=

Language Reference Manual
GLS™ FORTRAN

210—856001—-001 MODCOMP

g el . TS "'l_-,';:%
0
L OGICAL DATA CORPORATION RECEIVED DEC 2 2 882

Manual History

. Manual Order Number: 210-856001-001
Title: GLS™ FORTRAN Language Reference Manual
Revision Level Date Issued Description
000 11/89 Initial Issue.
001 12/90 Reissue. Compatible with Open Architecture Systems, and

MAX-Based systems executing revision D.1 or later of the
MAX 32 Operating System.

Contents subject to change without notice.

MODCOMP is a registered trademark of Modular Computer Systems, Inc.
REAL/IX, GLS, and MAX are trademarks of Modular Computer Systems, Inc.
DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.
UNIX is a registered trademark of AT&T in the U.S. and other countries.

Portions of this document are based on or reprinted from copyrighted documents by permission of
Green Hills Software, Inc.

. Copyright © 1990, by Modular Computer Systems, Inc.

All Rights Reserved.
Printed in the United States of America.

GLS FORTRAN Language Reference Manual il

iv

PROPRIETARY NOTICE

THE INFORMATION AND DESIGNS DISCLOSED HEREIN WERE ORIGINATED BY AND ARE THE PROPERTY OF
MODULAR COMPUTER SYSTEMS, INC. (MODCOMP). MODCOMP RESERVES ALL PATENT, PROPRIETARY DESIGN,
MANUFACTURING, REPRODUCTION, USE, AND SALES RIGHTS THERETO, AND RIGHTS TO ANY ARTICLE
DISCLOSED THEREIN, EXCEPT TO THE EXTENT RIGHTS ARE EXPRESSLY GRANTED TO OTHERS. THE FOREGOING
DOES NOT APPLY TO VENDOR PROPRIETARY PARTS.

SPECIFICATIONS REMAIN SUBJECT TO CHANGE IN ORDER TO ALLOW THE INTRODUCTION OF DESIGN
IMPROVEMENTS

FOR GOVERNMENT USE THE FOLLOWING SHALL APPLY:
RESTRICTED RIGHTS LEGEND

USE, DUPLICATION, OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
RIGHTS IN DATA CLAUSES DOE 952.227~75, DOD 52.227-7013, AND NASA 18-52.227-74 (AS THEY APPLY TO
APPROPRIATE AGENCIES)

MODULAR COMPUTER SYSTEMS, INC

1650 WEST McNAB ROAD

P.O. BOX 6089

FORT LAUDERDALE. FL 33340-609¢ |

THIS MANUAL IS SUPPLIED WITHOUT REPRESENTATION OR WARRANTY OF ANY KIND. MODULAR COMPUTER

SYSTEMS, INC. THEREFORE ASSUMES NO RESPONSIBILITY AND SHALL HAVE NO LIABILITY OF ANY KIND
ARISING FROM THE SUPPLY OR USE OF THIS PUBLICATION OR ANY MATERIAL CONTAINED HEREIN.

=

GLS FORTRAN Language Reference Manual

Preface

Audience
This manual is written for users of the General Language System (GLS) FORTRAN compiler. It
assumes you have previous FORTRAN programming experience.

Subject
This manual describes the FORTRAN programming language supported on the GLS FORTRAN
compiler.

Product Requirements
The GLS FORTRAN compiler runs on MAX-Based and Open Architecture Systems.

Special Symbols and Notation
The GLS FORTRAN Compiler supports a subset of the VAX/VMS™ language extensions. The double
dagger symbol (H) identifies the supported VAX/VMS language extensions in this manual.

Related Publications
Refer to the following manuals for additional information.

Manual Number Title
216-856004-REV GLS Programming Guide for 97xx Systems
216~856005-REV GLS Programming Guide for MAX 32 Systems

MODCOMP Service and Assistance

MODCOMP offers a variety of programs and services that demonstrate our commitment to
customer satisfaction. Our Technical Education department provides comprehensive hands-on in-
struction either at our facilities or at customer-designated sites. Qur worldwide field service organi-
zation is ready to give installation assistance, free service during the warranty period, and flexible
service programs tailored to your requirements.

Questions, Problems, and ‘Suggestions

Your MODCOMP sales and service representatives can help you with any questions, problems, or
suggestions you may have regarding our products and services. In addition, for your convenience
MODCOMP maintains toll-free telephone numbers at which we can be reached for questions,
problems, and suggestions. Please feel free to use the following numbers:

0 For questions, sales information, or suggestions: in the U.S. and Canada, 1-800-255-2066
(In countries outside the U.S. and Canada, please call your regional sales support office or
1-305-974-1380 extension 1800 worldwide.)

Q For service: in Florida, 1-800-432-1405; in the U.S., 1-800-327-8928; in Canada,
1-416-890-0666 (In countries outside the U.S. and Canada, please call your regional serv-

GLS FORTRAN Language Reference Manual v

Vi

ice/support office.)

O For Technical Education information: in the U.S., 1-305-977-1708 (In countries outside the
U.S., please call your regional support office.)

For comments about documentation, please use the response form at the back of this manual.

GLS FORTRAN Language Reference Manual

Revision Summary

. This manual was reviewed for compatibility with MAX-Based Systems. No technical changes were
required for compatibility.

The following additions and corrections were made:

0 A quick reference of FORTRAN statements, system subroutines, and built-in functions was
added to form Appendix C

Q The function IARGC was added

D The subroutine GETARG was added

GLS FORTRAN lLanguage Reference Manual vii/(viil Blank)

TABLE OF CONTENTS

Page
. Chapter 1 Introduction
Audience and Required Knowledge 1-1
Manual Organization e e e e e e e e e e |
Related Manuals, P §
Product Overview 1-2
Chapter 2 Statements and Syntax
Program Statements e e 2-1
Lines e s 2-1
Line Formats e 2-2
Debugging Statements L. L. 2-3
Statement Order L L L L Lo 2-4
Statement Syntax e e e e e e e e e e e s 2-4
Character Set e 2-5
Symbolic Names 2-5
Statement Labels e e e e e 2-6
. Chapter 3 Data Types
Overview Lo e e e . 3-1
*n Data Size Qualifiers L. e . 3-1
Initialization in Type Declaration B L s g 32
Integer Data e e e e e e e M. .. 0. e 3-3
RealData. e e e e e e e e e e e e e e e e 3-3
Double Precision Data 3-4
ComplexData e ... 34
Logical Data e e e e 3-5
Character Data)
Hollerith Data o e e e e e 3-6
Specifying a Data Type Implicitly 3-6
Chapter 4 Constants, Variables, Arrays, and Substrings
Comstants L. e e e e e e e e e e e 4-1
Octal Integer Constants i 4-2
Octal and Hexadecimal Typeless Constants 4-2
Octal Constants ¢ vt v v vt e e e e e e 4-3
Hexadecimal Constantso 4-3
. Radix-50 Comstants e e e e e 4-4
Variables e e e e e e e 4-5
ATTRYS . . L v b o e 4-6

GLS FORTRAN Language Reference Manual ix

Page

Chapter 4 Constants, Variables, Arrays, and Substrings [continued}

Array Declarators and Subscripts . . .

One-Dimensional Arrays

Multidimensional Arrays

Adjustable Array Declarators . . L

Assumed-Size Array Declarators . . .
Substrings

Chapter 5 Expressions

Overview . ..
Expression Types

Arithmetic Expressions .
Multiple Operators
Valid Operands .
Data Type Evaluation

Character Expressions
Valid Operands .

Relational Expressions
Arithmetical
Character
Complex .

Logical Expressions
Valid Operands .
Integer Operands

Chapter 6 Program Structure

Main Program .
Subprograms
Block Data
Procedures P
Procedure Arguments
Subroutines .
Functions . .
External Function
Statement Functions
Alternate Return Specifiers

Chapter 7 FORTRAN 1/0

Overview . . .
Records
Files . .

UIUIU"T‘U‘U]U‘

(III(.II'JIUI

7 T
VWO W WNON

7Y

=)}
|

=}
1

O\O\Ol\
B A DN

DA
0 =~ Wn

NIONRN
= e

GLS FORTRAN Language Reference Manual

Page

Chapter 7 FORTRAN 1/0 [continued]

. /O Units e e e e e e e e e e e e e 7-2
Connection e e e e e e e e . 7-2
Preconnection e e e e e e e e e e e e e e e 7-3
AccessMethod L0000 s 7-3
Propertiesof Files e e e e e e e 7-3
Existence 7-3
Positionol 7-4
170 Statements B e e e 7-5
Data Transfer Statements e e e e e e e e e e e 7-5
File Positioning Statements e e e e e e e e 7-6
Auxiliary I7/0 Statements e 7-6
Data Transfero 7-7
Formatted Transfero 7-7
Editing . . e e e e e 7-8
Format Control e e e e e e e e e 7-8
List-Directed Formatting 7-9
Unformatted Transfer e e e e e e 7-9
Chapter 8 Format Specification
. Specifying Formats o - |
General Form for Format Specifications 81
Character Format Specification Ce. . 82
Format Control . . . e e e e e e e e e e e ... 82
Repeatable Edit Descnptors e e e e e e e e e e e e e e e 83
Alphanumeric Editing 0000, e e e e 8-4
Numeric Editing . . . e e e e e e e e e e e e e P]
Floating—Point Edumg, D and E 8-6
Floating-Point Editing, F, 8-7
Floating-Point Editing, Go 8-8
Complex Editing L0000 810
Imteger Editing L0 oo e e 8-11
Octal Editing S ¥ 8-12
Hexadecimal Editing 0 0oL L. 8-13
Logical Editing e 8-15
Nonrepeatable Edit Descriptorso L0000 ... 8-16
Apostrophe Descriptor L0 oL oo 8-17
Hollerith Descriptoro . . 8-17
QEditing L0 e e e e e e ... 8-17
Carriage Control Editing 8-18
. Blank-Control Descriptors BNand BZ 8-19
Scale-Factor Descriptor kP 000 8-20
Sign-Control Descriptors S, SP,andSS, 8-21

GLS FORTRAN Language Reference Manual xi

Page

Chapter 8 Format Specification [continued]

Position Descriptors Tc, TLc, TRe,and nX o o o 0o o e 8-21
Line-Termination Descriptor /« . o .o .. 8-22
Conditional Line-Termination Descriptor823
List-Directed Formatting « = « o . oo oo . . 823
List-Directed Input oo e e .. . 824
List-Directed Qutput « o . o .0 e e e e 8-26

Chapter 9 Statements

Assignment Statements . 9-1
Control StatemMents« < « o4 e e e e e e e e e s e e e e 9-2
Input/Output Statements . 9-3
Specification Statementso e . 9-4
Structural Statements . 9-5
ACCEPT Statement .« @ . 9-6
ASSIGN Statement « < v . . e e e e e e e e e e e e e e e . 9-7
Assignment Statement (Arithmetic) . . 9-8
Assignment Statement (Character) 9-9
BACKSPACE Statement . 9-10
BLOCK DATA Statement 9-12

BYTE Statement U

CALL Statement « « o« o o e e e e e e e e e e e e e 914
CHARACTER Statement « « « « « « « « « . .. B L. .. 9-15
CLOSE Statement « « « v v o o e e b e e e e e e e e e e e e e e 9-16
COMMON Statement e e e e e e e e e e e e e . .9-18
COMPLEX Statement« « « « « « « « =+ - O S
CONTINUE Statement « « = « o o o o v o o o o e v v v e s e e e .. .9-20
DATA Statement e e e e e e e e e e e e e e e e e e . .9-21
DECODE Statement « « « o v« « e e e e e e e e e e e e e . .9-23
DIMENSION Statement « . . .« . e e e e e e e e e e e e 9-24
DO Statement e e e e e e e e e e e e e e e . .9-25
DO WHILE Statement e e e e e e e e e e e e e e e 9-27
DOUBLE PRECISION Statement « . « « « = « o o« « o« o 0 0 = o .. .9-28
ELSE Statement e e e e e e e e e e e st e e et oA . .9-29
ELSE IF Statement e e e e e e e e e e e e e e e e e e . .9-30
ENCODE Statement« « « « o+« « o o o o o e e e e e e e e e e 9-31
END Statement « « « « o o . oo e e e e e e e e e e e e e e e e e 9-32
END DO Statement e 9-33
END IF Statement e 9-34
ENDFILE Statement . . . - « = « o « « o« o o o o o o b e e 0 e e e e e e .. .9-35
ENTRY Statement « « « o o o o o v o o o o e v et h e e e e e e 9-36
EQUIVALENCE Statement « « « « « o v+ o o o s o o o v o e e e e 9-37
EXTERNAL Statement + « + « « « « « o « « e e e e e e e e e e e e e 9-39

xii GLS FORTRAN Language Reference Manual

Chapter 9 Statements [continued]

FORMAT Statement« o 0 v v vt e ettt e e e e e e e
FUNCTION Statement o i v v i v ti e s e
GOTO Statement (Assigned) L0 e e e
GOTO Statement (Computed) v it e e e e e e e e
GOTO Statement (Unconditional) B
IF Statement (Arithmetic)o
IF Statement (Block) L L oL
IF Statement (Logical) L
IMPLICIT Statement v v v v vt i e e e e e e e
INCLUDE Statement vt i e
INQUIRE Statement v v e e e e e e e e e e
INTEGER Statement e

Logical Assignment Statement L. 0oL 0 oo
LOGICAL Statement o v it e e e e e e e e e e
NAMELIST Statement 0 i e e e e e e e e e e
NML NAMELIST Specifier
NAMELIST-Directed I/O e
NAMELIST Record Format
Prompting for NAMELIST Values
OPEN Statement e e e e e

Compile-Time Expressions« . i v e it e
Symbolic Names in Constant Expressions
PAUSE Statemento e e e e e e
PRINT Statement 0 0ttt e e e e e e

READ Statement Lo e e e e e e e e e
REAL Statement e e e e e e e

SAVE Statement L L0 Lo e e e e e e e e e e e e
STOP Statement e e e e e e e e e e e e e
SUBROUTINE Statement v v v vttt e e e e e e e e
TYPE Statement L e e e e e e e e e e e e e e
VIRTUAL Statement v i vttt et e d e e e e e e e e
VOLATILE Statement v v v v v v et et e e e e et e e
WRITE Statement i ittt e e e e e e e e e e e

Chapter 10 System Subroutines, Built=Ins, and Intrinsic Functions

System Subroutines L. 0L 0L e e e e e e

GLS FORTRAN Language Reference Manual

Page

xiii

Page

Chapter 10 System Subroutines, Built—Ins, and Intrinsic Functions [continued]

DATE T . e enE e w102 .
ERRSNS L L ammi e W m AW & e s ow woel0-2
EXIT . . « v v v v o v e e e e e e e e e e e e e e e e 2102
GETARG . . . - - « -« « « e B e e e m e e e 8 F B F @V # 8 A w10=3
IARGC . . . v o v o e e R S - S T T L St
IDATE . . . o« o v e . 10-3
MVBITS o o i e e e e e e e e e e e e SO g W W g i @ mow s 10—
SECNDS 5 /6 B & @ 4i o8 § % & i S 0 % 5 a ir cen mow W gt e momomom o Wow G my 10—
TIME e e e e e e 5w oW om o Hw oo w o o o el0
Built=In FUNCHONS . . . « « « ¢ « ¢ v o o e o e o s e e 10
OLVAL & a i 5 s Za B R w T e b B 6 ge i mom gp oumows eowom oy ksl e e d el .10~
OREF . . v v v e e e e e e e e e e e e e e e e e e e .10
LLOC o o v e e e e e e e e e e e e s e e e e e e e . 10-7
Intrinsic FUNCHONS . .« « « « « « « « o o o 4 o o o m e s e s e s s . 10-8
ABS FUNCHON « « o« v v e e e e o e e e e e e e e 10-8
ACOS FUNCHON . . .« = « « « « o+ o o+ o e m o e e e e e e 10-9
ACOSD Function « « v« v o 0 o e e e e e e e e e S E S W G e ® w2 10-9
AIMAG Function « « « o v o o e e e s e e e e e i otes o owomos e wn s ow 109
AINT Function . . . « « « o « = =« o o v o v o s s o s I {5 (U]
AMAXO FURCHON .« =« « v e o o o b e e e e e e s e e e e s 10-10
AMINO Function « . « « . . e e e e e mmow e w o s e s e 10-11
ANINT FUNCHON . - + « + o v« o e v e e e e e e e e e e e e e e s e s e 10-11
ASIN Function - « . « e T v o @ w e w s 10-11
ASIND Function « « « « v v v o v 0w m e e e e e e e e ..o 10-12
ATAN Function < S G I 10-12
ATAND Function R Rl T e W % e ko w1012
ATAN2 Function - . . e T e e e e . . .10-13
ATAN2D Function « « « « « . T Rty T - I10-13
BTEST Function « . « . . . AR R i 52 W @ T10-13
CHAR FUNCHION . . .« « « v o & v v o o o o m e v s e 00 s e e s 10-14
CMPLX Function « « « & = « o« o = &+ + & + = = = & = =« e e e e .. . 21014
CONIJG Function ., - . GW M AT e W W R fe e oW @ e e e e .. 2 10-15
COS FUnCLION . . . « « « « & o o o o o o o o 0 o o - e v B W GBS10-15
COSD Function . . . « « « « « « « « = & « - GoE R EmTe @ oW s oms W ow e 10-15
COSH Function - « « « « « « « =« e e e e e e e e e o s m o= Ta A 10-16
DBLE Function « « « « « « « « o . RO R PR - T (T e e e .. 2 10-26
DCMPLX Function - . . P HUE W R B A W @ . (2
DFLOAT Function « « e w w m rw ceime m m ok w ieE B OB B f RS @2 10-17
DIMFunction « .« « « .« « « . S E N R R R E W oGen BB W 5 T S 10-18
DPROD Function i ocan & W D8 e s e e e e e e . . .10-18 .
DREAL Function « « . « - . o T10-18
EXPFunction . . . - « « « « « « « o o & BN N e e M OB W G oS kW N 10-19

GLS FORTRAN Language Reference Manual

Page

, Chapter 10 System Subroutines, Built-ins, and Intrinsic Functions [continued]

FLOAT Function 0 v v i vt i e e 10-19
IABS Function s e e e e e e e e 10-19
IADDR Functiono e e e e e 10-20
IAND Function e e e e e e e e e e e e . 10-20
IBCLR Function i e e e e e e e e e e 10-21
IBITS Function o i i 10-21
IBSET Function e 10-21
ICHAR Function 0 v v v i e e e e e e e 10-22
IDIMFunction e e e e e e e e 10-22
IDINT Function o e 10-22
IDNINT Function o i e e e e e e 10-23
IEOR Function e e e e s 10-23
IFIX Function e e 10-24
INDEX Function o v v i e e e e e e s e 10-24
INT Function e e e e e e e e 10-25
IORFunction e e e e 10-26
ISHFT Function o o v it i s 10-26
ISHFTC Function v v vttt s e e i e 10-27
ISIGN Function e e e e e e e e e e 10-27
LEN Function e e e 10-27
LGEFunction e 10-28
LGT Function e e e e e e 10-28
LLEFunction 0 e e e e e 10-29
LLT Function e e e s 10-29
LOG Function e e e e e e e 10-30
LOGIOFunction e e e e e e e 10-30
MAX Function L e e e e e e e 10-30
MAXOFunction e e e e e e e e e e e 10-31
MAX1 Function L e e e e e e e e e e 10-31
MIN Function e e e e e e e e e 10-31
MINO Function e 10-32
MINI Function e e e e e e e e 10-32
MOD Function v e e e e e e e e e e e e e e 10-32
NINT Function s s e s e e e e e e e e e e 10-33
NOTFunction i vt i i e e i e e e e s e e e e 10-33
REAL Function v v v i it i e e e e e e e e e 10-34
SIGN Function 0 i v i e e e e e e e e e e e e e e 10-34
SINFunction o i e e e e e e e e e e e 10-35
SIND Function i v i i i e e e e e e e e e e e e 10-35
SINH Function i e e v e e e e e e e e e e e e e e 10-35
SQRT Function _ . . . e e e e e e e e e e e e 10-36
TANFunctiont i e o e e e e e e e e e e e e e e e e 10-36
TAND Function i e e e e e e e e e e e e 10-36

GLS FORTRAN Language Reference Manual

xv

xvi

Page

Chapter 10 System Subroutines, Built—Ins, and Intrinsic Functions [continued]

TANH Function
ZEXT Function

Chapter 11 Records, Structures, and Unions

Records e e e e e e e e e
Structure Declaratlons
UNION Declarations
Using RECORDS and STRUCTURES .
Aggregate Assignment Statement
Scalar Field References
Aggregate Field References in I/O Statements

Appendix A ASCH and Hexadecimal Conversions .
Appendix B VAX/VMS Language Extensions
Appendix C Quick Reference R

GLS FORTRAN Statements

System Subroutines

Built-in Functions

Glossary

Index « « o o oL

........... ... 10-37
. 10-37

S N N
........ P § £ !
P §

..... L. 11-4

. 11-5

OO § £
..... I § -

....... . . Glossary-1

., Index-1

GLS FORTRAN Language Reference Manual

LIST OF FIGURES |
I

. 6-1 GLS FORTRAN Program Structure e e e e e e e e e e e e e 6-1

GLS FORTRAN Language Reference Manual xvii

N
|

|
B k=

[
=W U BN =W

\D@OIOOOLA

H
¥
R

xviii

LIST OF TABLES

Special Characters S

Octal Integer Constants Usage
Octal Constants Usage .

