flags to determine whether the access is a read or write opera-
tion, and whether or not to lock down the memory. Valid values
are:

B_READ specifies a write into memory (the user is per-
forming a read operation). This requires that the
user have write access permission for the speci-
fied data area.

B_WRITE specifies a read from memory. It requires read
access permission for the data area. (B_LREAD
and B_WRITE are defined in the system header
file buf.h).

DESCRIPTION The userdma function causes the area of user virtual memory described by
base and count to be faulted if necessary and then locked. This guarantees
that the buffer will not be paged out during the 1/0 operation.

userdma is equivalent to userace(D3X) with the B_PHYS access flag.
SEMAPHORE RAMIFICATIONS
No semaphores or spin locks should be held when calling userdma.

RETURN VALUE If successful, userdma returns 1. Otherwise, 0 (zero) is returned and an
error code is set in u.u_error. Possible errors are:

EAGAIN Insufficient kernel resources to lock page.

EFAULT B_READ is set, but the memory is marked as being read-
only (a read from a device has to write to memory, which is
not allowed).

EFAULT The memory described by base and counr is not within the
user’s address space.

3-222 REAL/IX Kernel Reference Manual

userdma(D3X) userdma(D3X)

LEVEL Base Only (Do not call from an interrupt routine)
SOURCE FILE sys/klock.h
. SEE ALSO dma_breakup(D3X), physck(D3X), physio(D3X), undma(D3X),
userace(D3X)
EXAMPLE The following example illustrates the use of userdma.

if (userdma(base, count, rw) == NULL) {
if (u.u_error == 0)
u.u_error = EFAULT;
return;

REAL/IX Kernel Reference Manual 3-223

usshmctl(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

usshmctl(D3X)

usshmetl — install user-defined special shared memory control function into
the kernel

int usshmctl(sshmtype, func)
uint sshmtype;
int (*func) ():

sshmitype number of the user special shared memory type; must be in the
range of 8 through 15

func name of the special shared memory control function

usshmetl installs the control function of a user-defined special shared mem-
ory type into the kernel. usshmetl must be called for each user-defined spe-
cial shared memory type. If multiple user-defined special shared memory
types are defined, the corresponding type numbers must be selected sequen-
tially starting with 8. By convention, all calls to the usshmetl function are
coded in the usysinit.c file in the /usr/src/uts/realix/custom directory.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL
SOURCE FILE
SEE ALSO

EXAMPLE

3-224

None.

If successful, usshmetl returns 0. Otherwise, a —1 is returned and an error is
written to the console and /usr/adm/putbuf.

Base Only (Do not call from an interrupt routine)

io/vme/sshm.c

KPG, "Miscellaneous 1/O Operations”

This example shows the usysinit.c file with a special shared memory control

function (sshmctlmeg) defined. The user-defined special shared memory
type number is 8.

#include <sys/param.h>
extern int sshmctlmeg();

int
usysinit()

usshmetl(8, sshmctlmeg);

REAL/IX Kernel Reference Manual

usyscall(D3X)

NAME

SYNOPSIS

. ARGUMENTS

DESCRIPTION

usyscall(D3X)

usyscall - install user-defined system call into the kernel

int usyscall(nsyscall, func, nargs)
unsigned int nsyscall, nargs;
int (*func) ();

nsyscall number of the system call in the sysent table, usually expressed
in terms of USYSCALLOW (lowest allowed value) and
USYSCALLHI (highest allowed value)

Junc "name of the system call

nargs number of arguments for the system call

usyscall installs a user-defined system call into the kernel. By convention,

usyscall functions for all user-defined system calls are coded in the usysinit.c
file in the /usr/src/uts/realix/custom directory.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

‘ LEVEL

SOURCE FILE

SEE ALSO

None.

If successful, usyscall returns 0. Otherwise, a —1 is returned and an error is
written to the console and /usr/adm/putbuf.

Base Only (Do not call from an interrupt routine)
os/*/sysent.c

KPG, "Writing and Installing System Calls”

REAL/IX Kernel Reference Manual 3-225

usyscall(D3X) usyscall(D3X)

EXAMPLE This example shows the usysinir.c file with two system calls defined. The
first system call definition is for the first available user entry in the sysent
table, which is called respages and has one argument; the second one is for
the second available user entry in the sysent table, which is called mycall

and has three arguments. . .

#include <sys/param.h>

extern int respages():;
int
usysinit()

usyscall(USYSCALLOW, respages, 1);
usyscall (USYSCALLOW+1, mycall, 3;

3-226 REAL/IX Kernel Reference Manual

uvtopde(D3X) uvtopde(D3X)

NAME uvtopde — return page descriptor entry for user virtual address
SYNOPSIS pde_t *
uvtopde(uva)
unsigned int uva
. ARGUMENTS uva user virtual address

DESCRIPTION This macro returns the address of the page descriptor entry that maps the
user virtual address for the process.

SEMAPHORE RAMIFICATIONS

None.
RETURN VALUE The physical address of the page table entry.
LEVEL Base Only (Do not call from an interrupt routine)

SOURCE FILE sys/*/immu.h or cfl/inline.sed*

REAL/IX Kernel Reference Manual 3-227

valulock(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

valulock(D3X)

valulock - return current value of a spin lock

#include <sys/types.h>
#include <sys/sema.h>

val = valulock(lock_addr);
lock_t *lock_addr;

lock_addr the spin lock being checked; must match the lock_addr used
when the spin lock was initialized with the initlock macro

The valulock macro returns the current value of the spin lock specified by
lock_addr.

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-228

Drivers that call valulock must be installed fully semaphored.

valulock returns the current value of the spin lock. O indicates that the
resource is not currently locked. 1 indicates that the resource is currently
locked.

Base or Interrupt

sys/sema.h

KPG, "Synchronization”
spsema(D3X), svsema(D3X), initlock(D3X)

REAL/IX Kernel Reference Manual

valusema(D3X) valusema(D3X)

NAME valusema — return current value of a semaphore
SYNOPSIS #include <sys/types.h>
#include <sys/sema.h>
. val = valusema(sem_addr);
sema_t *sem_addr;
ARGUMENTS sem_addr the semaphore being checked; must match the sem_addr used

when the semaphore was initialized with the initsema or
reinitsema macros

DESCRIPTION The valusema macro returns the current value of the semaphore specified by
sem_addr.

SEMAPHORE RAMIFICATIONS
Drivers that call valusema should be installed fully semaphored.

RETURN VALUE valusema returns the current value of the semaphore:

Q 1 or >1 indicates that the resource is not currently locked.

O 0 indicates that the resource is currently locked and no other proc-
. esses are blocked waiting for the resource.

Q <0 indicates that the resource is locked and other processes are
blocked waiting for the resource. The absolute value of the value
returned is the number of processes waiting for the resource.

LEVEL Base or Interrupt
SOURCE FILE sys/sema.h
SEE ALSO KPG, "Synchronization”

cpsema(D3X), cvsema(D3X), decsema(D3X), incsema(D3X),
initsema(D3X), psema(D3X), psvsema(D3X), vsema(D3X)

REAL/IX Kernel Reference Manual 3-229

vme_a24_mem_valid(D3X) vme_a24_mem_valid(D3X)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

vme_a24_mem_valid - verify that an address is accessible by A24 VME
devices

vme_a24_mem valid(paddr, bufsiz)

unsigned int paddr, bufsiz . |
|

paddr physical address, usually obtained through disjointio(D3X) or the
kernel-virtual-to-physical macro

bufsiz the size of the buffer

This macro determines if the buffer described is within A24 address space
(in other words, that paddr + siz is less than or equal to § megabytes).

SEMAPHORE RAMIFICATIONS

RETURN VALUE

LEVEL

SOURCE FILE

SEE ALSO

3-230

None,

1 if the entire range from paddr to paddr+siz—1I resides in A24 address
space.

0 if any portion of the range is outside A24 space.

Base or Interrupt

sys/sysmacros.h .

KPG, "Memory Management”

REAL/IX Kernel Reference Manual

vsema(D3X) vsema(D3X)

NAME vsema, rvsema, pvsema - unlock semaphore for a resource or make re-
source available

SYNOPSIS finclude ¢(sys/types.h>

. #include <sys/sema.h>
val = vsema(sem_addr, reserved, flags);

sem t *sem addr;
int *reserved;
int flags;

The s;nal;;eé for rvsema and pvsema are the same as the synopsis of
vsema.

ARGUMENTS sem_addr identifies the semaphore to be unlocked; must correspond to the
sem_id used to lock the resource

reserved the second argument is reserved for future use; in this release, it
must always be 0

flags flag parameter; valid values are:
0 Used when the run queue lock is not cur-

rently locked and the semaphore is not one
for which a boosting algorithm is defined.

. SEMRTBOOST Used if the corresponding psema used the
SEMRTBOOST flag. No other flags can be
used.

DESCRIPTION The vsema family of functions increments the value of the semaphore

specified by sem_addr. If the value of the semaphore was negative (indicating
that a process was blocked on the semaphore), vsema unblocks the first
process (the process with the highest priority) on the list of processes that
were blocked after doing a psema on the semaphore.

rvsema and pvsema perform functionality similar to that of vsema, but are
faster. rvsema can be used when all interrupts are disabled; pvsema can be
used when all interrupts are guaranteed to be enabled.

SEMAPHORE RAMIFICATIONS

Drivers that call vsema must be installed fully semaphored.

RETURN VALUE The vsema macros do not return a value under any conditions.

. LEVEL Base or Interrupt

REAL/IX Kernel Reference Manual 3-231

vsema(D3X) vsema(D3X)

SOURCE FILE sys/sema.h

SEE ALSO KPG, "Synchronization”
cpsema(D3X), cvsema(D3X), psema(D3X), psvsema(D3X), initsema(D3X),

valusema(D3X) .

3-232 REAL/IX Kernel Reference Manual

wakeup(D3X) wakeup(D3X)

NAME wakeup ~ resume unsuspended process execution
SYNOPSIS #include <(sys/types.h>
. wakeup (addr)
caddr_t addr;
ARGUMENTS addr address on which process is sleeping (corresponds to addr used

with sleep(D3X)

DESCRIPTION The wakeup function awakens all processes that called sleep with this addr
argument. This lets the processes execute according to the scheduler. You
must use the same addr for both sleep and wakeup. For code readability
and efficiency, it is best to have a one-to-one correspondence between events
and sleep addresses. Also, there is usually one bit in the driver flag member
that corresponds to each reason for calling sleep.

Whenever a driver calls wakeup, it should test to ensure that the
sleep(addr) occurred. There is an interval between the time the process that
called sleep is awakened and the time it resumes execution when the state
forcing the sleep may have been reentered. This can occur because all
processes waiting for an event are awakened at the same time. The first
process given control by the scheduler usually gains control of the event.
All other processes awakened should recognize that they cannot continue

. and should reissue sleep.

The wakeup function can be used in REAL/IX drivers only if the driver is
installed under CPU affinity! or major- or minor-device semaphoring. Driv-
ers that are fully semaphored use spin locks and semaphores to provide
sleep/wakeup synchronization.

Note that a driver that calls sleep and wakeup should not call psema,
cpsema, or vsema, and vice versa. Mixing the sort of synchronization done
in one driver will result in deadlocks.

SEMAPHORE RAMIFICATIONS

Drivers calling wakeup must be installed under the compatibility modes.
RETURN VALUE None

LEVEL Base or Interrupt

INot all machines support CPU affinity. Refer to the Release Notes shipped with your system.

REAL/IX Kernel Reference Manual 3-233

wakeup(D3X)

SOURCE FILE

SEE ALSO

3-234

wakeup(D3X)

os/slp.c
KPG, "Synchronization”

delay(D3X), iodone(D3X), lowait(D3X), sleep(D3X), timeout(D3X),
ttywait(D3X)

REAL/IX Kernel Reference Manual

RECEIVED APR 2 8 1993
Chapter 4

Data Structures (D4X)

Section D4X describes the data structures used by device drivers to share information between the
driver and the kernel. The structures are presented on separate pages. All block and character
driver data structures in the REAL/IX Operating System are identified with the (D4X) cross
reference code.

Manual pages in this section contain the following headings:
DESCRIPTION provides general information about the structure
STRUCTURE MEMBERS lists all accessible structure members and defines the access
permission for each. No attempt has been made to list these
members in order; kernel code that you develop should not
depend on specific locations of structure members.