Hexadecimal Usage

Radix-50 Equivalents

Radix—50 Usage .

Expression Summary

Arithmetic Expressions

Data Type Hierarchy

Relational Operators .

Logical Operators .

Repeatable Edit Descnptors

Storage Allocation For Data Types .
Summary of Nonrepeatable Edit Descriptors
OPTION Values and Command Line Equivalents
System Subroutines

b
)
o
[

[o]
I

B oA
[

i
2 WOORARDNEVGIAEWWNDWL

mmUanLn‘sInU\-bhb

P
[=))

i
Q=
O

....... ... 101

GLS FORTRAN Language Reference Manual

Chapter 1

Introduction

This chapter describes the intended audience, required product knowlege, manual organization,
related manuals, product overview, and manual conventions. i

Audience and Required Knowledge

This manual is written for programmers using the General Language System (GLS™ FORTRAN
compiler. It assumes you have previous FORTRAN programming experience, and are familiar with
either the REAL/IX™ Operating System on Open Architecture Systems, or the MAX 32™ Operating
System on MAX-Based Systems.

Manual Organization

The manual is organized as follows:

Chapter 1 describes the intended audience and gives an overview of the FORTRAN language
standards and conventions.

Chapter 2 describes the syntax of a GLS FORTRAN statement and the rules for ordering
statements within a program.

Chapter 3 describes the data types and how to specify a data type implicitly.

Chapter 4 describes constants, variables, arrays, and substrings.

Chapter 5 describes arithmetic, character, relational, and logical expressions.

Chapter 6 describes the structure and program unit of an executable GLS FORTRAN program.
Chapter 7 describes the I/0 system, records, files, I/O units, and data transfer.

Chapter 8 describes various methods of format specification.

Chapter 9 describes GLS FORTRAN statements.

Chapter 10 describes system subroutines, built-in functions, and intrinsic functions.

Chapter 11 describes records, structures, and unions.

GLS FORTRAN Language Reference Manual

Introduction

Appendix A is an ASCII/Hexadecimal conversion chart.
Appendix B lists the VAX/VMS Language extensions.

Appendix C is a quick reference of GLS FORTRAN statements, system subroutines, and built-in .
functions.

Related Manuals

The following manuals contain related information.

GLS Programming Guide for 97xx Systems (216-856004-REV)
This manual describes generic compilation and how to invoke the GLS C, FORTRAN, and Pascal
Compilers for 97xx systems.

GLS Programming Guide for MAX 32 Systems (216-856005-REV)
This manual describes generic compilation and how to invoke the GLS C, FORTRAN, and Pascal
Compilers for MAX 32 systems.

Product Overview

The GLS FORTRAN compiler provides you with a code development environment for writing .
source programs in FORTRAN, interlanguage callability, global and local optimizations, and porta-

bility among MODCOMP hardware systems. The GLS FORTRAN compiler includes a set of

FORTRAN library routines and functions. You can also write routines in FORTRAN and maintain

them in object library files using the Library Update tool.

GLS FORTRAN implements the ANSI FORTRAN-77 (Full Language) Standard, ANSI
X3.9-1978, and the Military Standard FORTRAN, as described in the document "FORTRAN,
DOD Supplement to American National Standard X3.9-1978, MIL-STD-1753". GLS FORTRAN
is compatible with the Berkeley 4.3BSD f77 compiler and supports a subset of the VAX/VMS™
FORTRAN V4.6 compiler extensions. Refer to Appendix B for a list of the VAX/VMS extensions
supported by the GLS FORTRAN Compiler.

E ﬁ 0
NOTE The double dagger symbol (‘H’) identifies the VAX/VMS language extensions

supported by the GLS FORTRAN Compiler. These extensions require the —X181
compile option to enable VAX/VMS FORTRAN compatibility. Refer to the GLS
Programming Guide for details about compiler options and default modes.

GLS FORTRAN is validated by running the FORTRAN Compiler Validation System Version 2.0 .
(1978) from the U.S. Office of Software Development and the U.S. Department of Commerce,
National Technical Information Service.

1-2 GLS FORTRAN Language Reference Manual

Chapter 2

Statements and Syntax

This chapter describes GLS FORTRAN program statements and their syntactical elements.

Program Statements

GLS FORTRAN program statements are comprised of syntactical items such as symbolic names,
statement labels, constants, operators, and special characters. There are two types of statements:

O Executable

These statements indicate a processing action, such as the PRINT or CONTINUE statement.
They execute sequentially in the order placed in a program unit. Execution of an executable
program begins with the first statement in the main program. Control statements, such as
GOTO and CALL, transfer the execution sequence to a different point in the program.
Statements that transfer the execution sequence are considered executable statements.

0 Non-Executable

These statements define and classify program units and specify entry points in subprograms,
data formatting information, initial values, and execution characteristics for data.

Lines
Each GLS FORTRAN statement is written on one or more program lines. A program line is a
sequence of columns numbered consecutively from left to right beginning with 1. A statement can
span a maximum of 20 program lines, or 1320 character positions. There are three types of program
lines:
QO Initial lines
This is the first line of a statement. If statements exceed column 72 of the initial line, the
remainder of the statement can reside in continuation lines. A maximum of 19 continuation
lines can be used to hold a statement.
Q Continuation lines
Continuation lines hold statement elements that exceeds the initial line; they begin in column

6 and can be any character (except a blank or zero). You must distinguish continuation lines
from initial lines in a program.

GLS FORTRAN Language Reference Manual

Statements and Syntax

0 Comment lines

Comment lines hold program notes for documenting your program and do not affect program
execution. To specify comment lines you must enter a C or asterisk (*) in column one, or use
an H exclamation point (!) in a column. the other lines in a program with the letter C or an *
asterisk in column one.

Example

c Standard FORTRAN comment lines
*

AA = A+ B ICompute AR as sum of A and B
C = 'Hi there!’

The assignment statement above includes a trailing comment line
However, the exclamation point in the string 'Hi there!’ is
within a quoted string and not interpreted as a comment
delimiter

Line Formats

GLS FORTRAN supports two types of line formatting: free-field and column-based. Free-field
format allows you to enter program lines of unlimited length without regard to columns. Column-
based format requires you to enter specific information in defined fields; it is supported for
compatibility with programs written prior to free-field format.

Free-Field

Free-field format is indicated by a tab character in columns 1 through 72 of the initial line, or an
ampersand character (&) in column 1 of a continuation line. For example,

10<tab>FORMAT(‘This statement is in free-field format')

§10<tab>FORMAT(‘'This statement is in free-field format’)
If the initial line of a statement is in free-field format, all continuation lines must be in free-field
format.
#* Another way to indicate a free-field format continuation line is by placing a <TAB> character in
column one, followed by a number from 1 through 9. A single statement may include up to 99

continuation lines and the numbers can be used again. For example,

<tab>9<tab>FORMAT(‘'This statement is in free-field format’)

2-2 GLS FORTRAN Language Reference Manual

Statements and Syntax

Column-Based

Column-based format program lines consist of 80 columns divided into four fields. Each field is
reserved for the following information:

Q Columns 1 through 5
Statement label; identifies and references specific statements in a program.
0 Column 6
Continuation mark; indicates the line is a continuation of the preceding line.
Q Columns 7 through 72
Statement text.
O Columns 73 through 80
Notes; the compiler ignores all characters in this field.
The following example shows a line in column-based format. Columns 1 through 5 of the first line
contain a line number, 10000. Column 6, the continuation column, contains a blank, indicating the
initial line of a statement. Columns 7 through 72 contain the initial line of a FORMAT statement.

Example

10000 FORMAT(This line contains no tab, it is in column-based format')

Debugging Statements

Debugging statements are distinguished from standard FORTRAN source code by placing one of
the following letters in column one: D, d, X, or x. They can include labels and continuations as
shown below.

Example
C The following code is compiled only when -X82 is used
(of
D DO 10 I = 1,10
X J = (I**2) + (D/4)
D10 CONTINUE

Debugging statements are compiled as ordinary statements when the —X82 option is speci-
fied at compile time. The default operation (-Z82) treats debugging statements as comment
lines.

GLS FORTRAN Llanguage Reference Manual 2-3

Statements and Syntax

Statement Order

The following rules apply to the order of statements and comments within a program unit:

[m]

«]

Comment lines can appear anywhere before the END statement.

The PROGRAM statement can appear only as the first statement of a main program. The
FUNCTION, SUBROUTINE, and BLOCK DATA statements can appear only as the first
statement in a subprogram.

FORMAT and ENTRY statements can appear anywhere before the END statement.

PARAMETER statements can appear anywhere before DATA statements, statement function
statements, and executable statements. '

IMPLICIT statements must appear before all other specification statements except PA-
RAMETER statements and FORMAT statements.

All other specification statements (COMMON, DIMENSION, EQUIVALENCE, EXTER-
NAL, INTRINSIC, SAVE) must appear before any DATA statements.

DATA statements can appear anywhere following the specification statements.

Standard FORTRAN requires that all DATA statements appear before the first executable
statement.

 When VAX/VMS compatibility is enabled, DATA statements can be used anywhere within
a program unit.

All statement function statements must appear before any executable statements.
All executable statements must appear before the END statement.

The END statement must be the last statement in a program unit.

Statement Syntax

This section describes syntax elements including the supported character set, symbolic names, and
statement labels.

GLS FORTRAN Language Reference Manual

Statements and Syntax

Character Set

GLS FORTRAN uses the standard ASCII character set, consisting of uppercase and lowercase
letters (A through Z), digits (0 to 9), and a group of special characters. Letters and digits are
collectively referred to as alphanumeric characters.

Table 2-1 lists the special characters:

Table 2-1. Special Characters

Character Name Character | Name

Apostrophe = Equal sign

* Asterisk (Left parenthesis
Blank - Minus sign
Colon % Percent sign
Comma + | Plus sign
Decimal point) Right parenthesis

$ Dollar sign / Slash

& Ampersand _ Underscore

" Quotation ! Exclamation

< Left bracket > Right bracket

GLS FORTRAN also recognizes the ASCII control characters that signify carriage returns, tabs,
line feeds (also called new lines), and form feeds.

All characters conform to a collating order that defines a hierarchy for sorting character strings.
The ASCII convention assigns a number to each character that determines the hierarchy. This
enables GLS FORTRAN to compare two character strings, a character at a time. For a list of the
collating sequence, refer to Appendix A.

Symbolic Names

A symbolic name identifies a program entity: either a local entity (constant, variable, array, dummy
procedure, statement functions) or a global entity (main program, subroutine, block data subpro-
grams, common blocks, and external functions). Symbolic names are one to six alphanumeric
characters, where the first character is a letter. Other valid characters in symbol names are the
dollar sign ($) and underscore (_). Symbol names must be unique except for common block and
external function names defined globally and locally@ the same program unit.

GLS FORTRAN Language Reference Manual

Statements and Syntax

Symbolic names for a dummy argument for a statement function statement, and the DO variable,
have smaller scopes (range of affect) than the program unit. Note the following differences:

O A symbolic name for a dummy argument for a statement function statement has a scope of
that statement

O A symbolic name for the DO variable for an implied DO in a DATA statement has a scope
of the implied DO list.

Statement Labels

Statement labels identify and reference individual statements in a program. Any statement can have
a statement label except continuation lines. Executable statements must have statement labels to be
referenced by other statements in your program. For example, the GOTO statement can only
transfer execution to a labeled executable statement.

Statement labels are one to five digits, where at least one of the digits is nonzero. They can appear
anywhere in columns 1 through 5 of the statement’s initial line.

Statement labels must be unique as they have the scope of a program unit. Blank characters and
leading zeros cannot be used for distinguishing different statement labels. For example, the follow-
ing statement labels are considered identical in a GLS FORTRAN program:

Column 1 2 3 4 5

7 7 7

o o 7 7 7

o 7 7 7
7 7 7

GLS FORTRAN Language Reference Manual

Chapter 3

Data Types

This chapter describes the supported data types and how to specify a data type implicitly.

Overview

Data can be a numeric value represented by a series of digits, or text represented by strings of
characters. Any character in the ASCII character set can be used as text data.

GLS FORTRAN supports the following data types:

Integer

Real

Q

a

Q

Q@ Double precision
0 Complex

O Logical

Q Character

o

Hollerith

*n Data Size Qualifiers

A symbol data type declaration may include a data type length specifier with the type and/or
name. This size qualifier overrides any length that would otherwise be implied by the statement.
Use the following syntax for *n size qualifiers:

type [*n] symbol [*n] [,symbol [*n]...]

type is any valid FORTRAN data type keyword and n specifies the data type length, preceded by an
asterisk (*).

GLS FORTRAN Language Reference Manual

Data Types

Example
C A, B and D are INTEGER*4
C C and E are INTEGER*2
C &
INTEGER*4 A(S5), B, C*2, D, E*2(5)
C
REAL X*8, Y*8, Z+*4

Initialization in Type Declaration

H Variables and arrays can be initialized within a single type declaration statement, omitting the
need for a separate DATA statement. Use the following syntax:

type symbol/value/ [[,Jsymbol/value/)...

type is any valid type declarator, symbol is a variable or array name, and value consists of one or
more constants that will be assigned to symbol and are delimited by slashes (/).

Examples

In the following example, the value 3.1415 is assigned to the variable PI; the values 1, 2, and 3 are

assigned to the array IBUF, and the array IARRAY is filled with zeros. .
DIMENSION IBUF(3)
REAL PI/3.1415/
INTEGER IBUF /1,2,3/, IRRRAY(4) /4%*0/

A CHARACTER variable or CHARACTER array that is one character in length can be initialized
to a numeric constant within a type or DATA statement. The numeric constant must be a value
from O to 255 decimal, specified as an integer, octal or hexadecimal value.

CHARACTER*1 CBUF/35/
CHARACTER*1 INBUF(4) /10, 4°0, 25, ‘SF'X/

3-2 GLS FORTRAN Language Reference Manual

Data Types

Integer Data

An integer is any whole positive or negative number, or zero (0). You can write integers with a
. leading sign. If you omit the sign, the integer is considered to be positive.

A standard integer occupies four bytes and can represent values from -2147483648 through
+2147483647. However, you can specify a 1- or 2-byte integer. For more information about

specifying a 1- or 2-byte integer, refer to the INTEGER statement Chapter 9.

A constant is a value that does not change, for example: 1, 642, +25, 9287, -41, 73268, 0. For
more information about constants, refer to Chapter 4.

Real Data

A real number is any number that can express a fractional component, an exponent, or both. Real
numbers can be positive or negative, and can be expressed as a constant in the following forms:

0O Real constant with or without an exponent
Q Integer constant with an exponent

A real constant consists of an optional sign, an integer component, a decimal point, and a fractional
. component. Both the integer and fractional components are series of digits. The following are

examples of real constants: 1.5, +82.7, .007, 375., =794.0, —.299999.

Exponential or scientific notation consists of the letter E followed by an optionally signed integer.

The value of a real or integer constant with exponential notation is the product of the constant that

precedes the E (the mantissa) and the power of 10 indicated by the integer that follows the E (the

exponent).

The following are examples of real constants and integer constants with exponents.

5.82E2 = 582.0
314159.00E-5 = 3.14159
-.229E-3 = -.000229
11IES = 1100000
-5E-2 = -.05
-100E+8 = -10000000000

Real numbers occupy four bytes of memory space. You can also specify real numbers that occupy
eight bytes of memory. For more information about specifying an 8-byte real number, refer to the

. REAL statement in Chapter 9.

GLS FORTRAN Language Reference Manual 3-3

Data Types

Double Precision Data

Double precision real numbers provide additional significant digits of accuracy for real numbers.
They can be expressed as a real or integer constant with an exponent.

Double precision exponential notation consists of the letter D followed by an optionally signed
integer. The value of a real or integer constant with exponential notation is the product of the
constant that precedes the D (the mantissa) and the power of 10 indicated by the integer that
follows the D (the exponent). The following are examples of real and integer constants with double
precision exponential notation:

252.7D2 = 25270.0
.007D-1 = .0007
883366.0D-4 = 88.3366
837612458378183D-8 = 8376124.58378183
-.0045D+3 = -4.5
-69124820D-3 = -69124.820

Double precision real numbers occupy eight bytes of memory space.

You can use the DOUBLE PRECISION statement or a REAL*8 statement to declare double
precision numbers. For more information about declaring a double precision number, refer to the
DOUBLE PRECISION statement and the REAL statement in Chapter 9.

Complex Data

A complex number is any number that can be expressed in the form A+Bi. A and B are real
numbers and the imaginary number i is equal to the square root of -1. In GLS FORTRAN, you
can write a complex number as an ordered pair of integer or real constants separated with a comma
and enclosed in parentheses. The first member of the pair is the real constant and the second
member of the pair is the imaginary constant as follows:

(real-constant,imaginary-constant)

A complex number is stored as a pair of real values. Either constant can be positive, negative, or
zero. The following are examples of complex numbers expressed as constants:

(0,2) = 0+2or2i
(7.52.2) = 7.5¢2.2i
(-11,-3) = -11-3

(-.6E3,.55) = -600+.55i

(945E-2,-41E~1) 9.45-4.1i

A complex number occupies eight consecutive bytes of memory space in a storage sequence. You
can also specify a 16-byte complex number. For more information about specifying a 16-byte
complex number, refer to the COMPLEX statement in Chapter 9.

GLS FORTRAN Language Reference Manual

Data Types

Logical Data

Logical data enables a program to evaluate a statement as true or false. There are two logical
constants: the words true and false, delimited with periods as follows:

. TRUE. or .true.
.FALSE. or .false.

Logical data occupies four bytes of memory space. However, you can specify logical data that
occupies one or two bytes. For more information about specifying 1- or 2-byte logical data, refer to

the LOGICAL statement in Chapter 9.

The actual value assigned to the logical operator TRUE may vary depending on operating system
implementation.

FALSE is assigned a value of zero, and TRUE is assigned a non-zero value. Therefore, the actual
value of TRUE could be any non-zero value. For example, on VAX/VMS a logical is true only
when the low order bit is 1. On UNIX® operating systems a logical is true only when it is non-zero.

Use the LOGICAL statement to declare a symbolic name with the logical data type.

The BYTE statement is equivalent to LOGICAL*1 and can contain signed integers in the range
-128 through +127.

Character Data

Character data enables a program to process text. It is represented by one or more characters,
delimited with apostrophes, and is referred to as strings. GLS FORTRAN recognizes and differen-
tiates between upper- and lowercase letters. The following are examples of strings:

'Please enter your password.’

'PERCENTAGE OF ERROR < 7%’
Any character in the GLS FORTRAN character set can be within a string, including the blank
character and the apostrophe. To represent the apostrophe within a string, use two consecutive
apostrophes, as shown in the following example:

'It"s two o’”’clock!’

Displays as: It's two o'clock!

GLS FORTRAN Language Reference Manual

Data Types

The length of a string is the number of characters, including blanks, that appear between the
apostrophes. Two consecutive apostrophes count as one character. The length of a character string
must be 1 or greater. The following are examples of strings and their corresponding string length:

'Please enter your password.’ (string length is 27)
It"s two o”clock! (string length is 17)

Character data occupies one byte per character.

Use the CHARACTER statement to declare a symbolic name as character data.

Hollerith Data

Hollerith data provides text processing capability and is considered an extension to the
FORTRAN-77 standard. For compatibility with earlier versions of FORTRAN, GLS FORTRAN
supports Hollerith data. (The FORTRAN-77 standard is the first version of the language to provide
the character data type that is considered superior to the Hollerith form.)
Hollerith data, like character data, is a string of characters. You can use any character in the GLS
FORTRAN character set within a Hollerith string, including blanks. A Hollerith constant consists
of a nonzero, unsigned, integer constant (1), the letter H, and a string of contiguous characters (c)
as shown in the following format specification.

nHccce...c

(n characters after the H)
The following are examples of Hollerith constants:

16HToday's date is:

11THGRAND TOTAL

4HNaCl

To declare an integer, real, or logical symbolic name as Hollerith, use a DATA statement or
READ statement.

Specifying a Data Type Implicitly
There are two ways to specify a data type:
Q Explicitly

To specify a data type explicitly, use a statement such as INTEGER or REAL

3-6 GLS FORTRAN Language Reference Manual

Data Types

O Implicitly

datatype. The default convention is: symbolic names beginning with letters I, J, K, L, M, or
N are integer data types (for example, list, increment, multiple, kilo); symbolic names
beginning with any other letter are real data types (for example, alpha, delta, total, variation).

. To implicitly specify a data type, the first letter of the symbolic name determines the

Note that you cannot have explicit data types specified if you want to use implicit data type
specification; explicit supercedes implicit.

To change the data type convention, use the IMPLICIT statement described in the "State-
ments” chapter.

##To override all implicit defaults and force them to be declared explicitly, refer to the
IMPLICIT NONE statement described in Chapter 9.

GLS FORTRAN Language Reference Manual 3-7/(3-8 Blank)

Chapter 4

Constants, Variables, Arrays, and
Substrings

This chapter describes elements specific to the FORTRAN-77 language.

Constants

A constant is a numeric, logical, or character value in a program that does not change during
program execution.

For example, consider a program that calculates the area of a circle using the formula A = 7 12
where r is the radius of the circle, 7 is equal to 3.1415926, and A is the area. The value of 7 remains
unchanged regardless of any other value in the calculation. Therefore, to translate the area formula
to GLS FORTRAN, you can use the real constant 3.1415926 for m.

To associate a constant with a symbolic name, use the PARAMETER statement. This causes your
program to substitute the constant value wherever the symbolic name appears in the program. The
symbolic name associated with a constant cannot assume a different value during the execution of a
program. For more information, refer to the PARAMETER statement in Chapter 9.

You can specify a logical, real, or integer variable as a binary, hexadecimal, or octal constant with
the following format:

letter string’
If letrer is b, string is binary, and must be only ones and zeros. If letter is o, siring is octal, with
digits 0 — 7. If letter is z or X, string is hexadecimal, with digits 0 - 9, a — f, A — F. For example,

the following statements initialize all three elements of myarrary to 10:

integer myarrary(3)
data a /b’1010°,0712° ,x"'a’/

GLS FORTRAN Language Reference Manual

Constants, Variables, Arrays, and Substrings

Octal Integer Constants

An octal integer constant is treated as an integer data type using the following syntax:
"nnn

where nan is a string of digits from 0 to 7 inclusive, prefixed by a quotation mark.

Table 4-1 shows some sample valid and invalid octal integer constants.

Table 4—1. Octal Integer Constants Usage

Sequence Valid? Reason
"01237 Yes Correct form
34560 No Missing quotation mark
"123" No No trailing quotation marks altowed
‘01234 No . Incorrect punctuation form
"13579 No Invalid octal digit (9)

Octal and Hexadecimal Typeless Constants

Octal and hexadecimal constants can be used wherever numeric constants are allowed. A
maximum of 128 bits (16 bytes) can be specified in octal or hexadecimal constants, allowing a
maximum of 43 octal digits, or up to 32 hexadecimal digits. If more digits are specified than can be
stored in the corresponding data type, the constant is truncated on the left. If the constant specified
is less than the total storage for the corresponding data type, the value is zero-filled.

Octal and hexadecimal constants assume a data type based on use, and they have no previous
implicit data type. Use the following syntax:

‘nunnn'O
or
'mnnnn’X

nnnnn represents a string of valid octal or hexadecimal digits, followed by the letter 'X' for
hexadecimal constants or 'O’ for octal constants.

GLS FORTRAN Language Reference Manual

Octal Constants

An octal constant consists of a string of valid octal digits delimited by apostrophes, followed by
the letter ‘O’. The letter ‘O’ may be either upper- or lowercase. Valid octal digits are the numbers 0
. through 7, inclusive. Table 4~2 shows some sample valid and invalid octal sequences.

Constants, Variables, Arrays, and Substrings

Table 4-2. Octal Constants Usage

Sequence Valid Reason
‘01234567'0 Yes Correct form
'255'0 Yes Correct form
34560 No Missing apostrophes
‘012340’ No Incorrect ptacement of apostrophes
135790 No Invalid octal digit (9)
Hexadecimal Constants
A hexadecimal constant consists of a string of valid hexadecimal digits delimited by apostrophes and
. followed by the letter ‘X', The letter ‘X’ can be specified in either upper- or lowercase.

Valid hexadecimal digits include numbers O through 9 and the letters A through F (or a through f).

Hexadecimal letters can be specified in either upper- or lowercase.

Table 4-3 shows some sample valid and invalid hexadecimal sequences.

Table 4-3. Hexadecimal Usage

Sequence Valid Reason
'4FFF'X Yes Correct form
'4FFFX' No Incorrect placement of apostrophes
‘offa’x Yes Correct form
offfX No Missing apostrophes

GLS FORTRAN Language Reference Manual

Constants, Variables, Arrays, and Substrings

Radix—50 Constants

t Radix-50 encoding allows character data to be represented in packed form, storing up to 3
characters in 16 bits. Normal character storage allows a maximum of 2 characters per 16-bit word.
Use the following syntax:

nRccecececccecce

where 1 is a value from 1 to 12 that specifies the number of characters to the right of the letter 'R’,
and cccccececcee represents an ASCII character string of n characters that will be converted to
Radix—-50 notation.

Radix-50 encoding is accomplished by assigning a subset of the ASCII character set Radix—50
values, then calculating a single 16-bit number using the formula

((rad1 * 40 + rad2) * 40 + rad3) P ,_>

(QJJL*’M TEC o rd. i,l\; ’¢¢Y:¢ ¢ tirads
radl, rad2, and rad3 are Radix-50 values for the selected ASCII characters from left to right. For
example, the Radix-50 constant 3RABC will be stored internally as decimal 1683.

The ASCII character subset and Radix—50 equivalents are listed in Table 4-4. Both Radix-50 and
ASCII codes are shown as octal values. Note that the Radix—50 value 35 is not assigned. Note that
upper and lowercase alphabetic characters are equivalent in Radix-50.

Table 4~4. Radix-50 Equivalents .

Octal Decimal
Character T
ASClI Radix-50 ASCIi Radix-50
space 40 0 32 0
A-Z 101 - 132 1-32 65 - 80 1-26
a-2z 041 - 062 1-32 33 - 50 1-26
$ 44 33 36 27
56 34 46 28
unassigned 35 29
0-9 60 - 71 36 - 47 48 - 57 30 -39

4-4 GLS FORTRAN Language Reference Manual

Constants, Variables, Arrays, and Substrings

Radix-50 constants may be used only in DATA statements. The data type of the variable deter-
mines the total number of bytes that may be stored for the specified constant. If the constant value
is too large to be stored in the selected data type, the rightmost bytes are truncated. If the constant
evaluates to a value smaller than the maximum storage for the selected data type, the constant is
. blank-filled from the right. Table 4-5 shows some sample valid and invalid Radix-50 sequences.

Table 4—-5. Radix-50 Usage

Sequence Valid Reason
5RHELLO | ves Correct form
14R1234567890123 No More than 12 characters specified
4
8RHI THERE Yes Correct (note that embedded spaces are allowed)
6RI_TST No Underscore is not a valid Radix—-50 character
Variables
A variable is a symbolic name that is associated with a numeric, logical, or character value ina
. program. The symbolic name for the variable can assume a different value during the execution of a
program.

Consider the program that calculates the area of a circle with the formula A = m r2 where r is the
radius of the circle, 7 is equal to 3.1415926, and A is the area. The value of 7 does not change and
is represented with the real constant 3.1415926. However, the value of r varies for circles of
different sizes. If you use a constant to represent 7, the program would be limited to circles of one
size. You would have to rewrite the program every time you wanted to calculate the area of a circle
with a different radius. Instead, if r is a variable, the program can assign a new value to r for each
new area calculation.

A variable must have an assigned value before you can reference its name in the program. When a
reference to a variable name executes, the program uses the value that is currently assigned to the

variable at that point in the execution of the program.

Variables assume values through assignment statements. For example, the integer variable int
assumes the value 14 in the following arithmetic assignment statement:

int = 12 + 2

GLS FORTRAN Language Reference Manual 4-5

Constants, Variables, Arrays, and Substrings

In the following arithmetic assignment statement, int assumes a value based on its current value:
int = int + 1

Assuming this assignment statement executes after the previous assignment statement in a program,
the value of int changes from 14 to 15.

You can specify an initial value for a variable in a program using the DATA statement. For more
information, refer to the DATA and BLOCK DATA statements in Chapter 9.

Arrays

An array is a sequence of variables that represent numeric, logical, or character values in a
program. Each variable in the sequence is called an array element and can have a data type
comprised of several bytes. Using arrays, you can reference a group of similar or related values
with a symbolic name.

Arrays consist of one or more dimensions. Dimensions enable you to organize data according to
various criteria defined in the context of your program. For example, a program designed to analyze
political opinion poll information could organize data according to the voter's age, precinct, and
political party affiliation. This program would use a 3-dimensional array.

Array Declarators and Subscripts .

To declare an array in a program you must use an array declarator in a DIMENSION, COMMON,
or type statement. An array declarator specifies a symbolic name to identify the array and a number
of dimension declarators. The format for specifying an array declarator is:

symbolic name (dimension declarator [,dimension declarator)...)

Dimension declarators specify the number of elements in each array dimension that you declare.
You set the number of elements with a lower- and upper-bound value. These values are called
dimension bounds. The format for specifying a dimension declarator is:

[lower-bound:) upper-bound

Dimension bounds can be arithmetic constant or variable expressions that evaluate to integers.
lower-bound can be negative, zero, or positive. If you do not specify lower-bound, a value of 1 is
implied. upper-bound can be negative, zero, positive, or an asterisk indicating an assumed-size array
declarator. A variable expression can be used as a dimension bound value and is referred to as an
adjustable array declarator. Adjustable and assumed-size array declarators are described later in this
chapter. .

The number of dimension declarators you specify in an array declarator determines the number of
dimensions for the array. An array in GLS FORTRAN can have a maximum of seven dimensions.

4-6 GLS FORTRAN Language Reference Manual

Constants, Variables, Arrays, and Substrings

The size of an array is equal to the number of elements in the array. The number of elements is
equal to the product of the dimension sizes specified in the array declarator.

DISTANCES and one dimension declarator. DISTANCES is a 1-dimensional array with a lower bound
of 10, an upper bound of 20, and 11 elements.

. The following is an example of an array declarator that declares an array with the symbolic name
DISTANCES (10:20)
The next example is an array declarator that declares an array with the symbolic name AMPS and
three dimension declarators. The dimension declarators do not include lower-bound specifications.
Therefore, each dimension has an implied lower bound of 1. AMPS is a 3-dimensional array. The
first two dimensions have an upper bound of 8 and the third dimension has an upper bound of 2.
AMPS consists of 128 elements.
AMPS (8,8,2)
Each element in an array is a variable and can assume different values during program execution. A
program can access the values in the array by referencing the element name in an expression. To
reference an element name, specify the name of the array followed by a subscript. A subscript

consists of one or more arithmetic constant expressions enclosed in parentheses. Subscript expres-
sions must evaluate to integers. The format for specifying an array element is:

. symbolic name (subscript expression [,subscript expression]...)

The number of subscript expressions you specify in an element name reference must match the
number of dimension declarators specified in the array declarator.

You can reference an array name without a subscript in the following GLS FORTRAN statements.
Unsubscripted array names can also be used as arguments in a reference to a subroutine or external
function.

O CHARACTER

o COMMON

0 COMPLEX

O DATA

O DOUBLE PRECISION

Q ENTRY

. O EQUIVALENCE

0 FUNCTION

GLS FORTRAN Language Reference Manual

Constants, Variables, Arrays, and Substrings

]

Input/Output (I/0) statements

(u]

INTEGER

0 LOGICAL

QO REAL

0O SAVE

(@]

SUBROUTINE

One-Dimensional Arrays

A one-dimensional array organizes data in linear form according to one criterion. For example,
consider a program that calculates the average high meteorological temperature for one week. The
program must store seven temperature readings, one for each day of the week, then calculate the
average high. To store the temperatures, declare a one-dimensional integer array with the symbolic
name TEMPS and enclose the number 7 in parentheses to specify an upper bound of seven elements.
To declare the integer data type, use the array declarator in an INTEGER statement as follows:

INTEGER TEMPS(7)

Each element in TEMPS is a variable numbered 1 through 7 that can assume an assigned temperature
value. You can assign initial values to array elements with the DATA statement. During program
execution, you can assign values to array elements with assignment or input statements. The
following table represents the structure of array TEMPS with assigned values.

SUN MON TUE WED THU FRI SAT
TEMPS [63 | 60 ‘ 55 | 8] 72 ‘ 73 ‘ 64 ‘
Mm@ @ W’ e o

The program can access any temperature value in the TEMPS array for a calculation by referencing
the array element name. To reference an element name, you specify the array name followed by a
subscript. For example, TEMPS(3) refers to the third element in TEMPS, which has been assigned
the value 55 degrees. The number 3 is a subscript expression. The number 3 including the
parentheses constitutes the entire subscript. The number of subscript expressions you specify in an
element name reference must match the number of dimensions specified in the array declarator.

Each array element in TEMPS is a variable that can take on new values. Therefore, at the end of
each week you can assign new temperature readings to the corresponding array elements and
execute the program to calculate the average high for the new week.

GLS FORTRAN Language Reference Manual

Constants, Variables, Arrays, and Substrings

Multidimensional Arrays

A multidimensional array allows you to organize data according to more than one criterion. For
example, suppose you want to expand the temperature program to calculate the average body
temperature for a medical patient for one week using three temperature readings taken each day
instead of one. There are two criteria upon which to organize the temperature values: the day of the
week and the time of the day.

The program must store 21 temperature readings, three for each day of the week, then calculate the
average. To store the temperature values, declare a 2-dimensional array with the symbolic name
TEMPS2. The real data type for TEMPS2 must be used because body temperatures for medical
patients must be accurate to a tenth of a degree. To declare the real data type, use the array
declarator in a REAL statement as follows:

REAL TEMPS2(7,3)
The two dimension declarators are enclosed in parentheses following the symbolic name TEMPS2.
The first dimension has an upper bound of seven elements and the second dimension has an upper
bound of three elements. Both dimensions have an implied lower bound of 1.
Use the DATA statement to assign initial values to the elements in TEMPS2. During program

execution, you can assign values to array elements with assignment or input statements. The
following table represents the structure of array TEMPS2 with assigned values:

TEMPS2 SUN MON TUE WED THU FRI SAT

6 A.M. 103.4 103.4 103.2 103.1 101.1 102.9 103.3 | (1)

2 P.M. 103.0 102.3 100.4 99.7 99.1 98.8 98.7 (2)

10 P.M. 99.2 100.2 101.6 102.9 100.7 99.2 98.6 (3)

(M (@) 3) 4 (5) (6))

To reference an element in a two-dimensional array, specify two subscript expressions after the
array name. For example, TEMPS2(4,2) refers to the fourth element in the first dimension and the
second element in the second dimension — 99.7 degrees taken at 2 P.M. on Wednesday.

Adjustable Array Declarators

An adjustable array declarator is when you use a variable in a dimension bound specification. This
enables program units to pass various sized arrays as arguments. The adjustable array declarator
serves as a dummy array in a subroutine or function procedure. The reference to the procedure
contains the actual array size specifications. The adjustable array declarator must specify the same
number of dimensions as the actual argument array.

GLS FORTRAN Language Reference Manual 4-9

Constants, Variables, Arrays, and Substrings

The following example shows an adjustable array declarator named ADJ used in a DIMENSION
statement. The DIMENSION statement is in a subroutine named TEST. The adjustable array
declarator name, ADJ, and the two variables used as dimension bound values, M and N, are dummy
arguments for the TEST subroutine. M and N are the adjustable dimensions.

SUBROUTINE TEST(ADJ,M,N) .

DIMENSION ADJ(M,N)

END

The following example declares two arrays, ACT1 and ACT2, and contains two calls to the TEST
subroutine defined above. Each call passes a different array to TEST for processing. The first
CALL statement passes the array name ACT1 and the two dimension declarators 5 and 10 as
arguments. The second CALL statement passes the array name ACT2 and the dimension
declarators 25 and 50 as actual arguments.

DIMENSION ACT1(5,10)
DIMENSION ACT2(25,50)

CALL TEST(ACT1,5,10) .

CALL TEST(ACTZ2,25,50)

END

ACT1 and ACT2 are different sized arrays, but the adjustable array declarator, ADJ, enables the TEST
subroutine to process both arrays one at a time.

Assumed-Size Array Declarators

Assumed-sized array declarators, like adjustable array declarators, serve as dummy arrays in a
function or subroutine procedure. An assumed-size array declarator uses an asterisk (*) as an upper
dimension bound for the last dimension declared in the array. The actual upper dimension bound
passes to the procedure from the procedure reference. Dimension bound values in an assumed-size
array declarator other than the upper bound of the last dimension can be integer constant or
variable expressions.

The foliowing example shows the assumed-size array declarator ASM used in a DIMENSION .

statement. The DIMENSION statement is in a function named CALC. In this example, the lower
dimension bounds for both dimensions are integer constants. The upper bound for the first

4-10 GLS FORTRAN Language Reference Manual

Constants, Variables, Arrays, and Substrings

dimension is the variable w. The upper bound for the second dimension is an asterisk. ASM serves as
a dummy array within the CALC function. ASM and W are dummy arguments for CALC.

FUNCTION CALC(ASM,W)
DIMENSION ASM(1:W,1:*)

END
The following example contains a reference to the CALC function defined in the previous example.
The reference passes the array ACT for processing. The reference to CALC passes ACT and the value
10 as arguments. The actual upper bound for the second dimension, 30, does not pass as an

argument.

DIMENSION ACT(10,30)
VALUE = CALC(ACT,10)

END

The assumed-size array declarator, ASM, assumes the size of the array, ACT, passed to the CALC
function in the function reference.

Substrings

A substring is a contiguous portion of the space a character variable or character array element
represents. Substring references enable you to manipulate segments of character strings in a
program. A substring is the character data type.

Substring references have two forms: one for a character variable and one for a character array
element. A substring reference for a character variable is specified in the following format:

variable name([Ist expression]:[2nd expression])

The character positions a character variable represents are numbered from left to right, beginning
with 1. Ist expression specifies the first or leftmost character of the substring you want to reference.
2nd expression specifies the last or rightmost character of the substring you want to reference. For
example, the following substring reference specifies character positions 3 through 7 in the character
variable materials:

materials(3:7)

GLS FORTRAN Language Reference Manual 4-11

Constants, Variables, Arrays, and Substrings

materials can take on a variety of values during program execution. However, the substring
reference always specifies character positions 3 through 7 regardless of the value of materials at
any given time. ’

The format for a substring reference for a character array element is:
array name(sub|, sub)...) ([Ist expression}:[2nd expression))

Like a substring reference for a character variable, the character positions a character array
element represents are numbered from left to right, beginning with 1. Ist expression in the substring
reference specifies the first or leftmost character of the substring you want to reference. 2nd
expression specifies the last or rightmost character you want to reference. sub is the subscript
expression. You can specify any number of subscript expressions in a substring reference. For
example, the following substring reference specifies character positions 5 through 10 of an element
in the 3-dimensional character array named products:

products (4,4,12) (5:10)

For both character variable and character array element references, Ist expression must be greater
than or equal to 1 and less than or equal to 2nd expression. 2nd expression must be less than or
equal to the length of the variable or array element. Expressions that do not evaluate to integers
convert to integers.