SOURCE FILE indicates the file name where the structure is defined

. SEE ALSO lists sources of additional information. The following abbre-
viations are used:

KPG for the Kernel Programming Guide
DDG for the Driver Development Guide

Overview of Kernel Data Structures

Data structures provide a means for passing information between the kernel and the driver routines.
They are used to store process status information, to define I/O transfer methods, to define
buffering schemes, and to store driver and device-specific information. There are basically three
types of data structures:

O system data structures declared globally! for a driver

O driver-specific data structures declared globally for a driver

. O internal data structures defined within a driver routine and used only by that routine

1A globally defined data structure is one that has been declared at the beginning of the driver code with a
#include line or with an extern declaration.

REAL/IX Kernel Reference Manual 4-1

The system data structures described in this section are structures that define common methods of
passing information to and from the kernel and device drivers. Header files for these data
structures are supplied with the delivered operating system in the /usr/include/sys directory. Drivers
declare the use of system data structures by adding the header file names with #include lines to the

beginning of the driver code. .

This section includes both general system data structures (such as the user area and the process
table) and specific driver data structures (such as buf and clist). For ease of access, data
structures are listed in alphabetical order.

The structures listed below are described in this section.

The number of bytes in a structure may change at any time. Therefore, rely only
on the structure members listed in this section and not on unlisted members or
the position of a member in a structure.

CAUTION
O areq is the control block used for asynchronous 1I/0 operations.
O bdevsw contains system entry points for block driver routines.

Q buf passes information between the block driver and the user program (also known as the
buffer structure).

O cdevsw contains system entry points for character driver routines. .
U cintr contains information from the cintrio(4) structure that drivers may access.
O The following structures are used together for buffering character data:

® cblock accesses character data array.

® ccblock acts as a temporary buffer for unqueued characters.

® cfreelist links a list of cblocks, headed by chead.

® clist passes information between most tty drivers and the user program.

O iobuf is used to store private driver state information and to set up an internal queue for
outstanding device I/0 requests.

QO linesw contains entry points to the line discipline protocols for character driver processing
and buffering.

Q proc process table structure locates the code, data, and stack information of a process. The .
scheduler also uses the proc structure in selecting processes to run.

REAL/IX Kernel Reference Manual

Q sysinfo indicates the number of times a driver interrupt routine processes receive and
transmit interrupts.

U tty controls character transfers between a TTY terminal driver and user data space.

O user defines the process and its current state.

REAL/IX Kernel Reference Manual

areq(D4X)

DESCRIPTION

aiocb(4)

areq(D4X)

areq(D4X)

areq is the basic data structure used to control asynchronous I/O opera-
tions. It is populated from information in the aiocb(4) structure and the I/0
request, as illustrated below.

(u.u_offset)
U J
U U u aioflag eid offset whence
|| 4 | !
a_fildes | a_buf | a_nbytes a_eid a_offset

Populating the areq Structure

Several areq structures can be allocated to one process simultaneously (the
limit is determined by tunable parameters defining the number of asynchro-
nous I/O operations per process and per system).

STRUCTURE MEMBERS

Type Member Description
char *a_buf; buffer pointer, In user virtual space
file t *a_fp; associated file pointer
proc_t *a_p; pointer to process initiating the operation
uint a_nbytes; number of bytes to read or write
off t a_offset; read/write character pointer
short a_fildes associated file descriptor
short a_eid; event id for posting; -1 if no event is to be posted
unchar a_rw; B_READ or B_WRITE operation
SHCHET a_flags_1; :gclealllzation status flags; may not be modifled at interrupt
unchar a_flags_2; status flags: may be modified at interrupt level
dev_t a_dev device on which to perform asynchronous 1/0O operation
int a_dr_res[4]; avallable for drlver-defined needs

All members of the areq structure (except a_dr_res[4]) are available to
the driver for reading only; user-installed system calls should not access any
members of areq. The members of the areq structure available to read by
the driver are as follows:

REAL/IX Kernel Reference Manual

areq(D4X) areq(D4X)

a_buf points to the memory location of the buffer being used for this
1/0 operation. The buffer is in user virtual space; this area of
the user’s virtual memory is locked into physical memory before
the driver is called. The driver must map the virtual memory to
(possibly discontiguous) physical memory.

a_fp pointer to the file on which the I/O operation is being done.
a_p pointer to the process that initiated the I/O operation.
a_nbytes specifies the number of bytes to be transferred.

a_offset read/write character pointer. This member is populated based
on the value of the off_t and whence members of the aiocb(4)
structure, if any, and the current file offset.

If the file is a character special file, then the a_offset field is
simply the byte offset implied by the aread(2) or awrite(2) system
call. If the file is a regular, extent-based file, a_offset is set to
the byte offset within the disk partition. For example, if an aread
is to start from logical block 48 in a partition, a_offset will be
assigned the value 48 * logical_block_size.

a_fildes fildes associated with this I/O operation.
a_eid event identifier to be posted when the I/O operation is complete.

It is populated with the value of the eid member of the aiocb(4)
structure if an event was specified; otherwise it is set to -1.

a_rw set to B_READ (read operation) or B_WRITE (write operation)
to indicate the type of I/O requested.

a_flags_1 contains initialization status flags. When areq is initialized by
arinit or awinit, both flags are set. Valid flags are:

ALINIT indicates that areq has been initialized by a pre-
vious call to aread(2), awrite(2), arinit(2), or
awinit(2).

AIINIT indicates that areq has been initialized by
arinit(2)/awinit(2)

a_flags_2 stores status information for the I/O operation. Valid flags are:

AINPROG indicates that an asynchronous I/O operation is in
progress. It is set just before the areq is passed

REAL/IX Kernel Reference Manual 4-5

areq(D4X)

SOURCE FILE

SEE ALSO

areq(D4X)

to the driver, and cleared when the driver calls
the comp_aio(D3X) routine.

ACWAIT indicates that an asynchronous I/Q operation is
pending and a process is waiting. It is set when an
operation is canceled because a file is closed, a
process exited, or a process issued an exec(2). It
is used to control a semaphore on which the
process blocks awaiting completion of the opera-
tion, and is cleared when the driver calls the
comp_aio(D3X) routine.

a_dev device on which to perform the asynchronous I/0 operation. If
the system call specifies a character special file, the device
number is that of the raw device. If the file is a regular file, the
device number is that of the block device.

a_dr_res[4] driver-settable if so defined by the application.
os/aio.h
KPG, "Miscellaneous I/0 Operations”

alo(D2X), comp_aio(D3X), comp_cancel_aio(D3X)
acancel(2), aread(2), arinit(2), awrite(2), awinit(2), fentl(2), alocb(4)

REAL/IX Kernel Reference Manual

bdevsw(D4X) bdevsw(D4X)

DESCRIPTION The bdevsw (block device switch table) data structure provides kernel entry
points into a driver. bdevsw is constructed when the system is initialized
according to information provided to sysgen(1M). bdevsw is seldom accessed
directly from the driver; if it is, all calls should be protected by the
drilock(D3X) and driunlock(D3X) or driinvoke(D3X) kernel functions. The
structure members section illustrates how the switch table appears in mem-
ory and in the /realix file.

The bdevsw table allows the kernel to map the names of the devices to the
device driver. It is used for block special files. The table includes pointers to
functions used to implement user requests as shown below.

gue mount(2) unmount(2)
ystem open(2) close(2) read(2) write(2)
Calls
USER
KERNEL
[buffer cache
Block Device Switch Table
(bdevsw)
Major d_open | d_close |d_strategy—»>d_print
Device #
0 o o © o
1 © o o ©
2 & o ° o

Device Driver

04478

bdevsw Structure

REAL/IX Kernel Reference Manual 4-7

bdevsw(D4X)

STRUCTURE MEMBERS

bdevsw(D4X)

Type Member Description
int (*d_open)(); Accesses driver open(D2X) routine
int (*d_close) () Accesses driver close(D2X) routine
LSj}egt);m v int (*d_strategy)(); Accesses driver strategy(D2X) routine
int (*d_print) (), Accesses driver print(D2X) routine
int (*d_dump) (), Accesses driver dump(D2X) routine
int d_type Indicates how the driver is semaphored
g%l#),(int d_cnt Number of minor devices supported
g int d_sems Pointer to driver semaphore structure

On the REAL/IX Operating System, three new fields have been added to
bdevsw to configure the use of semaphores on a per-device basis. This
enables you to port drivers developed for other UNIX operating systems to
the REAL/IX Operating System without totally rewriting them for kernel
semaphores.

The members of the bdevsw table used to semaphore the driver are as
follows. These members should never be set or tested by the driver itself,
but are populated according to information supplied to sysgen(1M) when the
driver is installed.

Q d_type indicates how the driver is semaphored. The valid values are:

® 0 — driver code is semaphored and requires no additional
preemption restrictions

= 1 — driver runs on a specific CPU only and uses spl* functions to
control interrupts

® 2 - driver is protected from preemption with one semaphore per
minor device

® 3 — driver is protected from preemption by a single semaphore

d_cnt is the number of minor devices supported; it is populated only if
the driver is populated with one semaphore per minor device (d_type
is 2)

d_sems is a pointer to an array of struct semdrivs. The number of
elements in the array is determined by d_cnt; the members of each
element are defined on the semdrivs(D4X) manual page.

REAL/IX Kernel Reference Manual

bdevsw(D4X) bdevsw(D4X)

SOURCE FILE sys/conf.h

SEE ALSO serv(D2X), drilock/undrilock(D3X), semdrivs(D4X), user(D4X)

REAL/IX Kernel Reference Manual 4-9

buf(D4X) buf(D4X)

DESCRIPTION buf is the basic data structure for the system buffer cache used for block
I/O transfers. Each buffer in the buffer cache has an associated buffer
header. The header contains all the buffer control and status information
needed to define a requested block I/0 operation by specifying the device to
be used, the direction of the data transfer, its size, the memory and device
addresses, and other information. The kernel uses the information in the
buifer header to organize and maintain the system buffer cache.

The buffer header pointer is the sole argument to a block driver
strategy(D2X) routine. strategy typically uses the information in the buffer
header to maintain an internal queue of I/O requests to be processed, and to
return status information. Driver code uses pointers to refer to fields within
the buffer header. For example, the following line uses the name bp as a
pointer to the buffer header and specifies the av_forw member in that buffer
header:

bp->av_forw

It is important to note that a buffer header may be linked in multiple lists
simultaneously. Because of this, most of the members in the buffer header
cannot be changed by the driver, even when the buffer header is in one of
the driver’s work lists. Do not depend on the size of the buf structure when
writing a driver.

Buffer headers are also used by the system for paging user virtual memory to
and from a swap device, and for unbuffered or physical I/O for block

drivers. In this latter case, the buffer header is typically set up by the

physio(D3X) routine and its subsidiary functions.

In the figure below, two linked lists of buffers are illustrated. The top
illustration is the bfreelist, the list of available buffers. The bottom
illustration is a queue of allocated buffers. The lined areas indicate other
buffer members.

4-10 REAL/IX Kernel Reference Manual

buf(D4X)

buf structure

buf(D4X)

av_forw > >
av_back |« “ 000
A\ ,
available buffers
b_forw W
7
b_back b_back |e
ml b_forw
S 7 2
allocated buffers
05658
buf Structure
STRUCTURE MEMBERS
Type Member Description
int b_flags; Buffer status
struct buf *b_forw; Links the buffer into buffer cache hash queue
struct buf *b_back; Links the buffer into buffer cache hash queue
struct buf *av_forw Links buffer to free list or Is available to driver
struct buf *av_back Links buffer to free list or is available to driver
dev_t b_dev; Major and minor device numbers
int b_s1;
int b_s2; Avallable for drlver use
int b_s3;
sema_t b_lock; Semaphore for free buffer
sema_t b_iodone; Suspend semaphore indicating 1/0 done
unsigned b_bcount; Number of bytes to be transferred
caddr_t b_addr; Buffer's physical address
daddr_t b_blkno; Logical block number
char b_error; u.u_error code number
unsigned int b_resid; Number of bytes not transferred
time_t b_start; 170 start time
struct proc *b proc: Process table entry address

REAL/IX Kernel Reference Manual

buf(D4X) buf(D4X)

Refer to the following table for structure member field use.

buf Structure Member Use

Member Use Member Use
driver settable; b_bcount | read only®
b-flags Do not clear b_addr read only
b_forw read only? b_blkno read only®
b_back read only? b_error driver settable
av_forw read only? b_resid driver settable
av_back read only? b_start driver settable
b_dev read only® b_proc read only®

2May be set by drivers that allocate the buffer themselves.
BmMay be set by drivers when buffer is not on the free list.
°May be set for raw 1/O operations by drivers that allocate the buffer.

The members of the buffer header available to test or set by a driver are
described below.

b_flags contains various flags that describe the buffer and any operation
in progress. The member is a 32-bit integer. The most significant
16 bits are available for a driver to use with no restrictions; the
least significant 16 bits contain flags that have meaning to the
kernel.

Most of these flags are set by the kernel rather than the driver
and care must be taken to preserve their values; B_LERROR can
be set (but mot cleared) by the driver, but the others have a
number of subtle side effects if the driver sets them.

The driver must never clear the b_flags member. If this
member is cleared, unpredictable results can occur,
including loss of disk sanity and the possible failure of

other kernel processes.
CAUTION

The valid flags are described below. Some of these flags are used
only for the internal operation of the buffer cache, and of no
concern to a driver. They are listed here for completeness, as
they may be of use in understanding the state of the buffers in
the buffer cache.

4-12 REAL/IX Kernel Reference Manual

buf(D4X) buf(D4X)

B_AGE signals to the brelse(D3X) function that the
buffer should be placed at the head of the free
queue when it is released, so it is reused before
other buffers on the free queue

. B_AIO indicates that the buf structure has been obtained
with getpbp(D3X) for the purpose of controlling
an asynchronous (non-blocking) I/O operation.

B_ASYNC set if operation is asynchronous. This implies that
no user will be waiting on the b_iodone sema-
phore. This flag informs the iodone(D3X) func-
tion whether or not to issue a vsema(D3X)
against b_jodone when the 1/0 transfer is com-
plete. Drivers may make use of this information,
such as in a request scheduling scheme that
handles synchronous requests before asynchro-
nous requests.

B_BUSY Historically, this flag was used to mark buffers
that are in the "owned" state and not on the free
queue.. On the REAL/IX Operating System, this
is handled with kernel semaphores, so this mem-
ber is not used. However, drivers must preserve
the value of this flag because it may be used in
the debug kernel to provide an additional level of
consistency checking.

A buffer can be in one of two states. If it is
readily available for any process to use, it is on a
free buffer queue and the b_lock semaphore has a
value of 1, allowing the first process to do a
psema operation to gain control of the buffer.
Otherwise, the buffer is not on a free queue and
the b_lock semaphore is set to 0 (indicating that
the buffer is effectively "owned” by a process) or
a negative number (indicating that it is owned and
other processes are waiting for the buffer).

B_DELWRI set when a buffer contains data that is to be
written out to a disk in a delayed write. The
kernel will clear this flag before calling the driver
to perform the actual write operation.

B_DONE Indicates the data transfer has completed. It is
set by the fodone(D3X) function. The buffer

REAL/IX Kernel Reference Manual 4-13

buf(D4X)

B_ERROR

B_FORMAT

B_OPEN

B_PHYS

B_READ

B_STALE

B_WRITE

buf(D4X)

cache code also uses this flag as an indicator that
a buffer contains valid data.

set by the driver to indicate that an I/O transfer
error has occurred. Error details can be given by
setting the b_error member of the buf structure;
if B_LERROR is set and b_error is not set, the
kernel returns the default EIO error code.

If a process is waiting for the operation to com-
plete, the iowait(D3X) function copies the error
code from b_error to u.u_error, causing an error
to be returned from the originating system call.
When the buffer is eventually released, the
B_ERROR flag causes the brelse(D3X) function
to set the B_STALE flag. This occurs for both
synchronous and asynchronous I/Q operations.

Used internally by certain drivers for some error
logging operations.

Not used in buf, but is used in iobuf(D4X)

Set by kernel routines that use a buffer header
for an 1/O operation that does not use the system
buffer cache, such as physio(D3X) and the rou-
tines that implement the virtual memory’s demand
paging scheme. This flag tells the driver that the
transfer size given by the b_bcount member may
be larger than the usual buffer cache transfer
sizes.

Indicates data is to be read from the peripheral
device into main memory

Marks the buffer contents invalid; When the data
in the buffer should not be used by a process
looking in the cache, the kernel marks the buffer
with this flag and places it at the head of the free
queue for rapid reuse.

Indicates the data is to be transferred from main
memory to the peripheral device. B_WRITE is a
pseudo flag that occupies the same bit location as
B_READ. B_WRITE cannot be directly tested;
it is detected only as the inverse (NOT) of
B_READ.

REAL/IX Kernel Reference Manual

buf(D4X) buf(D4X)

b_forw and b_back
Reserved for linking the buffer to a buffer cache hash queue.

av_forw and av_back
maintain the position of the buffer on the buffer cache freelist.
When the buffer is not on the freelist, these members are avail-
able for driver use.

b_dev contains the external major and minor device numbers of the
device accessed.

b_bcount specifies the amount of data (in bytes) to be transferred.

b_un.b_addr

normally, the kernel physical address of the data buffer con-

trolled by the buffer header.! Data is read from the device to this

starting address or is written to the device from this starting

address. Occasionally, this member is used to hold a virtual |

address in user space, such as when a buffer is passed as a |

parameter to disjointio(D3X). |
I

b_blkno identifies the logical block on the device (the device is defined by
the minor device number) to be accessed. The block number is
in terms of blocks with length BSIZE, which is 512 bytes on the
REAL/IX Operating System. The driver may have to convert
this logical block number to a physical location such as a cylin-
der, track, and sector of a disk.

b_error holds the error code that is eventually assigned to the u.u_error
member of the user data structure by the kernel. It is set in
conjunction with the B_ERROR flag in the b_flags member. Writ-
ing to this member overwrites any existing error code; to avoid
this, check that b_error == 0 (0 indicates no error) before
writing the error code.

b_resid indicates the number of bytes not transferred because of an EOM
or filemark or an no error condition.

b_start may be set up by the driver to hold the I/O operation start time.
It can be used to measure device response time. Refer to the
Driver Development Guide.

b_proc contains the process table entry address for the process re-
questing an unbuffered (direct) data transfer to a user data area.

INote that, while all kernel addresses are technically virtual addresses, much of the kernel is mapped one-to-one
to physical addresses and is called kernel physical memory.

REAL/IX Kernel Reference Manual 4-15

buf(D4X) buf(D4X)

paddr Macro The paddr macro (defined in buf.h) provides access to the b_un.b_addr
member of the buf structure. (b_un is a union that contains b_addr.)

The following example uses the paddr macro. The paddr macro is
passed a pointer to a buffer header structure and returns the pointer to
the buffer.

#include “sys/fs/sSparam.h”

copy_the data(bp)
struct buf *bp
{
copyout (paddr(bp),u.u_base,bp->b bcount);

SOURCE FILE sys/buf.h
SEE ALSO KPG, "Synchronized I/O Operations”

strategy(D2X), physio(D3X), brelse(D3X), freepbp(D3X), getpbp(D3X),
clrbuf(D3X), geteblk(D3X), getnblk(D3X), iobuf(D4X)

4-16 REAL/IX Kernel Reference Manual

cbliock(D4X)

DESCRIPTION

cblock(D4X)

Character data is stored in an array that is part of a cblock structure.
cblock are linked together to form the clist (queue). cblock also
contains indices to the first and last valid characters in the array.

The number of data characters in a cblock is set by the CLSIZE
variable. The current value for CLSIZE is 58. Hence, a single cblock
can contain up to 58 characters.

A cblock contains a pointer to the next cblock on a linked list
(c_next), a small character array to' contain data (c_data), and a set of
offsets (c_first and ¢_last) indicating the position of the valid data in the
cblock as illustrated in the figure below.

If there is not enough room in the cblock for all data, a new cblock is
removed from the cfreelist and added to the end of the queue. If a
cblock on a queue is empty, it is removed from the queue and placed
on the cfreelist.

c_next
c_first c_last
. o|1(2)|3 57
c_data
05888
chlock Structure
STRUCTURE MEMBERS
Type Member Description
struct cblock *c_next Pointer to the next cblock
. index to the next c_data array of the next
chax & _Elkcaty character to be read from the clist
R Index to the c_data array of the next
chax c_last; character to be written to the clist
char c_data[CLSIZE]; cblock data
sys/ty.h

. SOURCE FILE
SEE ALSO

KPG, "Drivers in the TTY Subsystem”
ccblock(D4X), cfreelist(D4X), chead(D4X), clist(D4X)

REAL/IX Kernel Reference Manual 4-17

ccblock(D4X)

DESCRIPTION

ccblock(D4X)

The ccblock is the character control block used by the character 1I/0Q
subsystem. ccblock is a temporary buffer for characters not in a queue.

The c_ptr member points to the character buffer (c_data) of a cblock. The
c_count and c_size members are initialized to the size of the cblock
character array (64 characters). The c_count member is then decreased by
the number of characters in the cblock character buffer. The difference
between the two members indicates the number of characters in the buffer.
This is illustrated in the figure below.

ccblock cblock
ecptr — c_next
c_count (60) c_first
c_size (58) D12

056878

ccblock Structure

The ccblock structure members are manipulated via the t_tbuf and the
t_rbuf members of the tty(D4X) structure. For example, the following code
example accesses the c_count and c_size members of the cblock structure.
tp is a pointer to the tty structure. Line 2 decrements c_size by ¢_count.

1 struct tty *tp
2 tp->t_tbuf.c_size = tp—>t_tbuf.c_count;

STRUCTURE MEMBERS

Type Member Description
caddr_t c_ptr; Buffer address
ushort c_count; Character count
ushort c_size; Buffer size
SOURCE FILE sys/tty.h

SEE ALSO

KPG, "Drivers in the TTY Subsystem”
cblock(D4X), cfreelist(D4X), chead(D4X), clist(D4X)

REAL/IX Kernel Reference Manual

cdevsw(D4X) cdevsw(D4X)

DESCRIPTION The cdevsw (character device switch table) data structure provides driver
entry points for the kernel. cdevsw is used for character special files.
cdevsw is constructed as part of the configuration process from information
given to sysgen(1IM). cdevsw is seldom accessed directly from the driver; if
it is, all calls should be protected by the drilock/driunlock(D3X) kernel
functions. The structure members section illustrates how the switch table
appears in memory and in the /realix file.

The cdevsw table allows the kernel to map the mames of devices to the
device driver. The table includes pointers to functions used to implement
user requests.

System aread(2)
Ciik open(2) close(2) ioctl(2) read(2) write(2) te(2)

USER

KERNEL

Character Device Switch Table
(cdevsw)

Major d_open | d_close | d_loctl | d_read | d_write | d_aio

Device #
0 o o o o < -]
1 © ° o ° o &
2 ° s o ° ° °

I N I B
L Device Driver J

cdevsw Structure

REAL/IX Kernel Reference Manual 4-19

cdevsw(D4X) cdevsw(D4X)

STRUCTURE MEMBERS

Type Member Description

int (*d_open)(); Accesses driver open(D2X) routine
UNIX int (*d_close)(); Accesses driver close(D2X) routine .
System V int (*d_read)(); Accesses driver read(D2X) routine
Entry Points [T7 ¢ (*d_write) (); Accesses driver write(D2X) routine

int (*d_ioctl) (), Accesses driver ioctl(D2X) routine
ey | int (*d_aio)(); Accesses driver alo(D2X) routine

int (*d_select) () Accesses driver select{D2X) routine
Igoelz’r’bgers for struct tty *d_ttys; Polnter to tty(D4X) structure

struct streamtab | *d str; Pointer to stream table

int d_type Shows how the driver is semaphored

int d_cnt Number of minor devices supported
geemmabe;s for . Polnter to driver semaphore

phoring | struct semdrivs *d_sems structure
short d_dindx Index into semdrivs(D4X) structure

Direct calls to cdevsw from within a driver should be protected with the
drilock(D3X) and driunlock(D3X) or driinvoke(D3X) functions.

Member for Asynchronous I/0 .

The only entry point for asynchronous I/0 is aio(D2X), which is accessed
through the d_aio member of cdevsw. However, drivers that support asyn-
chronous I/O must also support iectl(D2X) commands from user processes
issued with the GETAIOREQ command. This command returns information
about asynchronous I/0, such as minimum and maximum transfer count.
This information is available through the arwinfo structure in the sys/fentl.h
file.

Members for Polling
Device polling is implemented on the REAL/IX Operating System with the
select(D2X) entry point plus pointers to two structures.

Members for Semaphoring Options

On the REAL/IX Operating System, four new fields have been added to
cdevsw to configure the use of semaphores on a per-device basis. These
compatibility modes enable you to port drivers developed for a similar
operating system to the REAL/IX Operating System without rewriting them

to use kernel semaphores.! .

INot all compatibility modes are supported on all machines. Refer to the Release Notes shipped with your
system.

4-20 REAL/IX Kernel Reference Manual

cdevsw(D4X)

SOURCE FILE

SEE ALSO

cdevsw(D4X)

The members of the bdevsw table used to semaphore the driver are as
follows. These members should never be set or tested by the driver itself,

but are populated for the driver by sysgen(1M) when the kernel is built.