If you omit Ist expression, a leftmost character position of 1 is implied. If you omit 2nd expression,
a rightmost character position equal to the length of the variable or array element is implied. To
omit both expressions implies a reference to all the character positions in the variable or array
element. If you omit both expressions, you must still specify the colon enclosed in parentheses. The
following are examples of substring references.

versions(2:8)
items(5:)
fourth(3,9)(:11)
sysform(:)

4-12 GLS FORTRAN Llanguage Reference Manual

Chapter 5

Expressions

This chapter describes expression types and their conventions.

Overview

An expression is a character sequence that specifies instructions for calculating a value. It can be a
data item such as a constant or variable, or a combination of data items and operators. Operators
are special characters that specify computations to perform using values given in the expression.
Operands are the values an operator processes. All expressions represent or evaluate to a single
value.

In the following expression, 100 and 50 are operands and - , .GT., and / are operators. The

expression evaluates to true.
i

100 a1« . 100 / 50
T
Expression 03960

Expression Types
Table 5-1 lists the four GLS FORTRAN expression types, their set of operators, and the order in
which operands are evaluated when combined in expressions that contain more than one kind of

operator.

Table 5~1. Expression Summary

Expression Operators Evaluation Order
Arithmetic +iemy fpt™ 1 (highest)
Character 11 2
Relational .LT., .LE., .EQ., 3
.NE., .GT., ‘GE.
Logical .NOT., .AND., .OR,, 4 (lowest)
XOR., EQV.,
NEQV.

GLS FORTRAN language Reference Manual 5-1

Expressions

Arithmetic Expressions

Arithmetic expressions represent numeric values. An arithmetic expression uses a special set of
operators, operands, and parentheses to control the evaluation order of the operations specified in
the expression. Valid arithmetic operators are show in Table 5-2.

The *, /, and ** operators work with two operands and are called binary operators. The + and —
operators can work as binary operators or as unary operators that work on a single operand.

The standard rules of algebra are used to determine the evaluation order of two or more operators
in arithmetic expressions.

Table 5—2. Arithmetic Expressions

Operator/Function Example Evaluation
Order

+ Addition OP1 + OP2 (Add OP1 and OP2) 3 (towest)

+0OP1 (identify OP1 as positive)
- Subtraction OP1 — OP2 (Subtract OP2 from OP1) 3

~0OP1 (\dentify OP1 as negative)
. Multiptication | OP1 * OP2 (Multiply OP1 by OP2) 2

/ Division OP1 / OP2 (Divide OP1 by OP2) 2 .

. Exponentiation | OP1 ** OP2 (Raise OP1 to the power OP2) 1 (highest)

Multiple Operators

When an expression contains two or more operators of equal precedence, such as * and /,
operations are evaluated algebraically from left to right.

Exponentiation is evaluated from right to left. In the following expression, GLS FORTRAN first
calculates OP2 raised to the power indicated by OP3, then calculates OP1 raised to the power
indicated by the value that results from the first calculation.

OP1 ** QP2 ** OP3
To supercede the original hierarchy of evaluation of operators, you can add parentheses. Parenthe-

ses specify the part of the expression to evaluate first. The following examples show the evaluation
order of multiple operators when parentheses are used. .

5-2 GLS FORTRAN Language Reference Manual

25

+ 15 =~ 10 + 12 = 42 (25 + 15)
1 1 1 T
1st 2nd 3rd 1st
+ 4 * 3 ~ 5 = 10 3 + 4 *
t t t T i
2nd ist 3rd 3rd 2nd
0 - 10 =*» 2 *= 3 = -200 (100 - 10
1 1 * T
3rd ist 2nd 2nd
+ 3 *x 2 =~ 10 / 2 = 12 ((11 + 3)
T) t T T
3rd 1st 4th 2nd 1st

Valid Operands

The following operands are valid in an arithmetic expression:

u}

[u}

Unsigned numeric constants

Symbolic name of an unsigned numeric constant
Numeric variable reference

Numeric array element reference

Arithmetic function reference

Arithmetic expression enclosed in parentheses

Data Type Evaluation

Expressions

- (10 + 12) = 18
T t
3rd 2nd
(3 - 5) = =5

t

1st
*x 2) * 3 = 0
t T
1st 3rd
* 2 - 10y ,/ 2 = 9
) T)
2nd 3rd 4th

The data type of an arithmetic expression is determined by the data types of the operands in the
expression. An arithmetic expression that contains operands of one data type evaluates to a value of
that type. An arithmetic expression that contains operands of two or more different data types
evaluates to the highest ranking type in the expression. Operands of low ranking data types
automatically convert to the higher ranking types. The one exception to this hierarchy is that the
combination of a REAL*8 (DOUBLE PRECISION) value with a COMPLEX*8 (COMPLEX) value
causes both operands to be converted to COMPLEX*16 (DOUBLE COMPLEX).

GLS FORTRAN Language Reference Manual

5-3

Expressions

Table 5-3 defines the hierarchy of data types for conversion within expressions:

Table 5-~3. Data Type Hierarchy

Data Type Rank
COMPLEX"16 1 (highest)
COMPLEX"8 (COMPLEX) 2
REAL*8 (DOUBLE PRECISION) 3
REAL"4 (REAL) 4
INTEGER"4 5
INTEGER*2 (INTEGER) 6
INTEGER™1 7
LOGICAL 8 (lowest)

According to this hierarchy, an arithmetic expression that consists of real and complex operands
evaluates to a complex value. An arithmetic expression that consists of INTEGER*2 and
INTEGER*4 operands evaluates to an INTEGER*4 value. The following rules apply to the
conversion of data types within arithmetic expressions:

O In an expression that contains integer and real operands, the integer operands first receive a
fractional component of 0 in the conversion to real. GLS FORTRAN evaluates the expres-
sion using real arithmetic. Consider the expression (10/5)*3.14. GLS FORTRAN first evalu-
ates the integer division, (10/5), then converts the result of the division to real.

O To convert an operand of one real data type to a real data type with a higher precision, GLS
FORTRAN uses the existing operand as the most significant portion of the higher precision
data item and the least significant part of the data item becomes zero. GLS FORTRAN then
evaluates the expression using the higher precision arithmetic.

O In an expression that contains complex and integer operands, the integer operands convert to
real as described above. The converted real operand then serves as the real part of a complex
number and the imaginary part becomes zero. GLS FORTRAN then evaluates the expression
using complex arithmetic. The expression evaluates to a complex value.

O Any fractional component that results from a division of integers is truncated, not rounded.

For example, the expression (1/2 + 1/2) is equal to 0, not 1. The expression (12/5) is equal to
2. The fractional components are truncated.

GLS FORTRAN Language Reference Manual

Expressions

Character Expressions

Character expressions allow you to manipulate character strings. A character expression uses
character operands and a special character operator. All character expressions evaluate to a single
character string value.

The character operator consists of two slashes, //, and is called the concatenation operator. The
concatenation operator joins two character operands together. For example, the following character

expression evaluates to the character string value 'FORTRAN:

‘FOR’ // "TRAN’

Valid Operands

The following operands are valid within a character expression:

[u]

Character constant

[u]

Symbolic name of a character constant

D

Character variable reference

o

Character array element reference

|8}

Character substring reference
O Character expression enclosed in parentheses
O Character function reference

Using parentheses does not affect the value of a character expression. For example, the following
character expressions are equivalent:

"PRESS’ // 'ANY RKEY' // ‘TO CONTINUE'
('PRESS’ // 'ANY KEY') // 'TO CONTINUE'
"PRESS’ // (ANY KEY' // ‘TO CONTINUE')

The length of a character expression equals the sum of the lengths of the individual operands. The
length value includes any spaces that are parts of an operand. Parentheses are not considered part
of a character expression and are not included in the length value. For example, the following
expression has a length of 19:

'ENTER’ // ° “b/"YOUR “b/"PASSWORD'

GLS FORTRAN Language Reference Manual

Expressions

Relational Expressions

A relational expression compares the values of two operands using the relational operators (shown

in Table 5-4), and then evaluates to true or false. All relational operators have equal precedence. .
Table 5—4. Relational Operators
Operator Meaning
AT Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

There are two types of relational expressions: arithmetical and character. A single relational
expression can compare two arithmetical expressions, or two character expressions; it cannot
compare an arithmetic expression with a character expression. Arithmetic and character operators
are evaluated before relational operators. .

Arithmetical

In an arithmetic relational expression, the arithmetic operands are evaluated first; then the resulting
values are compared to determine if the relationship specified by the operator exists.

In the following example, the arithmetic expressions on either side of the .GT. operator are
evaluated first. Then the entire expression is evaluated for validity. In this case, 50 is greater than 2
so the value of the relational expression is true.

100 - 50 .GT. 100 / 50

t
50 2

You can use parentheses to change the evaluation order of the arithmetic operands of a relational
expression.

GLS FORTRAN Language Reference Manual

Expressions

Character

In a character relational expression, character operands are evaluated first, according to the ASCII
character collating sequence described in Appendix A. The length of the character operands is not
significant for comparison. (If the two character operands have different lengths, the shorter
operand is padded on the right with blank characters until the two strings are equal. The two strings
are then compared a character at a time according to the ASCII collating sequence.) After
sequence evaluation, the resulting values are compared to determine if the relationship specified by
the operator exists.

In the following example, the character expressions on either side of the .LT. operator are
evaluated. Because the string ‘APPLE’ has a length of 5, and "APRICOT a length of 7,’ APPLE’ is
padded on the right with two blank characters to make the strings equal in length. The two strings
are then compared a character at a time. The third letters of each string are evaluated according to
the collating sequence and P is less than R; therefore, the string "APPLE’ is less than the string
"APRICOT, and the relational expression is true.

‘APP° // 'LE’ .LT. ‘AP’ // ‘RICOT’

Cohpbx

Complex expressions are compared with the .EQ. and .NE. operators only. Two complex values are
considered equal only if their corresponding real and imaginary parts are both equal.

A relational operator can compare two numeric expressions of different data types. However, prior
to making the comparison, the value of the expression with the lower ranked data type is converted
to the higher ranked data type. For example, when a REAL*8 and a COMPLEX*8 value are
compared, the values are first converted to the type COMPLEX*16 before making the comparison.

GLS FORTRAN Language Reference Manual

Exp

ressions

Logical Expressions

Logical expressions compare logical values using the logical operators shown in Table 5-5. When a
logical expression has two or more logical operators, they are evaluated in the order shown in table.
The operands in a logical expression evaluate to true or false.

Table 5-5. Logical Operators

Operator Meaning Evaluation
Order

NOT. togical negation 1 (highest)
.AND. | Logical conjunction 2
.OR. Logical inclusive disjunction 3

XOR. | Equivalent to .NEQV 4 (lowest)
EQV. Logical equivalence 4
NEQV. Logical nonequivalence 4

The following examples show the use logical operators in expressions. OP1 denotes an operand for a
unary operator or an operand to the left of a binary operator; OP2 denotes an operand to the right
of a binary operator.

Examples

OP1 .AND OP2
The expression is true only if both OP1 and OP2 are true.

OPl .OR. OP2
The expression is true if either OP1 or OP2, or both, are true.

OP1 .EQV. OP2
The expression is true only if both OP1 and OP2 have the same logical value: either true or false.

OP1 .NEQV. OP
The expression is true if OP1 is true and OP2 is false, or if OP2 is true and OP1 is false. The

expression is false if both operands have the same value.

0Pl .XOR. OP2
The .XOR operator is equivalent to NEQV.y.

.NOT.OP1
The expression is true only if OP1 is false.

GLS FORTRAN Language Reference Manual

Expressions

Parentheses are used to control the evaluation order of operations in a logical expression. In the
first example, the operations are evaluated algebraically from left to right, and the expression
evaluates to true. In the second example, parentheses are change the evaluation order, so the
expression evaluates to false.

6*3+4 .LT. 25 .AND. 4 .LE. 8/2
6*(3+4) .LT 25 .AND. 4 .LE. 8/2

Two logical operators cannot appear consecutively within an expression unless the second operator
is .NOT. The following is an example of a valid expression that evaluates to true.

3.14159 .LE. 10 .AND. .NOT. 10/5 .EQ. 3

Valid Operands
The following operands are valid forms within a logical expression:
O Arithmetic relational expression

O Character relational expression

o

Logical constant (.TRUE. or .FALSE.)

QO Symbolic name of a logical constant

[m]

Logical variable reference

[m]

Logical array element reference

[n]

Logical function reference

Integer Operands

Logical operations can be performed on integer operands, and are carried out bit by bit on the
internal values. Logical and integer operands can be used in combination; first the logical operand
is converted to an integer value, then the logical operation is performed.

GLS FORTRAN Language Reference Manual

5-9

Expressions

Similarly, logical variables and/or expressions can be used in.an integer context within an expres-
sion. The logical expression is converted to an integer value before the overall expression is

evaluated.
Value of A Value of B Operation Result
0 255 C=A .AND. B C=0
0 255 C=.NOT. B C=-256
43 -6 C=A .OR. B J_C= -5

GLS FORTRAN Language Reference Manual

Chapter 6.

Program Structure

This chapter describes the main program, the different classes of subprograms, and the relation-
ships among program units that combine to form GLS FORTRAN executable programs.

An executable GLS FORTRAN program consists of one or more program units. A program unit is
a logical, self-contained sequence of statements and optional comment lines that form a discrete
part of a larger program. There are two kinds of program units: main programs and subprograms.
Figure 6-1 shows the GLS FORTRAN program structure.

GLS FORTRAN PROGRAM

PROGRAM UNITS

[

l

MAIN PROGRAM SUBPROGRAMS
I
| l
BLOCK DATA PROCEDURES
|
[|
FUNCTIONS SUBROUTINES
|
INTRINSIC STATEMENT EXTERNAL FORTRAN OTHER LANGUAGE
FUNCTIONS FUNCTIONS FUNCTIONS SUBROUTINES SUBROUTINES
I |
FORTRAN OTHER LANGUAGE Gieha
EXTERNAL EXTERNAL
FUNCTIONS FUNCTIONS

Figure 6—1. GLS FORTRAN Program Structure

GLS FORTRAN Language Reference Manual

Program Structure

Main Program

The main program serves as the center or base of all processing activity in an executable program.

It receives control to begin execution. During execution, the main program can invoke a variety of

subprograms that perform different tasks. Control returns to the main program to terminate .
execution except when a STOP statement executes. For more information about program termina-

tion, refer to the END and STOP statements in Chapter 9.

An executable GLS FORTRAN program can consist of a main program with no subprograms.
Each executable program can have only one program unit defined as the main program. Subpro-
grams cannot call or reference the main program and the main program cannot call or reference
itself.

Use the PROGRAM statement to define a program unit as a main program. The PROGRAM
statement is not required, but if used, it must be the first statement of the main program. The
PROGRAM statement specifies a symbolic name for the main program as shown in the following
syntax specification:

PROGRAM symbolic name

The main program can contain any of the GLS FORTRAN statements except BLOCK DATA,
FUNCTION, SUBROUTINE, ENTRY, and RETURN statements.

Subprograms .

The term subprogram covers two kinds of program units: block data subprograms and procedures.
Block data subprograms initialize variables and array elements, and cannot contain executable
statements. Procedures contain executable statements that define a specific computing operation.
Subprograms cannot call or reference the main program. An executable GLS FORTRAN program
must contain only one main program but can contain any number of subprograms.

Block Data

A block data subprogram enables you to specify initial values for variables and array elements that
are listed in named common blocks. Common blocks are storage areas that contain data that a
number of program units can share. Any program unit that contains a definition of a given common
block can use the data in that block. Use the COMMON statement to define common blocks.

Common blocks can be either named or unnamed. However, only variables and array elements in

named common blocks can be initialized in a block data subprogram. You can initialize data from

several named common blocks in one block data subprogram. Refer to the COMMON statement in .
Chapter 9 for more information on common storage area management.

6-2 GLS FORTRAN Language Reference Manual

Program Structure
You identify block data subprograms with the BLOCK DATA statement. The BLOCK DATA
statement has the following form:
BLOCK DATA [symbolic name)

symbolic name is a global reference for the subprogram. The name is optional, but if used it must
be unique. There cannot be more than one unnamed block data subprogram in an executable
program. The BLOCK DATA statement must be the first statement in a block data subprogram.

A block data subprogram can contain only the following specification statements: COMMON,
DIMENSION, DATA, EQUIVALENCE, IMPLICIT, PARAMETER, SAVE, and type state-
ments. You can also include comment lines. The last statement in a block data subprogram must be
the END statement. An executable GLS FORTRAN program can contain any number of block
data subprograms. Block data subprograms have the following form:

BLOCK DATA [symbolic name]
. specification statements and comments
END
The following block data subprogram example defines three named common blocks for a program
that calculates weather information. The example specifies a data type for each variable in the
named common blocks and declares initial values for some of the variables.
BLOCK DATA weather

C Define named common areas

COMMON /time/day,hour,min /location/zone,altitude
COMMON /conditions/temp,humidity,pressure,wind,rain

C Declare data types for the variables
INTEGER day,hour,min,zone,altitude,temp,humidity,wind
REAL pressure
LOGICAL rain
C Declare initial values for some of the variables
DATA day/31/, hour/24/, zone/7/, altitude/5285/

DATA temp/65/, pressure/29.92/, rain/.true./
END

GLS FORTRAN Language Reference Manual 6-3

Program Structure

You must specify all the variables in the named common blocks using
NOTE specification statements even if you do not declare initial values for all the
variables with the DATA statement.

Procedures

A procedure is a subprogram that performs a specific task within an executable program. Unlike
block data subprograms, procedures contain the executable statements that define the purpose of
the program. Procedures structure programs into a series of routines that can execute repeatedly, in
any order, to accomplish a larger task. An executable GLS FORTRAN program can contain any
number of procedures.

A procedure receives execution control through a call or reference. Procedures can receive control
from the main program or from another procedure. However, procedures cannot call or reference
the main program. Procedures can share values through the use of arguments and common blocks.

There are two types of procedures in GLS FORTRAN: subroutines and functions. Subroutines and
functions differ primarily in the method by which they are invoked during execution and in the
result they produce. Functions are further classified into three categories: external, statement, and
intrinsic. Subroutines and external functions are collectively referred to as external procedures.

Procedure Arguments .

Arguments supply the values that a procedure requires to produce the desired result. A program
unit, such as the main program, can invoke a procedure to perform a specific task using arguments
to pass the values the procedure needs to complete the task. Both subroutine and function
procedures can change the values of the arguments during execution. Therefore, values the proce-
dure produces can return to the invoking program unit via the arguments. Arguments are some-
times called parameters.

There are two types of arguments: dummy or formal arguments and actual or calling arguments.
Dummy arguments are used in the procedure definition to reserve a place and declare a data type
for actual values the procedure requires to produce the desired result. Actual arguments are used in
the procedure call or reference and are substituted for the dummy arguments during procedure
execution.

Dummy arguments used in the procedure definition must correspond in number, order, and data

type with the actual arguments in the procedure call or reference. Depending on the kind of
procedure, a dummy argument can be a variable name, an array name, a dummy procedure name,

or an alternate return specifier. .

6-4 GLS FORTRAN Language Reference Manual

Program Structure

A variable name that serves as a dummy argument can be associated only with an actual argument
that is a variable, a constant, a symbolic name of a constant, a function reference, an array
element, a substring, or an expression.

An array name that serves as a dummy argument can be associated only with an actual argument
that is an array, array element, or array element substring of matching data type.