QO d_type indicates how the driver is semaphored. The valid values are:

8 0 - driver code is semaphored and requires no additional pre-

emption restrictions

® 1 - driver runs on a specific CPU only and uses spl* functions to

control interrupts

® 2 - driver is protected from preemption with one semaphore per

minor device

® 3 — driver is protected from preemption by a single semaphore

Q d_ent is the number of minor devices supported; it is populated only if
the driver is populated with one semaphore per minor device (d_type

is 2)

QO d_sems is a pointer to an array of struct semdrivs. The number of
elements in the array is determined by d_ent; the members of each

element are defined on the semdrivs(D4X) manual page.

O d_dindx is an index into the bdevsw(D4X) entry, used in drivers that

support both block and character access.
sys/conf.h

Section 2 in this manual

bdevsw(D4X), semdrivs(D4X)

REAL/IX Kernel Reference Manual

cfreelist(D4X) cfreelist(D4X)

DESCRIPTION cblocks are drawn from the cfreelist pool. cfreelist is headed by the
chead data structure whose members are listed on this page. The size of
cfreelist is determined by the NCLIST tunable parameter defined in the
kemel description file.

The cfreelist is a singly linked list (c_next) of cblocks(D4X), as illus-
trated below. The c_siz variable in the clist head structure indicates the
size of the cblock character buffer. Because the cfreelist is limited
in size and shared by all TTY devices, it is possible for the cfreelist to be
empty when a cblock is needed by a TTY device.

The REAL/IX Operating System does not support the concept of
blocking to wait for an available cblock structure. Rather, if a
process tries to allocate a cblock when none is available, the
system panics. To avoid this problem, always set the NCLIST
tunable parameter to allocate more clists than can ever be

used.
struct
chead cfreelist cblock cblock cblock
c_next > c_next > c_next P c_next
c_siz (57) c_first c_last c_first c_last c_first c_last
c_flag c_data c_data c_data

05688

cfreelist Structure

STRUCTURE MEMBERS

Type Member Description
struct cblock | *c_next; Singly linked list
int c_siz; Size of the cblock character buffer
SOURCE FILE sys/tty.h
SEE ALSO KPG, "Drivers in the TTY Subsystem”

cblock(D4X), ecblock(D4X), chead(D4X), clist(D4X)

4-22 REAL/IX Kernel Reference Manual

cintr(D4X) cintr(D4X)

DESCRIPTION The cintr structure is the kernel connected interrupt data structure. It is
populated with cintrget(D3X) from information in the cintrio(4) user-level
data structure for connected interrupts, and released with cintrelse(D3X).
The operating system moves information from cintr to cintrio as appro-

. priate (usually after the cintrnotify(D3X) function is called).

STRUCTURE MEMBERS

Type Member Description
struct proc *ci_procp; pointer to connected process
lock_t ci_lock; spin lock
key t ci_key; key; by convention, use the device number
int ci_oneshot; set If interrupt is in oneshot mode
int ci_ack; zg:(rI‘fo Sllngggees:ot is set and the interrupt has been
int *ci_pollptr; | pointer to user-mapped poll location
int ci_cid; current connected interrupt ID
sema_t ci_sema semaphore used with CINTR_SEMA method
struct cintrio ci_ioctl connected interrupt interface struct

All members of the cintr structure are readable by driver base-level and
interrupt-level routines. Drivers should not set any field in the structure

. except with the IOCTL commands listed on the cintreti(D3X) manual page.
SOURCE FILE sys/cintrio.h
SEE ALSO cintrcti(D3X), cintrnotify(D3X), cintrelse(D3X), cintr(D4X)

evctl(2), evget(2), evrev(2), evrevi(2), evrel(2), cintrio(4), cintrio(7)

REAL/IX Kernel Reference Manual 4-23

clist(D4X)

DESCRIPTION

4-24

cblock

clist(D4X)

Character 1/0 is usually buffered in data structures that form a linked list
queue called a character list, or clist. The clist is the head of a linked
list queue of cblocks(D4X). It stores small quantities of data shared be-
tween a device and a user data area.

Typically, the terminal sends data at a slower rate than data can be sent to
the user program. A character driver accumulates characters from the
terminal in a clist and then passes the data to the user program.

clist contains a total count on the number of characters in the queue
(ccc) and pointer to the first (c_cf) and last (c_cl) cblocks in the queue.
The cblocks form a singly linked list (c_next). Each cblock contains a
buffer of up to 58 characters (c_data) and maintain indexes that point to the
first (c_first) and last (c_last) character in the buffer.

This clist structure in the figure below contains 172 bytes. This number is
indicated by the value in ¢_cc member, as illustrated below.

clist

ceec (172)

c_cf c_cl

c_next

c_next c_next

c_first

c_last c_first c_last 4

]

c_first c_last

2

q

3

57 o|1v|2|3)|--- 1|57 0|1|2]:+|55]|- |57

o
c_data c_data c_data
05708

clist Structure

REAL/IX Kernel Reference Manual

clist(D4X)

STRUCTURE MEMBERS

Type Member Description
int c_cc; Number of characters in the clist
struct cblock *c_cf; Pointer to the first cblock
struct cblock *c cl; Pointer to the last cblock
SOURCE FILE sys/ity.h
SEE ALSO KPG, "Drivers in the TTY Subsystem”

cblock(D4X), ccblock(D4X), cfreelist(D4X), chead(D4X)

REAL/IX Kernel Reference Manual

clist(D4X)

djntio(D4X)

DESCRIPTION

djntio(D4X)

Certain devices may operate with lists of transfer address/transfer count
pairs that describe an I/0 operation. The djntio structure defines an entry
in such a list. Typically, an array of djntio structures is used to describe a
collection of memory areas, with the last element of the array containing a
zero count to mark the end of the list.

STRUCTURE MEMBERS

Type

Member Description

int

addr The start address of the area of memory described by
the structure. Note that this would most naturaily
have a type "pointer to char” but an int type is
used for reasons of compatibility with the porting
base.

When used with physical 1/0 devices, the address
must be a physical address, not a virtual address.
(Note that for most of kernel memory, the physical
address will be identlcal to the virtual address.)

int

count The number of bytes in the area of memory described

by this structure.

SOURCE FILE

SEE ALSO

io/vmeldisjointio.h

mbstrategy(D2X), disjointio(D3X), djntget(D3X), djntfree(D3X)

REAL/IX Kernel Reference Manual

iobuf(D4X) iobuf(D4X)

DESCRIPTION The iobuf structure provides a template for a private I/O queue to manage
a specific device’s outstanding I/O requests and fields to store device state
information. Most block device driver strategy(D2X) routines require an
internal queue to manage the device's outstanding I/O requests because the
. speed with which a typical block device can service requests is considerably
slower than the speed with which requests can be made. strategy routines
also need a structure to store specific device state information. The iobuf
structure stores such information as the device number, an error count, the
device's local bus address, and provides pointers to buf structures. These
pointers can be used to create an internal request queue.

VME device controllers use the iobuf structure specifically. Each VME
controller has an iobuf structure, which contains private state data and two
list heads; the b_forw/b_back list and the d_actf/d_actl list. The
b_forw/b_back list is doubly linked and has all the buffers currently associ-
ated with that major device. The d_actf/d_actl list is private to the controller
but is always used for the head and tail of the I/O queue for the device.
Various routines in bio.c look at b_forw/b_back (notice they are the same as
in the buf structure) but the rest is private to each device controller.

strategy routines that use the iobuf structure must declare the structure
using the extern declaration in the driver's header file. The structure is a
standard name constructed from the driver prefix in the form prefixtab. For
example, the iobuf structure for a driver with the prefix doc_ would be:

. extern struct iobuf doc_tabl[])

Although some form of structure is needed to provide a private I/O queue,
it is not necessary to use the structure defined in iobuf.h. In some cases, the
fields provided may not be enough to hold all the device-specific information
needed for your device. However, most of the fields provided are required
by any structure holding device-specific information, and fields from the
iobuf structure are used in some example strategy routine codes.

REAL/IX Kerne! Reference Manual 4-27

iobuf(D4X)

STRUCTURE MEMBERS

int io_nreg; Number of registers to log on errors
paddr_t io_addr; Local bus address
struct iostat *io_stp; Unit I/O statistics
time t io_start; Time that the 1/0 operation started
int sgreq; SYSGEN-required flag
int gent; Outstanding job request counter
int io_s1; Space for drivers to leave things
int io_s2; Space for drivers to leave things
SOURCE FILE sys/iobuf.h
SEE ALSO buf(D4X)

iobuf(D4X)

Type Member Description
int b_flags; See buf(D4X)
struct buf *b_forw; First buffer for this dev
struct buf *b back; Last buffer for this dev
struct buf *b actf; Head of 1/0 queue (b_forw)
struct buf *b_actl; Tall of 1/0 queue (b_back)
dev_t b_dev; Major+minor device name
char b_active; Busy flag
char b_errcnt; Error count (for recovery)
int jrgsleep; Process sleep counter on jrq full

struct eblock

*io_erec;

Error record

REAL/IX Kernel Reference Manual

linesw(D4X) linesw(D4X)

DESCRIPTION Line discipline is a term describing input/output character interpretation
between the operating system and a terminal. It is the method by which
characters are processed as they are sent and received from a terminal. The
routines called by each attribute of a line discipline manipulate data in
clists(D4X). The routines in linesw are invoked by the terminal driver.

Line refers to the phone line or cable that connects the character device to a
controller. Discipline refers to the rules for character processing. Line dis-
cipline modules are called by terminal drivers to handle interactive use of the
REAL/IX Operating System. (See tty(D4X) for a diagram.) The functions
of a line discipline are as follows:

Q forms lines from input strings

Q processes erase and kill characters (typically, backspace and @ ("at”
sign)), which cause previously entered information to be erased

O echoes received characters to the terminal
O handles output character processing, including tab expansion

QO sends signals when the phone is hung up, the line is broken, or when a
character such as DEL (delete) causes a process to stop

0 includes a raw (transparent) mode so characters can be sent directly
from terminal to user process without any input processing

linesw is an internal table containing a list of the routines supported for
each line discipline.

The following figure illustrates how linesw translates a request for a line
discipline function into a request for a tt*(D3X) function.

REAL/IX Kernel Reference Manual 4-29

linesw(D4X) linesw(D4X)

line switch
driver table line
cdevsw routines (linesw) disciplines
open open I_open ttopen nulldev
1 close I_cl ttclose nulidev
read read I_read ttread nulidev
write F————— write Lwrite ttwrite nulidev
ioctl — ttioctl I_loctl ttioctl nulidev
ttiocom
/ Linput ttin sxtin
— — _output ttout sxtout
T~ I_mdmint nulidev | nulldev

t_line 0 1 05718

linesw Structure

Valid line discipline values are 0, 1, and 2. These values represent
U Line discipline 0 is the TTY driver standard value

O Line discipline 1 is a special protocol for certain bit-mapped graphics
terminals

O Line discipline 2 is used for sxs with shi(1), the shell layers command

The TTY routines comprise the default, system-supplied line discipline, and
line discipline (zero) (the first entry in the linesw). To allow other proto-
cols, drivers must access the TTY routines indirectly through the line
discipline switch table. The t_line member of the tty structure indexes the
line discipline switch table.

There are eight members in the linesw structure. Each member handles a
different attribute of character processing between a character driver and a
terminal. The Lindmint member provides for a modem interrupt handler,
but is not presently used, so it contains the address of the nulldev(D3X)
function.

REAL/IX Kernel Reference Manual

linesw(D4X)

STRUCTURE MEMBERS

linesw(D4X)

Type Member Description
int (*1_open)(); Starts access to a terminal
int (*1_close)(); | Discontinues access to a terminal
int (*1_read)(); Reads information from a terminal
int (*1_write)(); Writes information to a terminal
int (*1_ioctl)(); Handles 1/0 control functions
int (*1_input)(); Handles input interrupts
int (*1_output)(); | Handles output interrupts
int (*1 mdmint)(); | Handies modem interrupts

The linesw structure is initialized by the sysgen/conf.c program as shown in the following code

segment.

linesw[] = {

0
};

oW N

SOURCE FILE

SEE ALSO

sys/conf.h

REAL/IX Kernel Reference Manual

ttopen, ttclose, ttread, ttwrite, ttioctl, ttin, ttout, nulldev,

Section 3 in this manual
KPG, "Drivers in the TTY Subsystem”

proc(D4X)

DESCRIPTION

proc(D4X)

Each process is allocated a proc (process table) data structure containing
the information defining the process and its state to the kernel. The proc
structure contains required kernel information pointing to storage outside
the kernel (see the figure below), used by memory management hardware
and software to locate the code, data, and stack information of the process.
It also contains information used by the scheduler in selecting processes to
run.

KERNEL Process Table
proc| ppri | p_parp p_pid puld | 7

‘ INFORMATION FOR e

SENDING SIGNALS ———

INFORMATION USED BY
SCHEDULER FOR SELECTING
PROCESSES TO RUN 06728

proc Structure

The process table is an array of proc data structures. Each process known to
the kernel is described by one, arbitrarily picked, array entry in this table.
The entry contains everything the kernel needs to control that process, or
pointers to where such information is stored. For example, the process id is
stored in that process’s proc data structure; the memory management unit
(MMU) maps for that process are stored elsewhere, with a pointer to their
location kept in the proc structure. Thus, the proc structure may be
considered to be the root of all information the kernel has about a process.

The process table can be accessed through the user structure. The u.u_proc
field in the user structure contains a pointer to the process’s process table
entry. Fields in the proc structure can be accessed by driver routines, but
driver routines must never alter the proc structure fields.

The proc structure can be viewed using the crash proc command.

REAL/IX Kernel Reference Manual

proc{D4X)

proc({D4X)

STRUCTURE MEMBERS

The following members of the proc structure may be read by a driver or
system call. proc structures are subject to change from one software release
to another; the members listed here are not expected to change in future

releases.
Drivers and user-installed system calls should never modify the
proc structure directly.
CAUTION
Type Member Description
uint p_flag; Flags
lock_t p_lock Must be locked before calling psignalval(D3X)
X The CPU priority of a process used by the scheduler determines which
char p_pri; process gets to execute
X Process group identification number, used to send signals to a group of
short P_Pgrp; processes
short p_pid; Process identification number, used to send a signal to a specific
process
short p_ppid; Process Identification number of parent process
ushort p_sgid; Effective group id (set by exec(2))
int p_sig; Signals pending to this process
uint p_size; Size, In pages, of the process swappable image
. | Pointer to counter that can be used to track vsema(D3X) calls
sboxt P_slp_cnt; | gssociated with Interruptible psema(D3X) calls
ushort p_suid; Effective user id (set by exec(2))
char p_stat; The status of the process, used by the scheduler
ushort p_uid; Process user id
SOURCE FILE sys/proc.h

REAL/IX Kernel Reference Manual 4-33

semdrivs(D4X) semdrivs(D4X)

DESCRIPTION The semdrivs data structure is used with drivers that are installed under
either major or minor number semaphoring compatibility modes. The
d_sems member of the switch table entry points to an array or semdrivs
structure; the number of semdrivs structures is indicated by the d_cnt

member of the switch table. .

The figure below illustrates how the switch table points to a semdrivs array;
the example is for bdevsw(D4X), but would be the same for cdevsw(D4X).

Block Device Switch Table semdrivs (1)
(bdevsw)
d_sema
Major
Device # d_type d_cnt d_sems d_unit
d_lock
0 0 nulldev | nulidev
1 3 nulldev |_dntr |
2 2 4

A

semdrivs (2) .
d_sema d_sema

d_sema d_sema
d_unit d_unit d_unit d_unit
d_lock d_lock d_lock d_lock
d_intr d_intr d_intr d_intr

04468

In the figure, Major Device #1 is semaphored on the major number
(d_type=3), so semdrivs is an array of one element. Major Device #2 is
semaphored on the minor number (d_type=2), so semdrivs is an array of
d_cnt members, where d_ent is a member of the switch table structure,
indicating the number of minor devices supported (in this example, 4).

I
|
Accessing semdrivs from a Switch Table ‘

4-34 REAL/IX Kernel Reference Manual

semdrivs(D4X)

STRUCTURE MEMBERS

semdrivs(D4X)

Type Member Description

sema_t d_sema address of the driver semaphore

int d_unit bit map of the units needing service

: identifies type of semaphoring for sleep(D3X)

int d_stypa and serv(D2X)

lock_t d_lock spin lock to protect d_unit

int (*d_intr) (), pointer to the device interrupt routine

int d mult used to associate bit number with minor device
SOURCE FILE sys/conf.h

SEE ALSO

DDG, "Porting Drivers”
bdevsw(D4X), cdevsw(D4X)

REAL/IX Kernel Reference Manual

tty(D4X) tty(D4X)

DESCRIPTION Character queues and buffers for a TTY driver are associated with a given
TTY device through the tty (terminal) structure. The tty structure main-
tains all information relevant to the TTY device.

subsystem is designed to convert raw terminal data into data usable by a user
program, as illustrated below.

Device dependent
ttwrite tout output routine
{ t_outg P Ltbuf

.

The TTY subsystem is a series of buffers in which data is manipulated. The .

User Process

It ECHO Is on
ttread T

tcang |— trawqg]‘— trbuf .
| win Device dependent

input routine

Canonical
Processing

03568

Using the tty Structure .

To make the data usable, the TTY functions handle occurrences of the user
pressing BREAK or DELETE, BACKSPACE, or other special characters. By
pressing a keyboard key, an interrupt is generated and ttin(D3X) is called
from a device-dependent driver routine. ttin performs the following:

canon

O conveys data from the t_rbuf receive buffer to the t_rawq raw data
buffer

O echoes characters to the t_outq output buffer

O resolves BREAK and DELETE key entries, signaling processes if
necessary

The ttread(D3X) function is called to convey the data form t_canq to the
user process.

The ttwrite(D3X) routine conveys the data from the user program to the

t_outq output buffer. .
The ttout(D3X) routine is called to convey the data form the t_outq output
buffer to the t_tbuf transmit buffer.

REAL/IX Kernel Reference Manual

tty(D4X)

tty(D4X)

Finally, a driver device dependent output routine sends the data to the

terminal screen.

STRUCTURE MEMBERS

Type Member Description
struct clist t_rawq; Device raw input queue head
struct clist t_cang; Device canonical queue head
struct clist t_outq; Device output queue
struct ccblock| t_tbuf; Device transmit buffer
struct ccblock| t_rbuf; Device recelve buffer
int t_rsel; Select attempted on this device for read
int t_wsel; Select attempted on this device for write
int (*t_proc)(); proc routine address
tcflag_t t_iflag; Input mode
tcflag_ t t_oflag; Output mode
teflag_ t t_cflag; Control mode
tcflag_t t_1flag; Local mode
ulong t_state; Device and driver internal state
short t_pgrp; Process group name
char t_line; Line discipline type
char t_delct; Number of delimiters
char t_term; Terminal type
char t_tmflag; Terminal flag
char t_col; Current column
char t_row; Current row
char t_vrow; Variable row
char t_lrow; Last physical row
char t_hgent; Number of high queue packets on t_outq
char t_dstat Used by terminal handlers and line disciplines
unsigned char | t_cc[NCC]; Control characters

REAL/IX Kernel Reference Manual

4-37

tty(D4X)

tty(D4X)

The following elements of the tty structure are significant:

t_rawq

t_cang

t_outq

t_tbuf
t_rbuf

t_proc

modes

i_state

points to the first cblock of the device's raw input queue (before
character processing is performed), a clist(D4X) structure

points to the first cblock of the device's canonical queue (after
character processing is performed), a clist structure

points to the first cblock of the device's output queue, a clist
structure

device’s transmit buffer
device's receive buffer

holds the address of a proc(D2X) driver routine. Fach device
driver for a TTY device must provide a special hardware-specific
access or proc routine.

are four members of the tty structure that specify the foctl flags
listed in termio(7) modes.

O The t_iflag element holds the input modes specified in the
c_iflag element of the termio structure.

QO The t_oflag, t_cflag, and t_lflag elements hold output
modes, control modes, and local modes as specified in the
c_oflag, c_cflag, and c_lflag elements of the termio struc-
ture.

The contents of these fields are defined on the termio(7) manual
page.

maintains the internal state of the device and the driver. Each of
the 16 bits of this member is assigned to one of the items in the
following list. Thus, the state is a composite of one or more of the
items below. Note that the t_state member is fully utilized and
cannot be extended for additional state information that a particu-
lar driver may need. The states are as follows:

BUSY indicates output is in progress
CARR_ON software image of the carrier-present signal

CLESC indicates the last character processed was an escape
character

REAL/IX Kernel Reference Manual

tty(D4X) tty(D4X)

EXTPROC indicates a peripheral device is performing semantic
processing of data

IASLP indicates the processes associated with the device
. should be awakened when input completes
ISOPEN indicates the device is open

OASLP indicates the processes associated with the device
should be awakened when output completes

RCOLL indicates there was a collision in read select

RTO indicates a timeout is in progress for a device operat-
ing in raw mode; that is, where no canonical proc-
essing is taking place

TACT indicates a timeout is in progress for the device

TBLOCK indicates the driver has sent a control character to
the terminal to block transmission from the terminal

TIMEOUT indicates a delay timeout is in progress

TTIOW indicates the process associated with the device is
blocked awaiting the completion of output to the
terminal

TTSTOP indicates output has been stopped by a CTRL-s char-
acter (ASCII DC3) received from the terminal.

TTXOFF indicates the Central Processing Unit (CPU) has hit
the high water mark in receiving data from a TTY
device. You now want the terminal to send a CTRL-s
character to stop output. Calls the driver proc rou-
tine with T_BLOCK as the cmd argument.

TTXON indicates the data processed by the CPU has hit the
low water mark. Therefore, a CTRL-q character
should be sent when the transmitter is ready. Calls
the driver proc routine with T_UNBLOCK as the
cmd argument.

WCOLL indicates there was a collision in write select

. WOPEN indicates the driver is waiting for an open to complete

REAL/IX Kernel Reference Manual

tty(D4X)

SOURCE FILE

SEE ALSO

tty(D4X)

t_pgrp identifies the process group associated with the device. It is
needed to send signals to the process group.

t_line holds the line discipline type specified in the c_line element of the
termio structure

t_delct used by the TTY subsystem to keep track of the number of
delimiters found while performing semantic processing of data

t_cc[NCC]
array holding the control characters specified in the c_ec member

of termio

The tty structure contains other members used to implement CPU affinity
for a TTY device; these members are never accessed directly by the driver.

A character device driver using the TTY subsystem must declare an instance
of the tty structure for each subdevice under its control.

sys/tty.h

KPG, "Drivers in the TTY Subsystem”
linesw(D4X)

REAL/IX Kernel Reference Manual

user(D4X) user(D4X)

DESCRIPTION The user structure! defines the fields included in the user block for each
process. It may be thought of as an extension to the proc(D4X) structure,
which holds control information about a process that can be rolled out
whenever the process itself is rolled out. User blocks are created dynami-

. cally for each newly created process. The process user block contains
information such as where the data is coming from, its size, and how much
needs to be moved. Character driver read(D2X) and write(D2X) routines
may use these fields to read information they need about the status of an
I/0 request, and to write the I/0O request’s final status.

When a process begins to execute in the CPU, the user block for the process
is placed at a fixed address in the kernel; this location is called the u_area.
Only one user process can run on a given CPU at one time. This means that
the user block in the CPU is always the block for the currently running
process. A new process that has a higher priority than the process currently
running may cause that process to be preempted, in which case a new user
block is swapped in for the higher priority process. For this reason,
strategy(D2X) and interrupt-level routines (intr(D2X) and serv(D2X)) must
not access the user structure. These routines operate independently of the
currently running process and could inadvertently alter the fields of a user
block for a process not associated with them.

Data
Stack
User Block
4

USER
KERNEL

v

currently running
User Block process

Data

Stack

05738

user Structure

Most fields defined in the user.h header file are pertinent only to character
I I/0 read and write routines. init, open, close, and foctl routines can also

IThe user structure is also commonly called the u structure or u block, and sometimes is referred to as the user

area (u_area). User area should not be confused with user address space, which refers to the part of memory in
which a user-level process executes.

REAL/IX Kernel Reference Manual 4-41

user(D4X) user(D4X)

access the user structure, although the u.u_base and w.u_count fields that
define the size and location of the data transfer are not meaningful to these
routines. Block 1/0O requests are handled through the system buffer cache
defined by the buf(D4X) structure.

The user structure contains information that is needed only when the
process is running. The u.u_base member specifies the virtual address for
1/0 to and from the user data area. Information is transferred from the

individual user block to the kernel user structure, as illustrated below.