Subroutines

A subroutine is an external procedure that performs a specific task within an executable GLS
FORTRAN program. An external procedure is a program unit that is defined outside the program
unit that invokes it. You can write external procedures using a programming language other than
GLS FORTRAN, such as C or assembly language. For more information, refer to the GLS
Programming Guide.

Use the SUBROUTINE statement to define a program unit as a subroutine. The SUBROUTINE
statement must be the first statement in the subroutine. The SUBROUTINE statement specifies a
symbolic name for the subroutine and a list of dummy arguments the subroutine requires.
The syntax for the SUBROUTINE statement is:

SUBROUTINE symbolic name [(dummy [, dummy] ...)]
where a dummy argument can be one of the following:

QO Variable name

O Array name

QO Dummy procedure name

O Asterisk (alternate return specifier)
A dummy procedure name enables actual procedure names to be passed as arguments.
A subroutine can receive control of execution from the main program or from another procedure.
A subroutine cannot invoke itself. Execution control transfers to a subroutine through the CALL
statement. The CALL statement must specify the symbolic name of the subroutine you want to
invoke and a list of actual arguments the subroutine requires. Actual arguments specified in the
CALL statement must correspond in number, order, and data type to the dummy arguments

specified in the SUBROUTINE statement. For more information, refer to the CALL statement in
Chapter 9. :

GLS FORTRAN Language Reference Manual

Program Structure

An actual argument in a CALL statement can be one of the following:

Q Expression

O Array name .
a

Intrinsic function name
O External procedure name
0O Dummy procedure name

O Alternate return specifier using the statement label of an executable statement in the same
program unit as the CALL statement

Functions

A function is a procedure that performs a specific task within an executable GLS FORTRAN
program. Execution control transfers to a function through a reference. (You cannot use the CALL
statement to invoke a function.) To reference a function means to use the function name within an
expression. Functions can receive control of execution from the main program or from another
procedure. A function cannot reference itself.

that contains the function reference. The function assigns this return value to the function name.
Therefore, the return value becomes the value of the function. When the function name appears in
an expression, the value of the function is used in the evaluation of the expression. The function
name determines the data type for the return value.

Unlike a subroutine, a function is specifically designed to return a single value to the program unit .

There are three types of functions: external, statement, and intrinsic. To reference a function, you
must specify the symbolic name and any actual arguments the function requires. Use the following
format to reference a function:

symbolic name [(actual [, actual]...)}

Actual arguments used in the function reference must correspond in number, order, and data type
with the dummy arguments in the function definition. Actual arguments in the function reference
can be any one of the following:

O Expression
O Array name
O Intrinsic function name

Q External procedure name .

O Dummy procedure name

6-6 GLS FORTRAN Language Reference Manual

Program Structure

External Functions

An external function, like a subroutine, is a program unit that is defined outside the program unit
that invokes it. You can write external functions in a language other than GLS FORTRAN, such as
C or assembly language. For more information, refer to the GLS Programming Guide.

Use the FUNCTION statement to define a program unit as an external function. The FUNCTION
statement must be the first statement in the external function. The FUNCTION statement specifies

a symbolic name for the external function, a data type for the value the function returns, and a list
of dummy arguments the function requires.

The syntax for the FUNCTION statement is:

type FUNCTION symbolic name [(dummy [, dummy] ...)]
where a dummy argument can be one of the following:

Q Variable name

O Array name

O Dummy procedure name

O Asterisk (alternate return specifier)

Statement Functions

A statement function is a procedure that is completely defined in one statement. Unlike an external
function, you can reference a statement function only within the program unit that contains the
statement function definition. A statement function consists of a symbolic name to identify the
function, a list of dummy arguments the function needs, and an expression:

symbolic name ([dummy [, dummy] ...]) = expression

A statement function is structured much like an assignment statement. The data type of the
expression converts to the type of the symbolic name according to the rules for conversion
described in the Arithmetic Assignment statement Chapter 9. The symbolic name is the statement
function name.

The dummy arguments reserve a place and declare a data typ'e for actual values the statement
function requires to produce the desired result. Actual arguments are used in the statement
function reference and are substituted for the dummy arguments during the actual procedure
execution. The dummy arguments in a statement function are local to the statement function. You

GLS FORTRAN Language Reference Manual

Program Structure

can use the dummy argument names to represent other entities in the same program unit. (You
cannot use the statement function name to represent another entity within the same program unit.)

Statement functions are referenced in an expression. Actual arguments specified in a statement
function reference must correspond in number, order, and data type with the dummy arguments in .
the statement function definition.

Other functions can be referenced within the expression of a statement function. However, the

functions you reference in a statement function expression must be defined before that statement

function in the same program unit. The definition of a statement function and all references to that

statement function must be in the same program unit.

Alternate Return Specifiers

A CALL statement transfers execution control to a subroutine. A' RETURN or END statement
transfers execution control from the subroutine back to the program unit that contains the CALL
statement. A normal return from a subroutine is when execution control transfers to the first
executable statement following the CALL statement in that calling program unit. You can, how-
ever, specify alternate return points from subroutines using alternate return specifiers. Alternate
return specifiers operate through the passing of arguments between a calling program unit and a
subroutine.

An alternate return specifier consists of an asterisk (*) that you specify as a dummy argument to a
subroutine in a SUBROUTINE or ENTRY statement. The corresponding actual argument used in

a CALL statement must be a statement label. The statement label identifies an executable state-

ment that serves as an alternate return point for the subroutine. You can specify any number of

alternate return specifiers for a subroutine.

The RETURN statement has an optional integer expression used to select one alternate return
specifier from a series of specifiers. The integer expression indicates which asterisk or t ampersand
in the SUBROUTINE or ENTRY statement dummy argument list to use for the return. A valid
integer expression must be greater than or equal to 1 and less than or equal to the number of
asterisks or ampersands specified in the SUBROUTINE or ENTRY statement dummy argument
list. (Each asterisk in the dummy argument list corresponds to an actual argument supplied in the
CALL statement that invokes the subroutine.) The actual arguments must be statement labels that
indicate the alternate return points.

For example, the following subroutine contains three RETURN statements. The first RETURN
statement, statement 110, specifies a normal return from the subroutine because there is no
specified integer expression. The second and third RETURN statements, statements 120 and 130,
have integer expressions indicating alternate returns.

6-8 GLS FORTRAN Language Reference Manual

Program Structure

Statement 100 is an arithmetic IF statement that determines which of the three RETURN state-
ments will execute. The SUBROUTINE statement contains two alternate return asterisks that serve
as dummy arguments to the subroutine named thrust.

. SUBROUTINE thrust (varl, *, *, var2)

100 IF (dat/val) 110, 120, 130
110 RETURN

120 RETURN 1

130 RETURN 2

If the expression in the arithmetic IF statement evaluates to less than zero, the first RETURN
statement, statement 110, executes. The first RETURN statement specifies a normal return. If the
expression evaluates to zero, the second RETURN statement, statement 120, executes. The second
and third RETURN statements specify 1 and 2, indicating the first and second alternate return
asterisk in the dummy argument list, respectively. If the expression evaluates to greater than zero,
the third RETURN statement, statement 130, executes.

The following CALL statement calls the thrust subroutine. The second and third actual arguments
in the CALL statement are statement labels that correspond to the two dummy argument asterisks
in the SUBROUTINE statement.

. CALL thrust (2.86, *200, *300, 4.13)

If the second RETURN statement in the subroutine executes, execution control transfers to the
statement identified with the label 200. This happens because the first dummy argument asterisk in
the SUBROUTINE statement corresponds to the actual argument 200 in the CALL statement. If
the third RETURN statement in the subroutine executes, execution control transfers to the
statement identified with the label 300. This happens because the second dummy argument asterisk
corresponds to the actual argument 300. Statements 200 and 300 exist in the calling program and are
alternate return points selected on the basis of the arithmetic IF statement.

If the integer expression used in a RETURN statement is less than 1 or greater
NOTE than the number of asterisks in the dummy argument list, a normal return from
the subroutine is executed.

GLS FORTRAN Language Reference Manual 6-9

Program Structure

An ampersand can be used in place of an asterisk in an argument list to indicate an alternate
return statement.

CALL UPDATE (I, J, &100, K)
100 CC-)I:l'lIINUE
is equivalent to:

CALL UPDATE (I, J, *100, K)

100 CONTINUE

6-10 GLS FORTRAN Language Reference Manual

Chapter 7

FORTRAN 1/0

This chapter describes the GLS FORTRAN input/output (I/0) system, records, files, 1/0 units,
and data transfer. i

Overview

GLS FORTRAN provides a device-independent 1/0 system for transferring data from one location
to another within a processor's memory. It can also transfer data to and from processor memory
and any external device such as a console, printer, or a storage medium such as a disk or magnetic
tape.

Records

A record is a logically related set of data items. There are three kinds of records:

Q Formatted
A sequence of ASCII characters; the length of a formatted record is the number characters
it contains, and depends on the number of characters written to the record when created;
length can be zero and is measured in bytes; records can only be access with formatted 170
statements

O Unformatted
A sequence of items having any combination of data types; the length of unformatted records
is specified when created; length can be zero and is measured in bytes; records can only be
access with unformatted I/0 statements

O Endfile

The last record in a file, written with the ENDFILE statement

Files

A file is a sequence of records. The records in a file are either all formatted or all unformatted. A
file cannot contain both kinds of records.

GLS FORTRAN Language Reference Manual

FORTRAN 1/0

Each record in a file is assigned a unique record number by the I/O system when it is created.
There are two types of files:

0O External
External files contain data that can be transferred between internal storage and any external .
device. Also, external files can be permanently stored on external storage medium, such as a
hard disk or magnetic tape.

Q Internal

Internal files are an area of internal storage. They are implemented as a character variable, a
character array, or an element of a character array.

The physical size of a file is the number of records in the file multiplied by the length of record,
measured in bytes.

The number of files that can be open concurrently depends on limits set by the operating system.
For example, on REAL/IX 97xx systems this is a modifiable parameter. For detailed information,
refer to the documentation supplied with your operating system.

1/0 Units

An 1/0 unit is a logical or generic designation for a file. At any given time, an 1/0 unit can .
designate one of several different files.

Internally, the GLS FORTRAN I/O system uses I/O units when transferring data or manipulating
files, so the I/O statements described later in this chapter generally refer to 1/O units rather than
names of files.

An 1/0O unit is designated by an unsigned integer from 0 through 99.

Connection

Connection defines the relationship between the I/O unit and a file. An I/0O unit is connected when
it refers to a specific file; it is disconnected when it does not refer to a specific file.

When an I/O unit is connected to a file, the file is also connected to the I/O unit. An 1/O unit
cannot be connected to more than one file at a time, nor can a file be connected to more than one
1/0 unit at a time.

All GLS FORTRAN I/0 statements, except OPEN and CLOSE, operate on I/0O units that are .
connected to files on a one-to-one basis. No data transfer can take place on a file unless it is

connected to an I/O unit. The 1/0O unit/file connection must be made when the file is opened, or by
preconnection.

7-2 GLS FORTRAN Language Reference Manual

FORTRAN 1/0

Preconnection
An 1/0 unit is preconnected if by some means external to the program, it is connected to a specific
file before the program begins to run. Each GLS FORTRAN program has three preconnected 1/0
units:

QO Unit 0 - default error output (stderr)

O Unit 5 - default console input (stdin)

Q Unit 6 — default console output (stdout)

Access Method

There are two methods for accessing a file:
O Sequential — records are accessed in the order in which they were created
Q Direct - records are accessed in any order

You can access an external file using either access method, but you can only access an internal file
sequentially.

If a file is connected for direct access, all the records must have the same length. A file connected
for sequential access can have records with different lengths.

Properties of Files

Each file has an associated set of properties, some of which are determined by the OPEN statement
at the time of connection to an 1/O unit. This section discusses the properties of existence and
position.

Existence

Existence is the potential an executable program has to access the file. The files a program can
potentially access are said to exist for that program. The files a program cannot access do not exist.
For example, a file could be protected for security reasons, or a file could be in use by another
program. In such a case, the file is inaccessible to the program, and therefore does not exist.

The property of existence applies only to a file in relation to a particular executable program. It
does not apply to the file's physical existence within the environment of an implementation.

GLS FORTRAN Language Reference Manual 7-3

FORTRAN 1/0

The following list describes all possible combinations of connection and existence:

0 A file can exist and be connected

Example: a disk file that is being written to

O A file can exist and not be connected
Example: a disk file that is not yet open

O A file can be connected but not exist

Example: a newly created disk file before the first record is written

0 A file can both not exist and not be connected

Example: a disk file that was erased

Position

When a file is connected to an I/O unit, it has a position. The file position is determined by a file
pointer. The file pointer is not a physical entity; rather, it is an internal reference the I/O system

uses to keep track of the file position.

In the following diagram, the file is positioned at the initial point just before the first record.

RECORD
1

RECORD
2

RECORD
3

1

File Pointer

GLS FORTRAN Language Reference Manual

FORTRAN

In the following diagram, the file is positioned at the terminal point just after the last record.

RECORD RECORD RECORD
N-2 N-1 N -

File Pointer

In the following diagram, the file is positioned at a specific record, the current record. If the file is
not positioned at or within a record, there is no current record.

110

RECORD RECORD RECORD RECORD RECORD RECORD
1 2 i-1 i i+1 N
(Preceding) T (Current) (Next)
File Pointer

If a file contains N records, and the file pointer points to record i, where 1 < i < N, then record
i+1 is the next record, and record i-1 is the preceding record. If i=1, there is no preceding record.
If i<N or if N=0, there is no next record.

I/0 Statements

This section describes 1/0 statements in the following categories: Data transfer, File positioning,
and Auxiliary. Another category, Format statements, are described in Chapter 8.

Data Transfer Statements

Data transfer statéments move data between internal (processor) storage and a file; they can
reference both internal and external files. The data transfer statements are:

8 READ
Inputs data from a specific I/O unit

QO WRITE
Outputs data to a specific I/O unit

O PRINT
Outputs data to the default output I/O unit

GLS FORTRAN Language Reference Manual

FORTRAN 1/0

0 ENCODE
Translates data from external character form to internal binary representation

0 DECODE
Translates data from internal binary representation to external character form .

If a READ or WRITE statement contains a format specifier, it is a formatted I/0 statement.
Otherwise, it is an unformatted 1/0 statement.

The ENCODE and DECODE statements transfer data between internal locations only. Both
ENCODE and DECODE translate the data using a format specifier.

Using formatted READ and WRITE statements with internal files achieves the same results as
ENCODE and DECODE. GLS FORTRAN supports ENCODE and DECODE for compatibility
with older FORTRAN compilers.

File Positioning Statements

File positioning statements affect the position of the file pointer relative to a specific file; they
cannot reference internal files. All three file positioning statements require that the file be con-
nected for sequential access. The file positioning statements are:

O BACKSPACE
Moves the file pointer to the start of the preceding record
0 REWIND

Moves the file pointer to the initial point of a file
0 ENDFILE
Marks the preceding record as the last record in a file
Auxiliary 1/0 Statements
Auxiliary statements manipulate the connection of I/O units to external devices and media, and
inquire about the characteristics of a particular connection; they cannot reference internal files. The
auxiliary I/O statements are:
a OPEN
= Creates a file and connect it to an I/O unit

= Creates a preconnected file .

= Connects an existing file to an I/O unit

7-6 GLS FORTRAN Language Reference Manual

FORTRAN 1/0

= Changes the characteristics of an existing 1/0 unit/file connection
0 CLOSE

Disconnects a file from an 1/0 unit
0 INQUIRE

Returns information about the characteristics of a named file, or the connection of afileto a
particular I/0 unit

Data Transfer

Data transfer is the process of moving data between records and individual items specified in an
I/0 list. An I/O list is a list of data items whose values are transferred by a data transfer
statement.
The 1/0 system performs the following steps each time it executes a data transfer statement:

1. Determines the direction of the data transfer.

2. Identifies the I/O unit.

3. Establishes the format (if one is specified).

4. Positions the file before the transfer.

5. Performs the transfer between the file and the I/0 list.

6. Positions the file after the transfer.

7. Sets the I/0 status specifier (if one is defined).

There are two types of data transfer: formatted and unformatted. I/0 statements for formatted data
requires formatted I/0 statements; unformatted data must requires unformatted 1/0 statements.
statement of the same type.

Formatted Transfer
During formatted data transfer, the I/O system transfers data between a file and the 1/0 list, and

performs editing on the data. The current record and (optionally) other records are read from or
written to.

GLS FORTRAN Language Reference Manual -7

FORTRAN 1/0

Editing

The editing performed during the transfer is directed by a format specification. A format is a
description of the arrangement or pattern that data has when it is read or written. The same data
can be read or written with different formats to suit different situations.

A format specification is a list of items separated by commas and enclosed in parentheses. The list
is called a format list, and contains items called edit descriptors. A format list can also contain
other format lists.

There are two kinds of edit descriptors:
O Repeatable

Repeatable edit descriptors control the editing of character, logical, and numeric data. Each
item in the I/O list corresponds to a repeatable edit descriptor in the format list. Each
repeatable edit descriptor can be preceded by an integer constant called a repeat factor, that
tells the 1/O system how many times to repeat the edit specified in the edit descriptor.

0 Nonrepeatable

Nonrepeatable edit descriptors are not associated with specific data items in the 1/0 list.
Instead, they control such things as column position, spacing, sign control, blank control, and
line termination.

Format Control

The interaction between the I/O list and the format specification is a dynamic process called format
control.

Format control always proceeds from left to right, matching each item in the I/O list with the next
repeatable edit descriptor. It executes nonrepeatable edit descriptors as they are encountered.

If an edit descriptor has a repeat factor, format control processes the I/0 list as if it contained the
specified number of consecutive items.

If the format list ends before reaching the end of the I/0O list, format control reverts to the
beginning of the last nested format list, if there is one. If there is none, format control reverts to
the beginning of the format specification and again passes through the I/O list. Each time format
control reverts, it accesses a new record.

GLS FORTRAN Language Reference Manual

FORTRAN 1/0

List—-Directed Formatting
List-directed formatting is an alternative method of formatted data transfer. It is specified by using
. an asterisk (*) as the format specification in an I/0 statement. A FORMAT statement is not

required.

When the I/O system executes a list-directed READ, WRITE, or PRINT statement, it begins a new
record, and formats each input or output value using the data type and field width of the
corresponding 1/0 list item to generate an equivalent edit descriptor.

For more information about the rules for writing valid format specifications, the actions of the
various edit descriptors, and list-directed formatting, refer Chapter 8.

Unformatted Transfer

During unformatted data transfer, the I/O system transfers data between the current record of a
file and the I/0 list. The I/0 system does not perform any editing of the data, and only one record
is read from or written to.

GLS FORTRAN Language Reference Manual 7-9/(7-10 Blank)

Chapter 8

Format Specification

This chapter describes the format specification methods. It also describes how to use edit descrip-
tors when performing formatted data transfer.)

Specifying Formats
There are three ways to specify a format:
O Explicitly in a FORMAT statement

O Implicitly as a character variable, element of a character array, or any character expression
that evalates to a valid format specification

Q Implicitly as list-directed formatting

General Form for Format Specifications
A format specification has the following format:
([format list])

format list is a list of items enclosed in parentheses. The items in format list can be any of the
following: [r] repeatable edit descriptor; nonrepeatable edit descriptor; or [r] format list.

repeatable edit descriptor and nonrepeatable edit descriptor are special character strings that describe
the kind of editing being performed. r is a positive integer constant called the repeat factor. If r is

not specified, the default value is 1.

format list can be empty only if the corresponding I/O list is also empty. If format list contains
another (nested) format list, the nested list cannot be empty.

If the I/O list contains at least one item, format list must contain at least one repeatable edit
descriptor.

GLS FORTRAN Language Reference Manual

Format Specification

Character Format Specification

A character format specification must be in the form of a valid format specification, starting at the
leftmost character position. It is enclosed in parentheses, and any characters following the right
parenthesis do not affect the format specification. . .

If a format specification is given as a character array name and the specification’s length exceeds
the length of the first array element, the specification becomes the concatenation of all the array
elements in column-major order.