The user structure is populated from a system call, as illustrated below.

e e e e g

1
i Program in User Space |
!
i

! Iflllen=read{rd,buf,count)j==0)

fprintf{stderr,” %s:%s0, :
! argv|0].sys_errlist[arrna]); |
|

\ \ S

]]_u base l ru_count | U_Brror
u.,ofnia
User
Area
u_offset u_procp
Y
i |
F;‘;: om Process
Table | Tabla
L 2
System
I-Node
Table 07499

Populating the user structure from a system call

All members of the user structure shown in this diagram are explained on
the pages that follow in this section, except u.u_ofile, which is the first in an
array of pointers to file table entries for open files.

The user structure for the current process is always a fixed address in the
operating system address space. The kernel can look for the user structure

4-42 REAL/IX Kernel Reference Manual

user(D4X)

user(D4X)

only for a currently running process. Because the user structure is basic to
the kernel, it is subject to change from one software release to another.

STRUCTURE MEMBERS

Type Member Description
int *u_ap; Pointer to argument list (vap macro)
int *u_ar0[0]; Data to return to user process (rvall macro)
int *u_ar0[1]; Data to return to user process (rval2 macro)
int u_argl 1; Arguments to current system call
caddr_t u_base; 1/0 base address
unsigned u_count; Bytes remaining for (/O
int u_error; Return error code
short u_fmode; File mode for 1/0
gid_t* u_gid; Effective group ID
off_t u_offset; Offset into file for I/0
int u_preempt; Flags to disable preemption
struct proc *u_procp; proc structure pointer
gid_t* u_rgid; Real group ID
unsigned char | u_rt; Checks realtime privileges
uid_t® u_ruid; Real user ID
char u_segflg; User or kernel I/0 flag
char u_nshmseq; Number of shared memory segments attached
short *u_ttyp; Pointer to parp in tty(D4X) structure
uid t? u_uid; Effective user ID

fushort in machines with MVMEG80x0 MPU.

REAL/IX Kernel Reference Manual

user(D4X)

user(D4X)

These members of the user structure are described as follows:

u_ap points to the argument list for the current process; is usually
accessed with the wap macro, which should be defined in the

code as follows: .

*uap = (struct a *) u.u_ap;

u_ar0[0] used to return information from a system call; accessed with
the rvall macro

u_ar0[1] used like u_ar0[0] when a second piece of information must
be returned from a system call; accessed with the rval2
macro

u_arg[] arguments passed from the current system call

u_base specifies the virtual base address for I/0 to and from user
data space

u_count specifies the number of bytes not yet transferred during an

I/0 transaction

u_error returns an error code (refer to ermo.h) to the kernel; the
error code is then passed on to the user. This field is set by a
driver to indicate an error condition. See intro(2) for a
description of available error codes for setting error codes.
Also refer to copyin(D3X) for an example of the u.u_error

member.

u_fmode copy of the f_flag member of the file structure (defined in
sys/file.h). The flag propagates the modes set in the open(2)
request.

u_offset specifies the offset into the file from which or to which data

is being transferred

u_preempt flags to disable kernel preemption

u_procp address of the proc(D4X) structure associated with this user
structure
u_rt defines whether the process is executing with realtime privi-

leges; is set and checked with the rtuser macro

u_ruid and u_rgid .

identifies the real user and group IDs

REAL/IX Kernel Reference Manual

user(D4X) user(D4X)

u_rvall and u_rval2
point to registers that store values to be returned to the user

u_segflg determines what type of I/O transfer is to occur. The driver
should set this field to 1 to indicate data movement within
the kernel space; set it to 0 to indicate data movement
between kernel space and user space. Always save the previ-
ous value of u.u_segflg before changing it, and restore the
previous value when you have completed your 1/0 transfer.

u_nshmseg number of shared memory segments attached to this process

u_ttyp address of the tty(D4X) structure for the controlling
terminal

u_uid and u_gid
processes effective user and group identification members.
u.u_uid and u.u_gid may be used to provide a process identi-
fied by the user and group identification members (u.u_ruid
and u.u_rgid) with the access permissions of another process
or process group.

REAL/IX Kernel Reference Manual 4-45

user(D4X)

System releases and that can be set or read.

user(D4X)

|
The following table lists user structure members that do not vary between UNIX ‘
|

Access Rules for user Structure

Use
Member
Drivers System Calls
u_ap do not access read with uap macro
u_ar do not access read only
u_ar0[0] do not access set with rvall macro
u_ar0[1]) do not access set with rval2 macro
u_arg[6] do not access read only
u_base driver settable read only
u_count driver settable read only
u_error driver settable; do not clear settable; do not clear
u_fmode do not access
u_gid read only read only
u_offset driver settable
u_preempt do not access read only
u_procp read only read only
u_qsav read only do not access
u_rgid read only read only
u_ruid read only read only
u_segflg driver settable
u_nshmseg | do not access read only
u_syscall do not access read only
u_ttyp driver settable read only
u_uid read only read only
SOURCE FILE sys/user.h
4~46

REAL/IX Kernel Reference Manual

abbreviations, for manual titles, 2-2
ACANCEL, 2-5, 2-6
acancel(2), 2-5, 2-6, 2-19
ACANNIP, 2-6
ACANNOT, 2-6
ACANYES, 2-6
ACWALIT, 4-6
address translation, 2—-14
AIINIT, 4-5
AINPROG, 4-5
aio(D2X), 2-5, 2-19, 4-20
aio.h, 2-29, 4-6
aiocb(4), 2-6, 4-4
AIOGETREQ, 2-29, 2-31
alien handlers, 2-15 to 2-17
ALINIT, 4-5
AQUEUE, 2-5, 2-6
AQUEUE_INIT, 2-5, 2-6
AQUEUE_TERM, 2-5
aread(2), 2-5
areq(D4X), 2-5, 2-19, 3-38, 3-39, 4-4
arinit(2), 2-5, 2-6
arwfree(2), 2-5
asynchronous 1/0, 2-19
and I/0 control commands, 2-27, 2-29
buf(D4X), 4-13
cancel request, 3—39
indicate completion, 3-38
initiate, 2-5
atpanic(D3X), 3-12
atpfail(D3X), 3-13
av_back, 4-15
av_forw, 4-15
awinit(2), 2-5, 2-6
awrite(2), 2-5
a_buf, 4-5
a_dev, 4-6
a_dr_res[4], 4-6
a_eid, 4-5
a_fildes, 4-5
a_flags 1, 4-5
a_flags_2, 4-5
a_fp, 4-5
a_nbytes, 4-5

REAL/IX Kernel Reference Manual

RECEIVED APR 2 8 1993

INDEX

a_offset, 4-5
a_rw, 4-5

base level, 2-1, 2-23, 2-24
routines, 2-3
beopy(D3X), 3-14
bdevsw(D4X), 2-1, 2-11, 3-65, 3-66, 4-7, 4-34
bfreelist, 3-19
block device switch table, see bdevsw(D4X)
block devices, 2-4, 2-7, 2-11
block drivers, 2-3, 2-15
block 1/0, 2-39
block to wait for, 3-105, 3-139
multiple, 2-32
block 1/0 transfers, 4-10
block I/0, resume, 3-100
block number, 2-34
block special devices, 2-11, 2-32, 2-35
block special file, 2—-37
blocking semaphore, 2-13
bmemalloc(D3X), 3-16
bmemfree(D3X), 3—-17
boost priority, 3—141
bopen, 2-8, 2-12
bopen(D2X), 2-36
bprobe(D3X), 3-18
brelse(D3X), 3-19, 3-85, 3-86, 3-100, 4-14
btoc(D3X), 3—22
buf(D4X), 2-32, 4-10, 4-11
buf.h, 2-32
buffer
allocating specific size, 3-88
erase contents of, 3-32
get an empty, 3-85
releasing, 3-19
buffer cache, 4-10
buffer header, 4—-10
free, 3-73
byte copy, 3-14
bytes to clicks, conversion routine, 3-22
bytes, move in kernel space, 3-102
bzero(D3X), 3-23
b_actf, 4-28
b_active, 4-28

Index-1

INDEX [continued]

b_actl, 4-28

B_AGE, 4-13

B_AIO, 4-13

B_ASYNC, 2-33, 2-55, 4-13

b_avback, 3-85

b_avforw, 3-85

b_back, 3-85, 4-15, 4-28

b_bcount, 2-33, 2-34, 2-55, 3-86, 3-136, 4-15

b_blkno, 2-33, 2-34, 2-55, 3-86, 3~136, 4-15

B_BUSY, 3-136, 4-13

B_CHAINED, 2-33, 2-34

B_CHNHEAD, 2-33, 2-34

b_chnhead, 2-34

b_chnnxt, 2-33, 2-34

B_DELWRI, 4-13

b_dev, 2-33, 2-34, 2-55, 3-85, 3-136, 4-15,
4-28

B_DONE, 4-13

b_drivwksp, 2-34

b_errcnt, 4-28

B_ERROR, 2-56, 4-14

b_error, 2-33, 2-56, 3-19, 3-63, 3-85, 3-105,
3-136, 4-15

B_ERROR set, 2-32

b_flags, 2-32 10 2-34, 2~-45, 2-55, 3-85, 3-100,
3-136, 4~-12, 4-28

B_FORMAT, 4-14

b_forw, 3-85, 4-15, 4-28

b_iodone, 3-86, 3-105

b_lock, 3-86, 4-13

B_OPEN, 4-14

B_PHYS, 2-33, 2-56, 3-136, 4-14

b_proc, 2-59, 3-86, 3-136, 4-15

B_READ, 2-33, 2-34, 2-45, 2-46, 2-55, 4-5,
4-14 -

b_resid, 2—-56, 3-32, 3-86, 3-137, 4-15

b_s0, 3-86

b_s1, 3-86

b_s2, 3-86

b_shift, 3-86

B_STALE, 4-14

b_start, 2-33, 3-86, 4-15

b_umd, 3-86

b_un.b_addr, 2-33, 2-34, 2-55, 3-86, 3~136,

Index-2

4-15
B_WRITE, 2-45, 4-5, 4-14

C language
writing portable code, 1-3
cache coherency, 2-18
canon(D3X), 3-24
canonical processing, 2-3
cblock(D4X), 2-43, 3-80, 3-82, 3-150, 3-152,
3-154, 4~-17, 4-24
cdevsw(D4X), 2-1, 2-27, 2-43, 2-45, 3-65,
3-66, 4-34
cireelist(D4X), 3-82, 3-150, 3-154, 4-22
character devices, 2-4, 2-5, 2-7
character drivers, 2-15, 2-27, 2-42
character I/0, 2-44
character special device file, 2~45
character special devices, 2-6, 2-35
with ioctl handler, 2-31
character special file, 2-37
character special files, 4-19
character—access devices
synchronous read from, 2-43
characteri drivers, 2-3
chead, 4-22
cintr(D4X), 2-20
cintrcti(D3X), 3-27
cintrelse(D3X), 2-8, 3-29, 4-23
cintrget(D3X), 2-20, 3-30, 4-23
cintrio(4), 2-20, 3-30, 4-23
cintrio(7), 2-26
cintrio.h, 2-29, 4-23
CINTRNOTIFY(), 2-20
CINTRNOTIFY(D3X), 3-31
cintrnotify(D3X), 2-20, 3-31, 4-23
CINTR_EVENTS, 2-20
CINTR_EXCL, 3-30
CINTR_POLL, 2-20
CI_ACK, 2-29, 3-27
ci_ack, 4-23
ci_cid, 4-23
CI_CONNECT, 2-20, 2-29, 3-31
ci_ioctl, 4-23
ci_key, 4-23

REAL/IX Kernel Reference Manual

INDEX [continued]

ci_lock, 4-23
ci_oneshot, 4-23
ci_pollptr, 4-23
ci_procp, 4-23
ci_sema, 4-23
CI_SETMODE, 2-29, 3-27
CL_STAT, 2-29, 3-27
CI_UCONNECT, 2-29, 3-27
clicks to bytes, convert, 3—-47
clist(D4X), 3-78, 3-80, 3-152, 4-24, 4-29
close(2), 2-8
close(D2X), 2-7, 2-12, 2-37, 4-8, 4-20
clrbuf(D3X), 3-32
CLSIZE, 4-17
cmn_err(D3X), 2-11, 2-14, 3-33
arguments to, 2-14
contrasted with print(D2X), 2-39
command buffer, 2-21
compatibility modes, 1-3, 2-7, 2-8, 2-17, 2-18,
2-42, 2-46
and alien handlers, 2-17
CPU affinity, 1-3, 2-22, 2-23
major device semaphoring, 1-3
major—device semaphoring, interrupt handlers
for, 2-22
minor device semaphoring, 1-3, 2—4
minor-device semaphoring, interrupt handlers
for, 2-24
semaphoring members of cdevsw(D4X), 4-20
using semdrivs(D4X), 4-34
using sleep(D3X), 3-166
comp_aio(D3X), 2-6, 2-19, 3-38, 4-6
comp_cancel_aio(D3X), 2-19, 3-39
conf.h, 4-21, 4-35
connected interrupts, 2—-19
and I/0 control commands, 2-27, 2-29
cintr(D4X), 4-23
code overview, 2-20
command types for, 2-26
connect to a cintrio(4) structure, 3-30
control operations, 3-27
notifying user level process, 3-31
release an identifier, 3-29
control status request (CSR), 2-21