If the format specification is an array element, the specification’s length cannot exceed the length of
the array element.

Format Control

Format control is the interaction between the I/O list and the format specification. It always
proceeds from left to right, matching each item in the I/O list with the next repeatable edit
descriptor. (There is no match between 1/0O list items and nonrepeatable edit descriptors.) Format
control executes nonrepeatable edit descriptors as they are encountered.

If an edit descriptor has a repeat factor r, format control processes the 1/0O list as if it contained r

consecutive items.

If the format list ends before reaching the end of the I/O list, format control reverts to the .
beginning of the last nested format list, if there is one. If there is none, format control reverts to

the beginning of the format specification and again passes through the I/O list. Each time format

control reverts, it accesses a new record.

8-2 GLS FORTRAN Language Reference Manual

Repeatable Edit Descriptors

Format Specification

Repeatable edit descriptors control the editing of character, logical, and numeric data. Each item in

the I/0O list corresponds to a repeatable edit descriptor in the format list.

Each repeatable edit descriptor can be preceded by a repeat factor, that determines how many
times to repeat the edit specified by the edit descriptor.

Repeatable edit descriptors consist of a letter and a number; the letter indicates the type of data to
edit, and the number indicates the size of the data field.

In Table 8-1, A, D, E, F, G, I, L, #0, and #Z indicate the type of data to edit. w is a positive
integer constant that indicates the number of characters in the field: 4 is an unsigned integer
constant indicating the number of digits following the decimal point. e is a positive integer constant
indicating the number of digits in the exponent.

Table 8-1.

Repeatable Edit Descriptors

Syntax

Type of Descriptor

Alw]
Dw.d
Ew.d[Ee]
Fw.d
Gw.d[Ee]
Iw

lw.m

Lw

Howl.mj

tzwl.m)

Alphanumeric
Floating—point
Floating—point
Floating—~point
Floating—point
Integer

Integer

Logical

Octal descriptor

Hexadecimal descriptor

The following section describes how to the use repeatable edit descriptors to edit alphanumeric,
numeric, logical, # octal, and ¥ hexadecimal data.

GLS FORTRAN Language Reference Manual

Format Specification

Alphanumeric Editing

The A[w] edit descriptor edits character or Hollerith data. If w is present, the field width is w
characters. If w is not present, the field width is the length of the data item in the I/O list. The
field width for non-chararacter data types is determined by the maximum storage length for that
type. COMPLEX and DOUBLE COMPLEX values are stored as real number pairs and therefore
require two format descriptors.

Storage is allocated based on the maximum number of characters that can be stored in that data
type as shown in Table 8-2.

Table 8—2. Storage Allocation For Data Types

Data Type Maximum Data Type Maximum
Characters Characters
BYTE 1
CHARACTER"n n
INTEGER"2 2 INTEGER"4 4
INTEGER 4
LOGICAL™ 1 LOGICAL"2 2
LOGICAL"4 4
REAL 4 DOUBLE PRECISION 8
REAL"4 4 REAL"8 8
COMPLEX 8 DOUBLE COMPLEX 16
COMPLEX"8 8 COMPLEX*16 16

The following rules apply to A{w] (len is the actual length of the item in the I/0 list):

O On input, if w 2 len, the 1/O system transfers the rightmost len characters. If w < len, the
1/0 system transfers w characters and they are left-justified, with len—w trailing blanks.

O On output, if w > len, the I/0O system transfers w—len blanks, followed by len characters. Ifw
< len, the I/0 system transfers the leftmost w characters.

GLS FORTRAN Language Reference Manual

The following table shows examples of A{w] Editing.

Data Type Format 1/0 List item Result
. CHARACTER"8 A3 Math Matbbbbb
Input N
Processing CHARACTER'8 A7 Math Matbbbbb
INTEGER"2 A5 Math Ma
REAL A3 Math Matl
CHARACTER*8 A3 Math Mat
Qutput
Processing | CHARACTER'8 A7 Math BBBMath

Numeric Editing

The D, E, F, G, 1, H#0O and H#7Z edit descriptors edit numeric data. D, E, F, and G edit any
floating-point data such as REAL*4, REAL*S8, COMPLEX*8, or COMPLEX*16. 1 edits integer
data. E and G produce floating-point numbers in scientific notation (on output only). #0 and Z
are used for octal and hexadecimal numbers.

O The I/O system ignores leading blanks, except that a field of all blanks is treated as zero.
Treatment of other blanks is determined by the BLANK specifier in the OPEN statement and

The following rules apply to numeric edit descriptors on input:

the settings of the nonrepeatable edit descriptors BN and BZ.

O A decimal point in the input field overrides the placement of the decimal point specified by a
D, E, F, or G edit descriptor. Also, the input field can contain more digits than the

processor needs to approximate the value.

The following rules apply to numeric edit descriptors on output:

O All negative values are prefixed with a minus sign. A positive value or zero can have a plus

sign as controlled by the S, SS, and SP nonrepeatable edit descriptors.

O The I/O system right justifies all numeric values, and when necessary, pads with blanks on

the left.

of w asterisks (¥).

GLS FORTRAN Language Reference Manual

O If the characters in the output field exceed the field width w, the I/0 system produces a field

Format Specification

8-5

Format Specification

Floating—Point Editing, D and E

The Dw.d and Ew.d[Ee] edit descriptors describe a field whose width is w positions with a fractional
part containing d digits (unless the scale factor k > 1), and an exponent of e digits. When using the
Dw.d and Ew.d[Ee] edit descriptors, the matching I/0 list item must be a floating-point type.

The following rules apply to Dw.d and Ew.d[Ee]:

Q The input field is identical to that of the Fw.d edit descriptor; e has no effect.

Q If the scale factor k=0, the output field has the form [+-){0].x1x2x3...xd exp. x1x2x3...xd are
the d most significant digits of the value after rounding, and exp is a decimal exponent. The
form of exp depends on its absolute value as shown in the following table. Dw.d and Ew.d are

not valid if |exp| > 999.

Edit Descriptor

Absolute Value of exp

Exponent Form

Ew.d lexp|<999 E+z1z2 or 0+z1z2
99<|exp|<B99 +21z223
Ew.d[Ee] jexp|<L10""e)-1 E+z1z2z3...ze
Dw.d lexp| <99 D+z1z2 or E+z1z2 or +0z1z2
99<|exp|<999 +212223
(z is a digit)

O The scale factor k also controls decimal normalization according to the rules listed below. For
more information about kP, refer to the "Using Nonrepeatable Edit Descriptors” section in

this chapter.

» If ~d < k < 0, then the output field has |k| leading zeros and d - |k| sxgmﬁcam digits

following the decimal point.

= If 0 < k < d+2, then the output field has k significant digits to the left of the decimal point
and d - k + 1 significant digits to the right of the decimal point.

a No other values of k are valid.

GLS FORTRAN Language Reference Manual

The following table shows examples of Dw.d and Ew.d[Ee] Editing.

Oon
Input

on
Output

Format 170 List Item Result
D9.2 999999.99 9.9999999D+05
D14.4 20583.4077D+03 | 2.05834077D+07
E9.2 3.31587E2 3.31587E2
E10.3 BB81.081E3 8.1081E4
015.3 0.0181 bbbbbE0.181D-01
D8.1 0 ¥0.0D+00
E10.2 1216641.731 BBo.12E+07
E12.4 1216641.731 BB0O.1217E+07

Floating—Point Editing, F

Format Specification

The Fw.d edit descriptor describes a field whose width is w positions, with a fractional part

containing 4 digits. When using Fw.d, the I/O list item must be a floating-point type.

The following rules apply to Fw.d on input:

QO The field can contain an optional sign, followed by digits that can optionally contain a decimal
point. If there is no decimal point, the I/O system interprets the rightmost d digits in the
field as the fractional part. The input field can contain more digits than needed by the

processor to approximate the value.

O The input field can be followed by an exponent expressed as a signed integer constant, or the
character D or E followed by zero or more blanks, followed by an optionally signed integer

constant.

The following rules apply to Fw.d on output:

O The output field consists of any necessary blanks followed by digits containing a decimal point

GLS FORTRAN Language Reference Manual

that represent the internal value rounded to d fractional digits and modified by the established
scale factor (see the kP nonrepeatable edit descriptor).

Format Specification

O If the value is negative, the output field is prefixed with a minus sign. If the value is positive,
the output field can have an optional plus sign.

O If the absolute value of the internal data is less than one, the output field can have an
optional zero immediately to the left of the decimal point. The following table shows exampies

of Fw.d editing.

On
Input

On
Output

Format | 1/0 List item Result
F7.2 6671878 66718.78
F9.5 -10.24E+2 -1024.0
F9.4 2.71828 BbEo.7183
F8.3 -98.87314 b-98.873

Floating—Point Editing, G

The Gw.d[Ee] edit descriptors describe a field whose width is w positions with a fractional part
containing d digits (unless the scale factor k > 1), and an exponent of e digits. When using the
Gw.d[Ee] edit descriptor, the 1/0 list item must be a floating-point type.

The following rules apply to Gw.d[Ee]:

O The input field is identical 1o that of the Fw.d edit descriptor; ¢ has no effect.

O The output field depends on M, the magnitude of the 1/0 list item as follows:

a If M < 0.1 or M = 10**d, then the output field is identical to that produced by Gw.d[Ee]
using the current scale factor k.

= If 0.1 < M < 10**d, then M is inside the range that permits Fw.d editing. In this case, the
1/0 system ignores the current scale factor k, and M produces an equivalent conversion as
shown in the following table.

GLS FORTRAN Language Reference Manual

The following table shows Gw.d[Ee] conversion when 0.1,M<10**d.

Value of M Equivalent Conversion
0.1M<1 F(w-n).d,n{B)
1M<10 Fiw=n).(d-1),n(b)

10°*(0-2)M<10"(d-1) | Fiw-n).1,n(B)

10*(d-1)M<10""d F(w-n).0,n(B)

n(B) = 4 blank spaces for Gw.d

n(B) = e+2 blank spaces tor Gw.d[Ee]

The following table shows examples of Gw.d[Ee] editing.

Format 170 List Item Result
Oon L1 T .TRUE.
input L3 YUT TRUE.
L7 .FALSE. .FALSE.
Oon L4 .TRUE. BBBT
Output
L1 .FALSE. F

GLS FORTRAN Language Reference Manual

Format Specification

Format Specification

Complex Editing

A complex data value is represented as a pair of values: a real part and an imaginary part. Editing

of complex data is accomplished by the successive interpretation of two D, E, F, or G edit

descriptors. The first descriptor describes the real part, and the second descriptor describes the .
imaginary part.

The two edit descriptors can be different, and nonrepeatable edit descriptors can appear between
any two successive D, E, F, or G edit descriptors.

The following table shows examples of complex editing.

Format 1/0 List Item | Result
on 2F9.3 28829809856777.765 | 288298.098, 56777.765
input D9.1,E9.3 | 999999.993.31587E2 | 9.9999999D+05, 3.31587E2
on D8.1,08.3 | 0.0, 3.14159 B0.0D+00.314D+01
Output

2E9.2 283.2394, 0.129312 b0.285+03b0.13E+00

8-10 GLS FORTRAN Language Reference Manual

Integer Editing

Format Specification

The Iw and Iw.m edit descriptors describe a field whose width is w positions. When using Iw or

. Iw.m, the 1/0 list must be of type INTEGER, and consist of at least one digit.

The following rules apply to Iw and Iw.m:

Q The input field can be an optionally signed integer constant.

Q For Iw, the output field consists of an integer constant. If the value is positive, it can be

prefixed with an optional plus sign. If the value is negative, it is prefixed by a minus sign.

O For Iw.m, the output field is identical to that produced by Iw, except that it must have at
least m digits, and if necessary, have leading zeros. The value of i cannot exceed w. If m = 0
and the internal value of the I/O list item is zero, the output field consists of all blanks
regardless of any sign control in effect.

The following tables shows examples of Iw and Iw.m editing.

on
Input

Oon
Output

Format | 1/0 List item Result
15 +128 128
15 -999 -999
15 bbko 0
14 +128 BB128
14 -999 B-999
15.3 1 BBoo1
15.3 -1 b_001

GLS FORTRAN Language Reference Manual

8-11

Format Specification

Octal Editing

+The Ow[.m] edit descriptor inputs or outputs data in octal format (base 8). It can be used with

any data type. w specifies the number of output digits, zero-padded as necessary. If wis not
specified, the default field width for that data type is used. The following table lists the default field .

widths for data types.

Data Type Default Data Type Default
BYTE 7

INTEGER"2 7 LOGICAL"2 7
INTEGER"4 12 LOGICAL"4 12 -
REAL"4 12 REAL"8 23

The following rules apply to data input using the Ow and Ow.m edit descriptors:

O w octal digits are transferred from the external field to the target I/O list element. The
external field may contain only valid unsigned octal numbers (digits 0 - 7).

O A blank external field defaults to all zeros.
O Invalid characters in the external field results in an error. .
O The m optional parameter is not valid on input, and is ignored.

The following rules apply to data output using the Ow and Ow.m edit descriptors:

O The first w digits of the unsigned octal representation of the corresponding I/O list element
are transferred to the external field.

O If the resulting output is less than w digits, the external field is padded with spaces on the
left. :

D If the resulting output is larger than w, the external field is filled with w asterisks, indicating
an overflow result.

O If m is specified and the resulting output is less than m digits in length, the external field is
right-justified, zero-filled up to a total of m digits. Any remaining locations are blank-filled up

to the total field length, w. :

The following table shows examples of Ow and Ow.m output processing. .

GLS FORTRAN Language Reference Manual

Format Specification

Format Decimal Value Result
05 511 BB777
. 02 511 =
07 -1 B177777
(assuming 2-byte
integer)
05.3 17 BBo21
05.5 17 00021
05.0 0 BbbbY

Hexadecimal Editing

The Zw[.m] edit descriptor inputs or outputs data in hexadecimal format (base 16), and can be
used with any data type. Valid hexadecimal digits are 0 — 9, a — f, A — F inclusive. Upper- and
lowercase letters are equivalent. w specifies the number of hexadecimal digits to be transferred, and

. m optionally specifies the minimum number of output digits, zero padded if necessary. If w is not
specified, the default field width for that data type is used, as shown in the table below.

Data Type Default Data Type Default
BYTE 7

INTEGER"2 7 LOGICAL"2 7
INTEGER"4 12 LOGICAL"4 12
REAL"4 12 REAL"8 23

The following rules apply to inputting data with the Zw and Zw.m edit descriptors:

O w hexadecimal digits are transferred from the external field to the target I/O list element.
The external field may contain only valid unsigned octal hexadecimal digits (numbers 0 - 9,
and letters a — f, A — F).
O A blank external field defaults to all zeros
. O Invalid characters in the external field results in an error

O The m optional parameter is not valid on input, and is ignored

GLS FORTRAN Language Reference Manual

Format Specification

The following rules apply to outputting data with the Zw and Zw.m edit descriptors:

D The first w digits of the unsigned hexadecimal representation of the corresponding 1/0 list
element are transferred to the external field

O If the resulting output is less than w digits, the external field is padded with spaces on the left

Q If the resulting output is larger than w, the external field is filled with w asterisks, indicating
an overflow result

Q If m is specified and the resulting output is less than m digits in length, the external field is
right-justified, zero-filled up to a total of m digits. Any remaining locations are blank-filled up

to the total field length, w

The following tables show examples of Zw and Zw.m editing.

Input Processing Output Processing
Format Input Result Decimal Internal
Format Value Result
22 OFFF OF z2 4095 * (overflow)
z4 OFFF OFFF z6 4095 BYUFFF
z6 OFFF O00FFF 26.4° 4095 . BBOFFF

8-14 GLS FORTRAN Language Reference Manual

Logical Editing

Format Specification

The Lw edit descriptor describes a field whose width is w positions. When using Lw, the I1/0 list

item must be of type LOGICAL.

The following rules apply to Lw:

0O The input field can contain optionally contain leading blanks and a decimal point, followed by
the character T for true or F for false. The logical constants . TRUE. and .FALSE. are also

acceptable as input.

QO The output field contains (w-1) leading blanks, followed by the character T if the value is

true, or F if it is false

The following table shows examples of Lw editing.

Format 170 List item Result
on L1 T .TRUE.
Input L3 YT TRUE.
L7 .FALSE. .FALSE.
on L4 .TRUE. BEbBT
Output
L1 .FALSE. F

GLS FORTRAN Language Reference Manual

Format Specification

Nonrepeatable Edit Descriptors

Nonrepeatable edit descriptors are not associated with specific data items in the 1/0 list. Instead,
they control such things as column position, spacing, sign control, blank control, and line
termination.

Table 83 lists the syntax of nonrepeatable edit descriptors;-c is any printable ASCII character, n is
a positive integer constant, and k is an optionally signed integer constant that represents a scale

factor.
Table 8-3. Summary of Nonrepeatable Edit Descriptors
Syntax Type of Descriptor
‘c1,c2,..cn’ Apostrophe (literal string)
nHc1,c2,...cn | Hollerith string

BN Blank control

BZ Blank control

kP Scale factor

S Sign co-ntrol

SP Sign control .
SS Sign control

Te Position
TLe Position
TRe Position

nX Position

/ Line termination

Conditional line termination
H#a Read remainder of record
e Carriage control editing
The following subsections describe how to use each-nonrepeatable edit descriptor. .

8-16 GLS FORTRAN Language Reference Manual

Format Specification

Apostrophe Descriptor
The 1/O system transfers literal character strings when they are enclosed in apostrophes. This is
called apostrophe editing, and is valid only on output. The field width is length of the character

string. An apostrophe inside the string must be written as two consecutive apostrophes.

The following table shows an example of apostrophe editing.

Format 170 List item Output Result
3H ABC ABC
4H IT'S IT'S

Hollerith Descriptor

The nH edit descriptor is an alternative method for transferring literal character strings. nH causes
the 1/0 system to transfer n characters following the H. Like apostrophe editing, it is valid only on
output. If the character string contains a single apostrophe, it is counted as one character when
specifying n.

The following table shows examples of Hollerith Editing.

Format 170 List item Output Result
3H ABC ABC
4H IT’'S IT's

Q Editing

The Q edit descriptor is used to read the remaining number of characters from the input record.
It can be used to validate an input record length, or to clear out the input stream after all required
data has been processed. The Q descriptor has no parameters associated with it, and is specified in
a FORMAT statement by the single letter 'Q’.

The Q descriptor returns the number of characters read from the input stream. If Q is the first
descriptor in a FORMAT statement, the actual input record length will be returned. The Q
descriptor can be used only with INTEGER or LOGICAL data type list elements.

GLS FORTRAN Language Reference Manual 8-17

Format Specification

Example:
READ (4,100) BUF
IF (BUF.GT.100) THEN
STOP 'Record too long’ .
ELSE
BACKSPACE 4
READ (4,300) STRINGA, STRINGB, STRINGC
END IF
100 FORMAT(Q)
200 FORMAT(40A1,20A1,20A1)

BACKSPACE is necessary because the first READ statement advanced the record pointer.

Carriage Control Editing

HThe dollar sign ($) edit descriptor is used only in output formatting. It is used to change the
default action specified by the first character of the record.

If the first character is a space, the $ causes the carriage return to be suppressed. This is useful for
terminal I/Q activity where you wish to display a user prompt, and accept input from the same line.
If the first character in the record is plus sign (+), the $ descriptor causes the output to begin at the
end of the previous line, effectively appending the new record to the previous one. .

The $ descriptor has no effect if the first character of the record is either 0 or 1.

Example
TYPE 1000
1000 FORMAT(‘ BJob Number?§'s)
ACCEPT 1010, JOBNUM
1000 FORMAT (14)

When you execute the previous statements it produces the following output:
Job Number?
The user’s response (for example, 1234) can then be accepted from the same line, as shown below:

Job Number? 1234

8-18 GLS FORTRAN Language Reference Manual

Blank—Control Descriptors BN and BZ

Format Specification

BN and BZ control the interpretation of blanks (other than leading blanks) on input with D, E, F,
G, and I editing only; they have no effect on output.

Prior to executing any formatted 1/0O statement, the BLANK specifier currently in effect for the
unit determines the interpretation of blanks.