REAL/IX Kernel Reference Manual

copen, 2-8, 2-12

copen(D2X), 2-36

copy
byte from driver to user data space, 3-177
byte from user program to driver, 3-75
data into kernel, 3—40
data out of kernel, 3-42
word from driver to user data space, 3-180
word from user program to driver, 3-76

copyin(D3X), 2-43, 3-40

copyout(D3X), 2-60, 3-42

core image
save, 2-11

cpass(D3X), 3-44

cpsema(D3X), 2-13, 2-23, 2-24, 3-45, 3-97

CPU affinity, 1-3, 2-22, 2-23, 2-42, 2-44, 2-46

crash(1M), 2-1

creat(2), 2-36

ctob(D3X), 3-47

cvsema(D3X), 3-48

c_cc, 4-24

c_cf, 4-24

c_cflag, 4-38

c_cl, 4-24

c_count, 4-18

c.data, 3-82, 4-17, 4-18, 4-24

c_first, 3-82, 4-17, 4-24

c_iflag, 2—-41, 4-38

c_last, 4-17, 4-24

c_lflag, 4-38

c_next, 4-17, 4-22, 4-24

c_oflag, 4-38

c_ptr, 4-18

c_siz, 4-22

c_size, 4-18

daemons
hipritimed, 3-69
lopritimed, 3-69
data structures, 4-1 10 4-46
db(1M), 2-1
dcachclr(D3X), 3-50
debugging tools, 2-1
decsema(D3X), 3-51

index~-3

INDEX [continued]

deferred interrupts, 2-54
defining I/O controls, see ioctl(D2X)
DELAY(D3X), 3-52
delay(D3X), 3~53
delayfs(D3X), 3-53
/dev/dump, 2-11
device number

from major and minor number, 3-114
-DINKERNEL, 3-113
disable(D3X), 3-55
disjointio(D3X), 3-57
disjointio.h, 4-26
DINTCNT, 3-60
DINTESIZE, 3-60
djntfree(D3X), 3-59, 3-60
djntget(D3X), 3-60
djntio(D4X), 2-34, 4-26
DINTMAXSZ, 3-60
dma_breakup(D3X), 2-45, 3-62, 3-86
driinvoke(D3X), 3-65, 4-7
drilock(D3X), 3-66, 4-7, 4-20
drilock/driunlock(D3X), 4-19
driunlock(D3X), 3-66, 4-7, 4-20
driver kernel functions and macros, 3~1 ro

3-234

driver prefix, 2-1
driver routines, 2-1 ro0 2-62
driver screen

interrupt vectors size field, 2~17
dump(D2X), 2~-11, 4-8
d_aio, 4-20
d_close, 4-8, 4-20
d_cnt, 4-8, 4-20, 4-21, 4-34
d_dindx, 4-20, 4-21
d_dump, 4-8
d_intr, 4-35
d_joctl, 4-20
d_lock, 4-35
d_open, 4-8, 4-20
d_print, 4-8
d_read, 4-20
d_select, 4-20
d_sema, 4-35
d_sems, 4-8, 4-20, 4-21

Index—4

d_str, 4-20

d_strategy, 4-8

d_stype, 4-35

d_ttys, 4-20

d_type, 4-8, 4-20, 4-21, 4-34
d_unit, 4-35

d_write, 4-20

EAGAIN, 2-5, 2-6
enable(D3X), 3-68
ENODEV, 2-5, 2-6, 2-43
entry points, 2-1 0 2-62, 4-7, 4-19
interrupt handler, 2-15
porting issues, 2-4
entry—point routines, defined, 1-1
ENXIO, 2-5, 2-6
error messages, console, 3-33
/etc/inittab, 2-12
/etc/re2.d, 2-11
etimeout(D3X), 3-69
event, posting to user process, 3—159
examples
header file for ioctl(D2X), 2-30
interrupt handler for minor device
semaphoring, 2-24
ioctl(D2X), 2-31
job completion interrupts, 2-19
exclusionary semaphore, 2-13
exec(2), 2-5, 4-6
exit(2), 2-5

FAPPEND, 2-36

fentl(2), 2-6

FCREAT, 2-36

FEXCL, 2-36

file descriptor, 2-6

file.h, 2-7, 2-26, 2-36, 2-37, 2-43
FNDELAY, 2-36
FREAD, 2-26, 2-27, 2-36
freecpages(D3X), 3-72
freepbp(D3X), 3-73, 3-90
freephysbuf(D3X), 3-74
FSYNC, 2-36

FTRUNC, 2-36

REAL/IX Kernel Reference Manual

fubyte(D3X), 3-75

fully semaphored drivers, 2-46
fuword(D3X), 3-76

FWRITE, 2-26, 2-27, 2-36
f_flag, 2-7, 2-36, 2-43
F_SETAIOEMUL, 2-6

getc(D3X), 3-78
getcb(D3X), 3-80
getcf(D3X), 3-82
getcpages(D3X), 3-83
geteblk(D3X), 3-19, 3-85
getnblk(D3X), 3-19, 3-88
getpbp(D3X), 3-90, 4-13
getphysbuf(D3X), 3-92
getty(IM), 2-27
get_timer(D3X), 3-93
global declarations, 4-1
grep(l), 1-2

header files, 21, 4-2

and 1/0 control commands, 2-28 to 2-30

high water mark, 2-40, 3-188
hipritimed, 3-69
HZ, 3-53

ICANON, 3-24
#include lines, 2-1, 4-2
incsema(D3X), 3-94
init(D2X), 2-12, 3-95, 3-97
messages, 2-14
initialization
choice of routines, 2-12
initialize a device, 2-12
initlock(D3X), 2-13, 3-95
initsema(D3X), 2-13, 3-97
interrupt envelope, 2-16, 2-23
interrupt handler, 1-3, 2-4, 2-15
parameters, 2-18
interrupt level, 2-1, 2-17
routines, 2-3
interrupt vector, 2-14
interrupt vectors, 2-18

REAL/IX Kernel Reference Manual

INDEX [continued]

interrupts
block/allow using spl*(D3X), 3-168
enable, 3-68
job completion, 2-18
spurious, 2-17
intr(D2X), 1-3, 2~15, 2-44, 2-46, 4-41
and shared structures, 2-21 '
for intelligent boards, 2-20
iobuf.h, 4-28
ioctl(2), 2-20
ioctl(D2X), 2-12, 2-26, 3-77, 3-86, 3-181,
3-194, 4-20
assigning command values, 2-29
defining command names and values, 2-28
importance of commenting, 2-28
unknown command, 2-30
uses for, 2-27
vs. init(D2X) for initialization, 2-14
iodone(D3X), 2-19, 2-33, 2-46, 3-86, 3~100,
3-105, 3-139, 4-13
iomove(D3X), 3-102
iowait(D3X), 2-19, 2-46, 3-86, 3—100, 3-105,
3-139, 4-14
io_addr, 4-28
io_erec, 4-28
io_mba, 4-28
io_nl'eg, 4-28
io_nreq, 4-28
io_s1, 4-28
io_s2, 4-28
io_start, 4-28
io_stp, 4-28
IXANY, 2-41

job completion interrupts, 2-18
job completion queue, 2-21
job request queue, 2-21
jrgsleep, 4-28

kernel buffer area, 2-43
kerne! functions

defined, 1-1

porting considerations, 3-9 t0 3-11
kernel semaphores, 1-3, 2-12

Index—-5

INDEX [continued]

kernel semaphores [continued]
decrement (lock), 3-141
decrement (lock) only if resource is available,
3-45
decrement for statistics, 3-51
increment (unlock), 3—-231
increment (unlock) if a process is waiting,
3-48
increment for statistics, 3-94
initialize, 2-12, 2-13, 3-97
return current value of, 3—229
kernel virtual memory, 3-109, 3-112
klongjmp(D3X), 3-106, 3-144, 3-166
kmap(D3X), 3-109
ksetjmp(D3X), 3-110
kunmap(D3X), 3-112

layered process, 2—-37

line discipline, 4-29

line disciplines, 2-41
linesw, 2-42

linesw(D4X), 4-29

linker, 1-2

logical block number, 2-34
longjump, 3-106
lopritimed, 3-69

low water mark, 2—41

major device semaphoring, 1-3, 2-22, 2-23
major(D3X), 3-113
major—device semaphoring, 2—-42, 2-44, 2-46
makedev(D3X), 3-114
malloc(D3X), 3-115, 3-121
mapinit(D3X), 3-118, 3-121
max(D3X), 3-120
mbstrategy(D2X), 2-18, 2-32
memory allocation, 2-13
memory management, 2—-18
allocate pages, 3~171
allocate space from private map, 3-115
free allocated memory, 3-173
free space into private map, 3-121
initialize private map, 3-118
memory page locking, 2-43

Index-6

memory, clear, 3-23

messages, 2—14

mfree(D3X), 3-121

min(D3X), 3-123

minor device number, 2-38

minor device semaphoring, 1-3, 2-4, 2-24, 2-54
minor(D3X), 2-37, 3-124

minor-device semaphoring, 2-42, 2-44, 2-46
modes, in tty(D4X), 4-38

multi-block strategy handler, 2-35

multiple block 1/0, 2-32

multiple handlers, 2-15

m_addr, 3-115

NCALL, 3-71

NCLIST, 4-22

nodev(D3X), 3-126

NOFLSH, 2-41

non-blocking I/O, see asynchronous I/O
NOT_ALIGNED(D3X), 3-127

NPBUF, 2-45

nulldev(D3X), 3-128

off_t, 4-5

olongjmp(D3X), 3-129

open(2), 2-36, 2-37

open(D2X), 2~7, 2-12, 2-26, 2-36, 4-8, 4-20
vs. init(D2X) for initialization, 2-14

open.h, 2-8

osetjmp(D3X), 3-130

OTYP_BLK, 2-7, 2-37

OTYP_CHAR, 2-7, 2-37

OTYP_LYR, 2-7, 2-37

OTYP_MNT, 2-7, 2-37

OTYP_SWP, 2-7, 2-37

paddr macro, 4-16

page size, 3-22, 3-47

paging, use of buf(D4X), 4-10
panicking the system, 2-14, 3-33
passc(D3X), 3-131

PBUF, 2-46

PCATCH, 3-106
pepsema(D3X), 3-45

REAL/IX Kernel Reference Manual

INDEX [continued]

pevsema(D3X), 3-48
pdecsema(D3X), 3-51
peek and poke, 2-30
performancetranscripting
improve, see off
permissions
realtime, 3-156
superuser, 3—-179
pe-getaddr(D3X), 3-132
physck(D3X), 2-43, 2—-45, 2-60, 3-103, 3-133,
3-221
physical block number, 2-34
physical buffer
allocate, 3-92
release, 3-74
physical I/O, 2-44, 3-133, 3-135
allocate buffer, 3-90
for block drivers, 3-135, 4-10
get buffer pointer, 3-90
physio(D3X), 2-43, 2-60, 2-62, 3-135, 3-139,
3-220
and read routines, 2-44
with buf(D4X), 4-10
pincsema(D3X), 3-94
poff(D3X), 3-138
porting driver code, 1-2
ppsema(D3X), 3-141
prefix, driver, 2-1
preinitsema(D3X), 3-97
preiowait(D3X), 2-19, 3-86, 3-139
prid, 3-34
print daemon, see prfd
print(D2X), 2-39, 4-8
contrasted with cmn_err(D3X), 2-39
printf(3S), 3-34
printf(3X), 2-14
priority boost, 3-141
privileges, user, 3-219
proc(D2X), 2-40, 3-198, 3-203, 4-38
and spl6(D3X), 2-42
proc(D4X), 3-144, 3-148, 4-32
and init(D2X), 2-14
proc.h, 4-33
process table, 4-32

REAL/IX Kernel Reference Manual

psema(D3X), 2-13, 2-17, 2-19, 2-44, 246,
3-97, 3-141

and init(D2X), 2-14
psignal(D3X), 2-16, 3-144
psignalcur(D3X), 2-16, 3-146
psignalval(D3X), 2-16, 3-148, 4-33
pspsema(D3X), 3-170
psvsema(D3X), 3-182
putbuf, 3-34
putc(D3X), 3-150
putcb(D3X), 3-152
putcf(D3X), 3-154
pvsema(D3X), 3-231
PZERO, 3-141, 3-165
p-lock, 4-33
p-pgrp, 4-33
p-pid, 4-33
p-pri, 4-33
p-size, 4-33
p—stat, 4-33
p-uid, 4-33

qcnt, 4-28

race conditions, 2—-8
raw I/0, 2-43
raw I/0 for block device, 3-135
rcpsema(D3X), 3-45
rcvsema(D3X), 3-48
rdecsema(D3X), 3-51
read(2), 2-43
read(D2X), 2-18, 2-43, 3-40, 3-103, 3-133,
4-20, 4-41

in block driver, 2-45
realtime permissions, 3—-156
reinitsema(D3X), 3-97
rel_timer(D3X), 3-155
residual byte count, 2-32, 2-44, 2-61
rincsema(D3X), 3-94
routines

block drivers, 2-3

character drivers, 2~3

defined, 1-1

interrupt handling, 2-4

Index—7

INDEX [continued]

routines [continued] spin locks, 1-3, 2-12, 2-25
naming, 2-1 initialize, 2-12, 2-13, 3-95
static, 2-3 lock, 3-170
types, 2-3 return current value of, 3-228
rpsema(D3X), 3-141 unlock, 3-182
rreinitsema(D3X), 3-97 spl(D3X), 1-3, 3-168
rspsema(D3X), 3-170 spl*(D3X), 2-18, 2-21
rsvsema(D3X), 3-182 spl6(D3X)
rtuser(D3X), 3-156 and proc(D2X), 2-42
rvall macro, 4-44 splx(D3X), 3-168
rval2 macro, 4-44 splx_fast(D3X), 3-168
rvsema(D3X), 3-231 spsema(D3X), 2~-25, 3-170
rwflag, 3~136 sptalloc(D3X), 2-13, 3-171
sptfree(D3X), 3-173
save spurious interrupts, 2-17
core image, 2-11 static driver routines, 2-1, 2-3
SCSI devices, 2-32 strategy(D2X), 2-18, 2-39, 2-44, 2-55, 3-62,
select(D2X), 2-48, 3-191, 4-20 3-85, 3-101, 3-135, 3-139, 4-8, 4-10, 4-27,
selwakeup(D3X), 3-157 4-41
semaphore initialization, 2-13 called as subordinate routine, 2-45
semaphores compared with mbstrategy(D2X), 2-32
fully-semaphored drivers, 1-3, 2-7, 2-8 stremp(D3X), 3-174
semaphores, kernel, see kernel semaphores strepy(D3X), 3-175
SEMCATCH, 3-106, 3-141 strlen(D3X), 3-176
semdrivs(D4X), 2-23, 4-8, 4-21, 4-34 strncmp(D3X), 3-174
SEMINTBOOST, 3-142 strncpy(D3X), 3-175
SEMINTR, 3-141, 3-148 stty(1), 2-27
SEMNOLOOP, 3-142 subdevice, 1-3
SEMRTBOOST, 3-141 subordinate driver routines, defined, 1-1
SEMRTBOOST flag, 3-45 subroutines, 2-1
send_event(D3X), 2-16, 3-159 naming, 2-1
serv(D2X), 1-3, 2-24, 2-54, 4-41 static, 2-1
serv(D3X), 2-24 subyte(D3X), 3-177
setjmp(3C), 3-106 superuser permissions, 3—~179
set_timer(D3X), 3-161 suser(D3X), 3-179
sgreq, 4-28 suspend execution, 3~165
signal suword(D3X), 3-180
send to a process, 3-144 svsema(D3X), 2-25, 3-182
send to current process, 3—146 swap device, 2-11, 2-37
send to process group, 3~163 switch table, 2-43
send valid number, 3-148 switch tables, 2-1
signal(D3X), 2-16, 3-163 synchronization, 1-3
sleep(D3X), 1-3, 2-17, 2-19, 2-44, 2-46, 3-165 synchronous
and init(D2X), 2-14 emulation, 2-6

Index—8 REAL/IX Kernel Reference Manual

INDEX [continued]

synchronous emulation, 2—-6
sys/disjointio.h, 2-34

sysgen(1M), 1-3, 2-11, 2-35, 2-38, 4-19
system buffer cache, 2-44

system clock, 3-70

system panic, 2-11

TBLOCK, 2-40, 2-41

termio(7), 2-26, 2-41, 4-38

timeout(D3X), 3-183

timeoutfs(D3X), 3-183

timeoutfspri(D3X), 3-183

timeoutpri(D3X), 3-183

timer functions
get_timer(D3X), 3-93
rel_timer(D3X), 3-155
set_timer(D3X), 3-161

ttclose, 2~-10

ttclose(D3X), 3-186

ttin(D3X), 3-188, 4-36

ttinit(D3X), 3-191

ttiocom(D3X), 3-193

ttioctl(D3X), 3-196

ttopen(D3X), 3-198

ttout(D3X), 3-200, 4-36

ttread, 3-25

ttread(D3X), 2-43, 3-201, 4-36

ttrstrt(D3X), 3~203

ttselect, 2-48

TTSTOP, 2-40, 2-41

tttimeo, 3-26

tttimeo(D3X), 3-205

ttwrite(D3X), 2~60, 3-207, 4-36

TTXOFF, 2-41

ttxput(D3X), 3-209

TTY devices, 2-20, 2-40

TTY drivers, 2-1, 2-43

tty drivers, 2-3, 2-10

TTY subsystem, 2-42

tty(D4X), 2~40, 2-43, 3-78, 4-18, 4-29, 4-36

tty.h, 4-17, 4-18, 4-22, 4-25, 4-40

ttyflush(D3X), 3-188, 3-211

ttywait(D3X), 3-212

T_BLOCK, 2-40

REAL/IX Kernel Reference Manual

T_BREAK, 2-40

t_can, 3-25

t_cang, 4-38

t_cc, 3-26, 3-191
t_cc[NCC], 4-40
t_cc[VSWTCH], 2-41
t_cflag, 3-191, 4-38
t_delct, 4-40
T_DISCONNECT, 2-40
t_iflag, 3-191, 4-38
T_INPUT, 2-40

t_lflag, 2-41, 3-24, 3-191, 4-38
t_line, 3-191, 4-40

t_oflag, 3188, 3-191, 4-38
T_OUTPUT, 2-40

t_outq, 3-188, 3-200, 4-38
T_PARM, 2-40

t_pgrp, 3—188, 3-198, 4-40
t_proc, 4-38

t_rawq, 3-24, 3-188, 4-38
t_rbuf, 4-18, 4-38
T_RESUME, 2-40, 2-41
T_RFLUSH, 2-41

t_rsel, 3-191

t_state, 2—40, 2-41, 3-198, 4-38
T_SUSPEND, 2-41
T_SWTCH, 2-41

t_tbuf, 3—-200, 4-18, 4-38
T_TIME, 2-41
T_UNBLOCK, 2-41
T_-WFLUSH, 2-41

t_wsel, 3-191

u block, 4-41

u.u_ap, 2-43, 2-44, 2-60, 4-44

u.u_ar0[0], 4-44

u.u_ar0{1], 4-44

u.u_arg(], 4-44

u.u_base, 2-43 10 2-45, 2-60, 3-40, 3-42,
3-102, 3-135, 3-177, 3~-180, 4-44

u.u_count, 2-43, 2-44, 2-60, 2-61, 3-40, 3-42,
3-102, 3-135, 3-137, 3-177, 3-180, 4-44

u.u_drivsema, 3-66

u.u_error, 2-8, 2-38, 2-43, 2~44, 2-61, 3-75,

Index—9

INDEX [continued]

u.u_error [continued] valulock(D3X), 3-228

3-76, 3-102, 3-126, 3-137, 4-14, 4-15, 4-44 valusema(D3X), 3-229 |
u.u_fmode, 2-43, 2-60, 4-44 VME device controllers, 4-27
u.u_gid, 4-45 vme_a24_mem_valid(D3X), 3-230
u.u_nshmseg, 4-45 vsema(D3X), 2-13, 2-19, 2-46, 3-97, 3-100,
u.u_offset, 2-43, 2-60, 3-102, 3-135, 4-44 3-231
u.u_preempt, 4—44 and init(D2X), 2-14
u.u_proc, 4-32
u.u_procp, 3-135, 4-44 wakeup(D3X), 1-3, 2-19, 2-46, 3-165, 3-233
u.u_gsav, 3-144 warning messages, 2—39
u.u_rgid, 4-44 whence (aiocb member), 4-5
u.u_rt, 4-44 write(D2X), 2-18, 2-60, 3-40, 3-103, 3-133,
u.u_ruid, 4-44 4-20, 4-41
u.u_rval, 4-45 in block driver, 2-45
u.u_segflg, 2-43, 2-44, 2-60, 3-102, 4-45
u.u_ttyp, 4-45 XOFF, 2-41
u.u_uid, 4-45 XON, 2-40, 2-41

uap macro, 4-44
unbuffered 1/0, see physical I/O
undma(D3X), 3-213
UNIX SystemV kernel, 1-2
untimeout(D3X), 3-214
upath(D3X), 3-217
user address space, 2—44, 4—41
user area, 2—43, 4-41
user privileges, 3~219
user virtual memory, 2-43, 3-109, 3-112, 3-135
user(D4X), 2-8, 2-17, 2-35, 2-43, 4-41

and init(D2X), 2-14

implicit arguments to physio(D3X), 3—-135
user—installed system calls, 1-3
user.h, 2-38, 4-46
useracc(D3X), 3-109, 3-219
userdma(D3X), 3-222
/usr/dumps, 2-11
/usr/examples/pio, 2-20, 2-30
/usr/include/sys, 1-2
/usr/include/sys directory, 4-2
usshmctl(D3X), 3-224
usyscall(D3X), 3-225

uvtopde(D3X), 3-227
u_area, 4—41
u_segflg, 4-45

Index-10 REAL/IX Kernel Reference Manual

Please comment on the publication’s completeness, accuracy, and readability. We also
appreciate any general suggestions you may have to improve this publication.

If you found any errors in this publication, please specify the page number or include a
copy of the page with your remarks.

Your comments will be promptly investigated and appropriate action will be taken.

J If you require a written answer please check this box and include your address below.

Comments:

Manual Title

Manual Order Number Issue Date

Name Position

Company

Address

Telephone ()

088 'S'W ‘NOLLYLINIWNOOA TvDINHOIL :uopusny

6609—0vEEE 14 ‘ITvau3anv "1d
6609 X08 ‘'O'd
avoyd gvN2oW "M 0591
*ONI ‘SWALSAS HILNdWOD HYTNAOW

335S3HAAV A4 Aivd 39 TT1IM 3DVLSOd

60€€€ 14 ‘ITvaAH3ANVT ‘L4 ¥29€ "ON LINH3d SSV1O LSHId

TIVIN A'TdHd SSANISNH

S3LV1S J3alINN
JHL NI
[CERILAIE]

AHVYSSIDAN
35v150d ON ‘ " " ‘

an AEG company

MODCOMP, founded in 1970, is a
worldwide supplier of high-
performance, real-time computer
systems, products, and services 1o
the industrial automation, energy,
transportation, scientific, and
communications markets.
MODCOMP is an AEG company.

Corporate Headquarters:
Modular Computer Systems, Inc.
1650 West McNab Road

P.O. Box 6099

Ft Lauderdale, FL 33340-6099
Tel: (305) 974-1380

Twx: 510-956-9414

International Headquarters:
Modular Computer Services, Inc
The Business Centre

Molly Millars Lane

Wokingham, Berkshire

RG11 2JQ, UK
Tel: 0734-786808, TLX: 851849149

Latin American-Caribbean
Headquarters:

Modular Computer Systems, Inc.,
1650 West McNab Road

P.O. Box 6099

Ft. Lauderdale, FL 33340-6099
Tel: (305) 977-1795, TLX: 3727852

Canadian Headquarters:
MODCOMP Canada, Ltd.,

400 Matheson Blvd, East, Unit 24
Mississauga, Ontario

Canada L4Z IN8

Tel: (416) 890-0666

Fax: (416) 890-0266

Sales & Service Locations
Throughout the World

Copyright © 1989, Modular Computer Systems, Inc.
MODCOMP is a registered trademark of Modular Computer Systems, Inc

Primed in USA = 'r‘h al contents of this document, while acourate as of the date of :JuL-I-‘. e subect o change without notice '