When the 1/0 system encounters BN in a format specification, it ignores all blank characters in any
succeeding input fields. Ignoring blanks has the same effect as removing blanks, right justifying the
field, and replacing the blanks as leading blanks.

When the I/0 system encounters BZ in a format specification, it treats all blank characters in

succeeding input fields as zeros.

Once specified, BN and BZ remain in effect until changed explicitly, or the I/0O statement finishes

executing.

The following table shows examples of BN and BZ editing.

Format

/0 List Item | Input Result

BN

BZ

12834k 1234

1234b 120340

GLS FORTRAN Language Reference Manual

Format Specification

Scale—Factor Descriptor kP

The kP edit descriptor establishes a scale factor when using D, E, F, or G editing.

Prior to executing an I/O statement, the scale factor is zero. Once set with the kP descriptor, the
value of k remains in effect until changed with another kP descriptor, or the I/O statement finishes

executing.

The scale factor k produces the following effects on input:

O & has no effect with D, E, F, and G editing if there is an exponent in the field.

Q With D, E, F, and G editing, the externally represented number equals the internal represen-
tation multiplied by 10**k.

The scale factor k produces the following effects on output:

O With D and E editing, the mantissa is multiplied by 10**k, which moves the decimal point &
positions to the right (or left, if negative), and the exponent is reduced by £.

O With F editing, the externally represented number equals the internal representation multi-

plied by 10**k.

D With G editing, k is ignored unless the output value is outside the range of F editing. If E
editing is required, & has the same effect as described for E editing.

When kP immediately follows a D, E, F, or G edit descriptor, a comma is not

NOTE

The following table illustrates the

descriptors.

required between items.

effect of a scale factor when used with floating-point edit

Oon
Input

Oon
Output

Format 170 List tem Result
2PF10.4 Bb125.63b0 1.2563
2PF10.2 104.12345 10412.345
2PD15.3 0.0181 18.10D-03

GLS FORTRAN Language Reference Manual

Format Specification

Sign—Control Descriptors S, SP, and SS

The S, SS, and SP edit descriptors control the optional plus sign character in numeric output
fields. S, SS, and SP affect the D, E, F, G and I edit descriptors on output only; they have no
effect on input.

When executing any formatted I/0 statement, the I/O system normally has the option to produce a
plus sign in numeric output fields. An SP edit descriptor directs the 1/0 system to always produce a

plus sign in any subsequent position that normally contains an optional plus sign.

An SS edit descriptor directs the I/O system to always suppress a plus sign in any subsequent
position that normally contains an optional plus sign.

An S edit descriptor restores to the I/O system the option of producing a plus sign in numeric
output fields.

The following table shows examples of editing with Sign-Control Descriptors.

Format 1/0 List Item Output Result
SS 5 5
8P 5 +5

. Position Descriptors Tc, TLc, TRc, and nX

The T¢, TLc, TRc, and nX edit descriptors determine the position at which the I/0 system
transfers the next character to or from a record.

Tc specifies that transfer of the next character to or from a record occurs at the cth
position
TRc specifies that transfer of the next character to or from a record occurs ¢ positions to

the right of the current position
TLc specifies that transfer of the next character to or from a record occurs ¢ positions to
the left of the current position. If the current position is less than or equal to ¢, TLc¢

transfers the next character at position one of the current record.

nX specifies that transfer of the next character to or from a record occurs at n positions
to the right of the current record

GLS FORTRAN Language Reference Manual 8-21

Format Specification

The following rules apply to the position descriptors on input:

Q T can specify a position in either direction from the current position. This allows the 170
system to process part of a record more than once, possibly with different editing.

O nX can specify a position beyond the last position in a record if no characters are transferred
from such a position.

The following rules apply to the position descriptors on output:
O When the I/O system transfers characters to positions at or following the position specified
by Tc¢, TRc, TLc, or nX, any positions that are skipped and not previously filled are padded
with blanks.

D A Tc, TRe, TLc, or nX edit descriptor cannot replace an existing character within a record,
but they can affect position such that subsequent editing causes a replacement.

Line—Termination Descriptor /
The line-termination descriptor / indicates the end of data transfer on the current record.
The following rules apply to the line-termination descriptor on input:

O If the file is connected for sequential access, the I/O system skips the rest of the current
record and positions the file at the initial point of the next record, which then becomes the
current record.

O If the file is positioned at the initial point of a record, the I/O system skips the entire record.

The following rules apply to the line-termination descriptor on output:

O If the file is connected for sequential access, the I/O system creates a new record, which then
becomes the current and last record in the file.

Q If the file is connected for direct access, the I/O system increments the current record
number by one and positions the file at the initial point of the new record, which then

becomes the current record.

D The I/0 system can output an empty record. If the file is connected for direct access or is an
internal file, the record contains blanks.

l A comma is not required before or after the / and any I/0 list items.

8-22 GLS FORTRAN Language Reference Manual

Format Specification I

The following example illustrates the line-termination descriptor: |

Format Output Resuit
. (1X, "ABC’//1X, 'DEF ") basc
b
b
BpEF

Conditional Line—=Termination Descriptor

The conditional line-termination descriptor (:) terminates format control if there are no more items
in the I/O list. If there are remaining items in the 1/0 list, the I/O system ignores the : descriptor.

The following example illustrates the conditional line-termination descriptor :

Print Statement Output Result
PRINT 10,5
10 FORMAT (IX, 'I=',I2, BJ=',I2) 1=b5BI=

. PRINT 20,6
. . . . I be

20 FORMAT (IX, 'I=",I2,: BJ=",12)

List—Directed Formatting

List-directed formatting is specified by an asterisk (*) as the format specification in an I/0
statement. An explicit FORMAT statement is not required.

A list-directed file is an external file containing list-directed records. A list-directed record is a
sequence of characters that are either values or value separators.

A value can be one of the following:

QO Constant

Q Null value

Q r*c or r*. r is a positive integer constant repeat factor and c is a character value. r*c is
equivalent to r successive occurrences of c; r* is equivalent to r successive null values.

Neither form can contain any embedded blanks, other than those within c.

GLS FORTRAN Language Reference Manual 8-23

Format Specification

A value separator can be one of the following:
0O Comma, optionally preceded or followed by one or more contiguous blanks
0 Slash (/), optionally preceded or followed by one or more contiguous blanks .
O One or more contiguous blanks between two constants, or following the last constant

The following rules apply to list-directed formatting:

O The I/O system treats blanks as separators, so embedded blanks are allowed only inside
character strings

O The 1/0 system treats the end of a record as a blank, except inside a character string

O The end of a record following any separator with or without any intervening blanks does not
imply a null value

0O There are two ways to specify a null value:
= ¥

= By having no characters precede the first value separator, or appear between the successive

value separators .

List=Directed Input

When the I/O system executes a list-directed READ statement, it begins a new record and formats
each input value using the data type and field width of the corresponding I/O list item to generate
an equivalent edit descriptor.

The following rules apply to list-directed input:
O When the I/0 system encounters a null value while executing a list-directed input statement,
the null value does not affect the corresponding I/0 list item. The item retains its value, or if

it is undefined, it remains undefined.

O A null value cannot appear as the real or imaginary part of a complex constant, but a nuil
value can represent a whole complex constant

O When the I/O system encounters a slash (/) as a value separator while executing a list-

directed input statement, it stops executing the statement at that point and treats any
subsequent items in the I/0 list as null values .

8-24 GLS FORTRAN Language Reference Manual

GLS FORTRAN Language Reference Manual

Format Specification

O If the I/O list item is of type CHARACTER®*n, the input value must be a nonempty

character string enclosed in single apostrophes. Commas, blanks, and slashes (/) are ali valid
inside character-string constants. An apostrophe inside a character string must be written as
two consecutive apostrophes.

A character-string constant can continue from the end of one record to the beginning of the
next for as many records as are needed. The end of a record does not cause a blank
character to appear in the constant.

If w is the field width and the input value is CHARACTER*n, the I/O system transfers
characters as follows:

= if w < n, transfers the leftmost w characters

s if w > n, transfers the leftmost n characters and pads the remaining w-n positions with
blanks

This is the same effect as assigning the I/0 list item in an ordinary assignment statement

If the I/O list is of type COMPLEX*8 or COMPLEX*16, the input value consists of a pair of
numeric input fields separated by a comma and enclosed in parentheses. The first field
contains the real part of the complex constant, and the second field contains the imaginary
part. Each field can be preceded or followed by one or more contiguous blanks.

If the I/O list item is of type LOGICAL, the input value cannot contain any commas or
slashes (/) embedded among the optional characters after the T or F

If the I/0 list item is of type REAL*4 or REAL*8, the input value has the form of a numeric
input field suitable for F editing. That is, it has no fractional digits unless a decimal point
appears in the field.

The following table summarizes the correspondence between the data type of the I/O list item and
the equivalent edit descriptors: :

Data Type of Input Item Equivalent Edit Descriptor
CHARACTER™n Aw it wsn
An,{w—-n)X if w>n

COMPLEX*8 or COMPLEX*16 | (Fw.0,Fw.0)
LOGICAL Lw

REAL"4 or REAL"8 Fw.0

Format Specification

List—Directed Output

When the I/0 system executes a list-directed WRITE or PRINT statement, it begins a new record
and formats each output value using the data type and field width of the corresponding I/0 list item
to generate an equivalent edit descriptor.
The following rules apply to list-directed output:

O Each output record begins with a blank to provide carriage control when printing

O Qutput values are separated by one or more blanks

O The I/O system treats blanks as separators, so embedded blanks are allowed only inside
character strings

D The I/O system treats the end of a record as a blank, except inside a character string

O When the I/O system outputs a CHARACTER*n constant, the constant is not enclosed in
single apostrophes, or preceded or followed by a value separator. The 1/0 system can insert a
blank for carriage control if a record begins with the continuation of a character constant
from the preceding record.

D When the I/O system outputs a COMPLEX*n constant, the constant is enclosed in parenthe-
ses with a comma separating the real and imaginary parts, which are edited according the
rules for REAL*k values where k = n/2

O The I/O system outputs an INTEGER*n value using the Iw edit descriptor

O The I/O system outputs a LOGICAL constant using T for the value true or F for the value
false

D When the I/O system outputs a REAL*n constant, the constant is represented using G
format i

8-26 GLS FORTRAN Language Reference Manual

Format Specification

The following table summarizes the correspondence between the data type of the I/0 list item and

the equivalent edit descriptors:

Data Type Output Format
LOGICAL 15
INTEGER*2 i7
INTEGER*4 112
REAL"4 1PG15.7
REAL"8 1PG25.16
COMPLEX"8 1X,'(,1PG14.7,".', 1PG14.7,}
COMPLEX*16 1X,'(,1PG25.16,",,1PG25.16,")’
CHARACTER®n 1X, An

GLS FORTRAN Language Reference Manual

8-27/(8—-28 Blank)

Chapter 9

. Statements

This chapter describes GLS FORTRAN statements. Statements are first described in their func-
tional categories: assignment, control, I/0, specification, and structural. Next they are described
individually, in alphabetical order. Statement descriptions contain a statement definition, syntax,
and an example.

Assignment Statements

Assignment statements assign values to variables, arrays, array elements, and substrings. It evalu-
ates an expression and assigns the result of the evaluation. FORTRAN has the following types of
assignment statements:
O Arithmetic
0 ASSIGN
. Q Character

0 Data

Q0 Logical

GLS FORTRAN Language Reference Manual

Statements

Control Statements

Control statements specify changes to the sequential flow of statement execution to a point within
the same or different program unit. Some control statements change the flow of execution de-
pending on a condition that is determined at a point in the flow of execution. Other control
statements transfer the flow of execution every time a particular control statement executes,
regardless of any condition. The following are the control statements:

O Arithmetic IF

O Assigned GOTO

O Block IF

0 CALL

0 Computed GOTO

O CONTINUE

0 DO

0 DO WHILE

Q ELSE

0 ELSEIF

g END

0 END DO

Q END IF

0 INCLUDE

O Logical IF

O OPTIONS

0 PAUSE

0 RETURN

a STOP

3 Unconditional GOTO

GLS FORTRAN Language Reference Manual

Input/Output Statements

1/0 statements transfer data from one storage location to another within a processor, or between a
processor and an external device or storage medium. I/O statements also can be used to position
the internal file pointer of a specific file. The following are 1/0 statements:

u}

a

t ACCEPT
BACKSPACE
CLOSE
DECODE
ENCODE
ENDFILE
FORMAT
INQUIRE
OPEN
PRINT
READ
REWIND
HTYPE

WRITE

GLS FORTRAN Language Reference Manual

Statements

Statements

Specification Statements

Specification statements define data types, establish the interpretation and use of symbolic names,
and control the management of storage. Specification statements are nonexecutable and appear
most often at the beginning of a program unit, before the executable statements. The following

arespe

cification statements:

O Data type

» BYTE

» CHARACTER

= COMPLEX

= DOUBLE PRECISION
= INTEGER

= LOGICAL

= REAL

0O General

= COMMON

= DIMENSION

= EQUIVALENCE

= EXTERNAL

= IMPLICIT

» HIMPLICIT NONE
INTRINSIC

#t NAMELIST

= PARAMETER
= SAVE

=« #VIRTUAL
= #VOLATILE

GLS FORTRAN Language Reference Manual

Statements

Structural Statements

Structural statements define the different kinds of program units that make up a GLS FORTRAN
program. A program unit is a logical, self-contained sequence of statements and optional comment
lines that form a discrete part of the larger program. All GLS FORTRAN programs consist of one
or more program units. The following are structural statements:

0O BLOCK DATA

Q ENTRY

O FUNCTION

0O PROGRAM

O SUBROUTINE

GLS FORTRAN Language Reference Manual 9-5

Statements

ACCEPT Statement

#The ACCEPT statement transfers data from standard input to the variable or list of variables

specified. All input is from the implicit unit (standard input).
Syntax

ACCEPT format spec [,iolist]
ACCEPT * [,iolist]

ACCEPT group
format spec is a numeric format specifier
* implies list-directed input
group is a NAMELIST group specifier
iolist is a list of elements, separated by commas, to be input
Example

CHARACTER*10 NAMEA, NAMEB, NAMEC
NAMELIST /MYGROUP/ A,B,C
ACCEPT 1000, NAMEA, NAMEB
ACCEPT *, NAMEC

ACCEPT MYGROUP

1000 FORMAT (2A10)

GLS FORTRAN Language Reference Manual

Statements

ASSIGN Statement

Use the ASSIGN statement to assign a label to an integer variable. This enables the variable to be
used as a transfer specification in an assigned GOTO statement, or as a format specifier in a
formatted I/0 statement. The statement must be in the same program unit as the ASSIGN
statement.

The ASSIGN statement must execute before any statements containing a reference to the assigned
variable name. Once the variable is assigned a label, you cannot specify arithmetic operations.

Syntax
ASSIGN label TO symbolic name

label is one to five digits. (At least one digit must be nonzero.) For more information
about statement labels, refer to the "Syntax” chapter.

symbolic name is the symbolic name of an integer variable. Once the variable becomes defined for
reference as a statement label, it becomes undefined for use as an integer variable.

Examples
The following example assigns label 300 to the integer variable trans.

INTEGER trans
ASSIGN 300 TO trans

You can redefine trans in another assignment statement. The following statement returns trans to its
status as an integer variable. After this statement executes, you cannot use trans in an assigned

GOTO statement.

trans = 2149

GLS FORTRAN Language Reference Manual 9-7

Statements

Assignment Statement (Arithmetic)

Use an arithmetic assignment statement to assign the value of an arithmetic expression to an

arithmetic variable or array element. .

If the entity on the left of the equal sign has the same data type as the expression on the right, the
statement assigns the value directly. If the data types differ, the value of the expression converts to
the data type of the entity on the left before the assignment takes place.
Syntax

symbolic name = arithimetic exp

symbolic name specifies the name of an arithmetic variable or array element

arithmetic exp is the arithmetic expression. For more information about arithmetic expressions,
refer to the "Expressions” chapter.

Examples
The following example assigns the real constant 6.02E23 to avogadro.

REAL avogadro

avogadro = 6.02E23 .

The following example evaluates an expression, converts the result of the expression to an integer,
and assigns the integer value to the first element in ionic.

INTEGER ionic(25)
ionic(1l) = 28.43/14.32**(-3)

9-8 GLS FORTRAN Language Reference Manual

Statements

Assignment Statement (Character)

Use a character assignment statement to assign the value of a character expression to a character

. variable, array element, or substring.

Assigning a value to a character substring does not affect any characters in the character variable or
array element that are outside the substring reference. Any character positions in a character entity
that are outside the substring reference remain unchanged whether or not the positions were
defined or undefined.

If the length of the character expression is less than the length of the character entity, the
statement pads the expression on the right with blank characters. If the length of the character

expression is greater than the length of the character entity, the statement truncates the expression
from the right.

Syntax
symbolic name = character exp
symbolic name is a name of the character variable, array element, or substring

character exp is the character expression to assign to symbolic name

‘ Examples

The following example assigns the character constant Sirius to the character variable starname.

CHARACTER starname*12
starname = ‘Sirius’

The following example evaluates a character expression, then assigns the result to the character array
element compound(5).

CHARACTER*8 compound(25)
compound(5) =" 'Na’ // 'Cl’

The following example assigns the character constant mix67 to the substring varl(2:6). The character
positions in varl that are outside of the substring reference remain unchanged after the assignment
takes place.

CHARACTER varlx7
varl(2:6) = 'mix67°

GLS FORTRAN Language Reference Manual 9-9

Statements

BACKSPACE Statement

Use the BACKSPACE statement to move the file pointer to the beginning of the preceding record. If
the file has no preceding record, the I/0O system ignores the BACKSPACE statement. If the preceding
record is an endfile record, the BACKSPACE statement moves the file pointer to the beginning of the
endfile record.

Following is a list of restrictions for the BACKSPACE statement:
0 The BACKSPACE statement cannot reference an internal file.
Q The file must be connected for sequential access.

O You cannot use the BACKSPACE statement with a record that was written using list-directed
formatting.

If there is an error when executing the BACKSPACE statement, the I/0 system takes the following
actions:

1. Terminates the BACKSPACE operation.

2. Specifies the file position as undefined. The only valid statements you can execute are CLOSE,
REWIND, INQUIRE, or BACKSPACE.

If IOSTAT is specified, sets status.

[#3)

4. Transfers control to the statement associated with errlabel. If ERR is not specified, a run-time
error occurs.

Syntax
BACKSPACE { unir | ([UNIT}=unir [,IOSTAT=status] [ERR=errlabel]) }
unit is an integer from O through 99 that specifies an external I/0 unit
status is an integer variable or array element where the I/0 system posts the outcome of
the backspace operation as follows: 0 means the backspace operation was success-
ful, 1 or any number greater than 1 means an error occurred.
errlabel is the label of an executable statement to which control passes if there is an error

during execution of the BACKSPACE statement. The labeled statement must be in
the same program unit as the BACKSPACE statement.

9-10 GLS FORTRAN Language Reference Manual

Statements

Example

The following example backspaces unit 2, returns status to indicate if the backspacing occurs error-free,
. and if there is an error, transfers control to the statement associated with label 999.

BACKSPACE(2, I0STAT=errorflag, ERR=999)

GLS FORTRAN Language Reference Manual 9-11

Statements

BLOCK DATA Statement

Use the BLOCK DATA statement to identify a program unit as a block data subprogram. A block
data subprogram is a nonexecutable program unit that enables you to specify initial values for .

variables and array elements in named common blocks. For more information about block data
subprograms, refer to the "Program Structure” chapter.
Syntax
BLOCK DATA {symbolic name)
symbolic name specifies the symbolic name of the block data subprogram. If symbolic name is
specified, it must be unique. It cannot be the same symbolic name as the main

prograin, an external procedure, a common block, or another block data subpro-
gram within the same executable program.

Example
The following example identifies the program unit initial as a block data subprogram.

BLOCK DATA initial

9-12 GLS FORTRAN Language Reference Manual

Statements

BYTE Statement

t#The BYTE data type statement is equivalent to LOGICAL*1 and can be used to specify a logical
. data type for .symbolic names that represent cot‘lsta'ms, v.ariables,‘ arrays, external functions, and

statement functions. The BYTE data type can contain signed integers in the range —128 through +127.
Syntax

BYTE symbolic name [, symbolic name)...

symbolic name is a name of the character variable, array element, or substring
Example

LOGICAL*1 varl, var2, array(10)
is equivalent to

BYTE varl, var2, array(1l0)

GLS FORTRAN Language Reference Manual 9-13

Statements

CALL Statement

Use the CALL statement to transfer control to a subroutine. The CALL statement specifies the
symbolic name of the subroutine you want to invoke and a list of actual arguments to pass to the
subroutine.

Actual arguments specified in the CALL statement must correspond in number, order, and data type
to the dummy arguments specified in the subroutine. An actual argument can be one of the following:

u}

Q

Expression

Array name

Intrinsic function
External procedure name
Dummy procedure name

Alternate return specifier. You must use the statement label of an executable statement in the
same program unit as the CALL statement.

Syntax

CALL symbolic name [(argument [, argument] ...)}

symbolic name is the name of the subroutine to invoke

argument is an actual argument to pass to symbolic name

Example

The following example calls the subroutine graph and passes three actual arguments.

CALL graph (vertical, horizontal, number)

GLS FORTRAN Language Reference Manual

Statements

CHARACTER Statement

Use the CHARACTER data type statement to specify the character data type for symbolic names that
. represent constants, variables, arrays, external functions, and statement functions.

Syntax

CHARACTER[*number | (*) | name [*number | (*) 1[, name [*number | (*)]] ...

*number is the number of characters in the character item specified by name. The default is
one.
*) indicates that a dummy argument assumes the length specification from the corre-

sponding actual argument or that a function name obtains its length specification
from the function reference. If you use an asterisk enclosed in parentheses as a
length specifier for the symbolic name of a character constant, the symbolic name
assumes the actual length of the constant it represents.

name is the symbolic name of a constant, variable, array, external function, or statement
function

Example

The following example specifies that varl, var2, and array are character type data. varl contains 15
characters, and var2 and each element in array contain 5 characters.

CHARACTER*5 varl*1l5, var2+*, array(10)

GLS FORTRAN Language Reference Manual 9-15

Statements

CLOSE Statement

Use the CLOSE statement to disconnect a file from an I/O unit. The CLOSE statement need not
occur in the same program I/0 unit as its corresponding OPEN statement. If the specified file does not
exist, the I/O system ignores the CLOSE statement.

After the I/0 unit is disconnected, use an OPEN statement to connect it to the same file or a different
file in the same program. If the CLOSE statement disconnects a file, a subsequent OPEN statement
can connect it to the same or different I/0 unit if the file still exists.

When a program terminates normally, the I/O system closes all connected 1/0 units and deletes all files
with STATUS = 'SCRATCH'.

If an error occurs during the execution of the CLOSE statement, the I/O system takes the following
actions:

1. Terminates the CLOSE operation.

(2%

Specifies the file position as undefined, unless the error is an end-of-file condition. In that case,

the file pointer points just past the endfile record, and the only valid statements you can execute
are BACKSPACE, REWIND, and INQUIRE.

3. If IOSTAT is specified, sets iostarus.

4. Passes control to the statement associated with errlabel. If ERR is not specified, a run-time error

occurs.

Syntax

CLOSE([UNIT=]unit number [t ,DISPOSE=disposition] [,STATUS=status] [, ERR=errlabel)
[LIOSTAT=iostatus])

unit

i disposition

is an integer from O through 99 that specifies an external I/O unit. The UNIT=
keyword is optional if and only if unir number is the first item in the specified list.

is a character string expression that specifies whether the file should be saved or
deleted. To save the file, specify 'KEEP' or ‘SAVE'. To delete the file, specify
'DELETE’, 'PRINT/DELETE’, or 'SUBMIT/DELETE’ (the print or submit op-
eration is not performed). The default is 'KEEP'. If DISPOSE = 'KEEP (or
'SAVE'), the file continues to exist after the I/0O system executes the CLOSE
statement. If DISPOSE = 'DELETE’ (or 'PRINT/DELETE or ‘SUB-
MIT/DELETE’), the file does not exist after the I/O system executes the CLOSE
statement. (The keyword DISPOSE can be abbreviated to DISP.) Disposition
exceptions occur if you try to save a scratch file or delete a read-only file. In these
cases, the conflicting disposition is ignored.

GLS FORTRAN Language Reference Manual

Status

errlabel

iostatus

Example

Statemnents

is a character string expression (partially duplicating the ¥ DISPOSE= specifier)
that specifies whether the file should-be saved or deleted. To save the file, specify
'KEEP'. To delete the file, specify ‘DELETE'. The default is 'KEEP'. If the file is
a scratch file, the default is 'DELETE'. If STATUS = 'KEEP, the file continues to
exist after the I/O system executes the CLOSE statement. If STATUS = 'DE-
LETE/, the file does not exist after the I/0 system executes the CLOSE statement.

is the label of an executable statement to which control passes if there is an error
when processing the CLOSE statement. The labeled statement must be in the same
I70 unit as the CLOSE statement.

is an integer variable or array element where the I/0 system posts the outcome of
the close operation as follows: 0 means the close operation was successful; 1 or any
number greater than 1 means an error occurred; —1 means an end-of-file condition
occurred.

The following example closes I/0 unit 3 and saves the file. The status of the close operation is posted
in errorflag, and if the operation fails, control passes to the statement at label 999.

CLOSE(3,I0STAT=errorflag, ERR=999, STATUS="KEEP ')

GLS FORTRAN Language Reference Manual 9-17

Statements

COMMON Statement

Use the COMMON statement to define common blocks. Common blocks are contiguous areas of

storage containing data that a number of program units can share. When you declare common blocks of

the same name in different program units, the blocks share the same storage space when the program .
units are combined into an executable program.

COMMON statements are frequently used in a block data subprogram. A block data subprogram
enables you to specify initial values for variables and array elements that are listed in named common
blocks. For more information about block data subprograms, refer to the "Program Structure” chapter.

Syntax
COMMON {[/symbolic name/] common list [[,] / [symbolic name] / common lisi] ...

symbolic name is the name of a common block. If you do not specify symbolic name, all items in
the corresponding common list are in an unnamed common block. (A program can
have only one unnamed common block.) If you omit the first symbolic name in a
COMMON statement that specifies more than one common block, the slashes are
optional. Otherwise, slashes are required, with or without a symbolic name, to
delimit one common block specification from another.

common list is a list of variable names, array names, and array declarators that represent values
in each common block you specify. The items in common list are contained in the
common block identified by the symbolic name that precedes the list. You must
delimit all the items in common list with commas. The slashes delimit each symbolic
name/common list pair you specify in the COMMON statement. (You can also use
commas as secondary delimiters.)
Example

The following example defines the common block atomic, which contains varl, var2, and arrayil.

COMMON /atomic/varl,var2,arrayl

9-18 GLS FORTRAN Language Reference Manual

Statements

COMPLEX Statement

Use the COMPLEX data type statement to specify the complex data type for symbolic names that
represent complex constants, variables, arrays, external functions, and statement functions. For more
information about complex numbers, refer to the "Data Types” chapter.
Syntax

COMPLEX[*number] symbolic name [, symbolic name] ...

*number specifies either an 8 or 16-byte complex value. The default is 8 bytes.

symbolic name is the symbolic name of a constant, variable, array, external function, or statement
function

Examples
The following examples are equivalent - each variable and element in arrayl occupy 8 bytes.

COMPLEX varl, var2, arrayl(10)
COMPLEX*8 wvarl, var2, arrayl(l0)

GLS FORTRAN Language Reference Manual 9-19

Statements

CON_TINUE Statement

Use the CONTINUE statement to transfer control to the next executable statement in the program.
The CONTINUE statement can be the terminal statement for a DO loop that would otherwise end
incorrectly with a control statement, such as an arithmetic IF, ELSE IF, or RETURN statement.
Syntax

CONTINUE
Example

The following example shows a DO loop that would end incorrectly with an arithmetic IF statement.

DO 211 varl = 1, 5

IF (tax/2 + 4.25) 300, 400, 500
211 CONTINUE

9-20 GLS FORTRAN Language Reference Manual

Statements

DATA Statement

Use the DATA statement to assign initial values to variables, arrays, array elements, and substrings.
An initial value is assigned to a program entity at the beginning of program execution. An entity that is
not assigned an initial value is undefined.

DATA statements are nonexecutable. You can use a DATA statement anywhere in a program unit
after the specification statements. §

An entity in a name list and the corresponding constant in a constant list must be the same data type.
If the data types differ, the data type of the constant converts to the type of the name list entity.

When the length of a character entity in a name list is greater than the corresponding character
constant, the DATA statement initializes the extra characters in the entity with blanks. When the
length of an entity in a name list is less than the corresponding character constant, the DATA
statement ignores the extra characters in the entity.

Syntax
DATA name list | constant list | [|, name list / constant list /] ...

name list is one or more variable names, array names, array element names, substring names,
or implied DO loops. You must separate the names in the name list with commas.
You cannot use the names of functions, entities in blank common, or dummy
arguments. (You can use the names of entities in named common blocks in name
list if the DATA statement is in a block data subprogram.) If you specify an
unsubscripted array name in name list, you must specify a constant for each
element of the array in constant list.

Use an implied DO loop to initialize a portion of an array as follows:
(do list, variable = initial limit [,increment])

do list specifies the array elements to initialize. variable assumes each iteration
value in the range specified by initial and limit. variable must be an integer. The
iteration count specified with initial and limit must be positive. increment specifies
an iteration step. The default for increment is 1.

constant list is constants, symbolic names for constants, and constants preceded by a factor. A
constant preceded by a factor specifies multiple, successive appearances of the
constant in constant list and is specified as follows: factor * constant. factor must be
a nonzero, unsigned integer constant or the symbolic name of such a constant.
constant is a zero, a signed or unsigned constant, or a symbolic name. You must
delimit each constant list with slashes and separate the constants with commas. The
number of constants in constant list must be the same as the number of entities
specified in the preceding name list.

GLS FORTRAN Language Reference Manual 9-21

Statements

Examples

The following example declares initial values for two variables, an array, and a substring.

INTEGER arrayl(3)
REAL varl

LOGICAL var2
CHARACTER subst*5
DATA varl, var2 /1.02E3,.TRUE./ arrayl,subst /3*100, total'/

The following example converts the real constant assigned to intvar to the integer 3. It then converts
the integer constant 128 assigned to realvar to the real number 128.0.

INTEGER intvar
REAL realvar
DATA intvar, realvar /3.14159,128/

The following example uses an implied DO loop to initialize elements 10 through 20 of a 50-element
integer array. The statement initializes a total of 11 elements with the constant 100.

INTEGER array(50)
DATA (array(i), i = 10, 20)/11*100/

(100,199) in a 20,000-element real array. The statement initializes a total of 10,000 elements with the real

The following example uses an implied DO loop to initialize every other element from (1,1) through .
value 3.14159.

REAL array(100,200)
DATA ((array(k,m), k=1, 100), m=1, 200,2)/10000*3.14159/

9-22 GLS FORTRAN Language Reference Manual

Statements

DECODE Statement

Use the DECODE statement to transfer data from external character form to internal binary represen-
tation, using a format specification. DECODE is functionally equivalent to using a READ statement
with formatted records on an internal file connected for sequential access.

If there is an error during execution of the DECODE statement, the I/O system takes the following
actions: 2

1. Terminates the DECODE operation.
2. I IOSTAT is specified, sets starus.

3. Passes control to the statement associate with errlabel. If ERR is not specified, a run-time error
occurs.

Syntax
DECODE (char,format,loc [,JOSTAT=status) [, ERR=errlabel]) [transfer list]
char is the number of characters to translate

ormat is a format identifier that controls the editing of the data during the transfer. For
g g
more information, refer to the "Format Specification” chapter.

loc is the name of a variable, an array, or an array element that contains the characters
to translate. If loc is an array, the I/Q system processes the elements in column-
major order.

status is an integer variable or array element where the I/O system posts the outcome of
the data transfer as follows: 0 means the transfer was successful, 1 or any number
greater than 1 means an error occurred, -1 means an end-of-string condition
occurred.
errlabel ‘is the label of an executable statement to which control passes if there is an error
when executing the DECODE statement. The labeled statement must be in the
same program unit as the DECODE statement.
transfer list is the list of variables that receive the data after translation
Example
The following example transfers data from blockl to ivarl, ivar2, and ivar3. The number of
characters transferred is specified by ichar. The format for the transfer is specified by the format

statement.

DECODE (ichar, '100°, blockl) ivarl, ivar2, ivar3

GLS FORTRAN Language Reference Manual 9-23

Statements

DIMENSION Statement

Use a DIMENSION statement to declare arrays in a program unit. A DIMENSION statement ‘can

declare more than one array. .

An array in GLS FORTRAN can have a maximum of seven dimensions. The size of an array is equal
to the number of elements in the array. The number of elements is equal to the product of the
dimension sizes. For more information about arrays, refer to the "Constants, Variables,” Arrays, and
Substrings” chapter.
Syntax
DIMENSION symbolic name (dim [,dim]...) [,symbolic name (dim [,dim]...)] ...
symbolic name is the name of the array
dim specifies the number of elements in the array in the following format:
{lower bound:lupper bound
lower bound can be negative, zero, or positive. The default is 1.
upper bound can be negative, zero, positive, or an asterisk indicating
an assumed-size array declarator. lower bound and upper bound can
be an arithmetic constant or a variable expression that evaluates to
an integer. A variable expression used as a dimension bound is
called an adjustable array declarator.
Examples
The following example declares the 2-dimensional array values. The first dimension has a lower
and upper bound of 12. The second dimension has an implied lower bound of 1 and an upper
bound of 5. values contains 5 elements.

DIMENSION values (-12:12, 5)

The following example declares the arrays arrl, arr2, and arr3. The arrays are 1-dimensional
with a lower bound of 0 and an upper bound of 19. Each array contains 20 elements.

DIMENSION arrl(0:19), arr2(0:19), arr3(0:19)

9-24 GLS FORTRAN Language Reference Manual

Statements

DO Statement

Use the DO statement to specify a block of statements for repetitious execution the specified
number of times. The statement block is referred to as a DO loop and is indicated by the DO
statement. The last (or terminal) statement in the DO loop is specified by a label in the DO
statement.

You can nest DO loops; however, the nested (inner) DO loop must be within the host (cuter)
DO loop. Nested DO loops can use the same terminal statement.

If you use a DO statement within the statement block of a block IF, ELSE IF, or ELSE
statement, the corresponding DO loop must be within that statement block. If you use a block
IF statement within a DO loop, the corresponding END IF statement must be within the DO
loop.

Syntax
DO label [,] variable = expl, exp2 {,exp3)
label is the label of the terminal statement. This statement cannot be one of the
following: unconditional GOTO, assigned GOTO, arithmetic IF, block IF, ELSE
IF, ELSE, END IF, RETURN, STOP, END, or DO.
variable is a variable that determines how many times the DO loop executes. variable can be

integer, real, or double precision. The value of variable at any given time during
execution of the DO loop depends on the values of expl, exp2, and exp3.

expl is the initial value of variable. expl can be an integer, real, or double precision
expression.

exp2 is the limit value of variable. exp2 can be an integer, real, or double precision
expression.

exp3 specifies how much to increment variable after each execution of the DO loop. The

default is 1.
Examples
The following example specifies 10 iterations of a DO loop. Because an increment value is not
specified, the default of 1 is used. The statement associated with label 130 is the terminal statement for
the loop.
DO 130 var = 1, 10

The following example specifies 50 iterations of a DO loop. The increment value is 2.

DO 2100 varl = 1, 100, 2

GLS FORTRAN Language Reference Manual 9-25

Statements

The following example specifies eight iterations of a DO loop. The increment value is -2.

DO 623 var2 = 16, 1, -2
The following example demonstrates the use of expressions.

DO 599 var3 = valuel*2+1, value2-var4/2, incr/2
T The range of a DO loop is extended if it contains a statement, s, that transfers control outside the
loop, and, after executing one or more statements, control is returned to the loop via statement s2. The
range of the DO loop is extended to include all executable statements outside the initial loop between
sl and s2.

Extended-range DO loops are subject to the following rules:

O Transfers into the range of a DO statement may be made only from within the extended range of
that DO statement.

QO No statement in the extended range of a DO statement may alter the control variable of the DO

statement.
Example
C Valid extended DO loop
c
bo 10, i = 1,10
GO TO 200
10 CONTINUE
200 j =3 +1
GO TO 10

9-26 GLS FORTRAN Language Reference Manual

Statements

DO WHILE Statement

#The DO WHILE statement is similar to the DO statement, except that DO WHILE executes a loop
. while a logical expression remains true, rather than for a fixed number of iterations.

Before each execution of a DO WHILE loop, expression is evaluated. If the logical expression is true,
the statements within the loop are executed. If the logical expression is false, control is transferred to
the first executable statement following label. ;
Syntax

DO [label [,]} WHILE (expression)

label identifies the terminating statement

expression is a logical expression delimited by parentheses
If the optional label is not supplied, use END DO as the terminating statement for the loop. As with
the DO statement, label must be a valid DO loop terminator, and may not be a GOTO, IF, RETURN,

STOP, END, or DO statement.

Example

. INTEGER A

a=0

DO WHILE (A .LT. 10)
A=A+1

END DO

GLS FORTRAN Language Reference Manual 9-27

Statements

DOUBLE PRECISION Statement

Use the DOUBLE PRECISION data type statement to specify the double precision data type for
symbolic names that represent real number constants, variables, arrays, external functions, and
statement functions. In GLS FORTRAN, a double precision real number occupies eight bytes.
(Using the DOUBLE PRECISION statement is equivalent to specifying 8-byte real values with a
REAL*8 statement.)
Syntax

DOUBLE PRECISION symbolic name [, symbolic name] ...

symbolic name is the symbolic name of a real number constant, variable, array, external function
or statement function

Example

The following example specifies two double precision variables and a 10-element double precision array.
Each variable and element in the array occupies eight bytes.

DOUBLE PRECISION varl, var2, array(1l0)

9-28 GLS FORTRAN Language Reference Manual

Statements

ELSE Statement

Use an ELSE statement to specify a statement block for conditional execution within a block IF
construct. An ELSE statement does not contain a logical expression to determine whether or not
control transfers to the statement block. A statement block that corresponds to an ELSE statement
executes only if no preceding statement block in the block IF construct executes.

An ELSE statement and its corresponding statement block must follow a block IF or ELSE IF
statement and their corresponding statement block. An ELSE or ELSE IF statement cannot follow an
ELSE statement in a block IF construct.

Syntax

ELSE

block

block is one or more statements that conditionally execute within a block IF construct

. Example

The following example has a statement block that corresponds to the ELSE statement in the block IF
construct. This block executes because the logical expression in the opening block IF statement
evaluates to false.

largenum = 712
smallnum = 4
IF (largenum .LT. smallnum) THEN
factor = smallnum/2 - 2.612
unit5 = vall + val2 * factor
ELSE
ASSIGN 2001 TO standard
GOTO standard (2001)
END IF

GLS FORTRAN Language Reference Manual

Statements

ELSE IF Statement

Use an ELSE IF statement to specify a statement block for conditional execution within a block IF
construct. An ELSE IF statement contains a logical expression to determine whether or not control .

transfers to the specified statement block. (A block IF construct can contain any number of ELSE IF
statements.)

An ELSE IF statement and its corresponding statement block must follow a block IF statement and its
corresponding statement block.

Syntax

ELSE IF (logical exp) THEN

{block]
logical exp is the logical expression. If logical exp is true, control transfers to block. If logical
exp is false, control transfers to the next ELSE IF or ELSE statement, or the first
executable statement following the END IF statement in the construct. .
block is one or more statements for conditional execution
Example

The following example has two ELSE IF statements in the block IF construct. The logical expression in
the opening block IF statement is false so control passes to the first ELSE IF statement. The logical
expression in the first ELSE IF statement is also false, causing control to pass to the second ELSE IF
statement. The logical expression in the second ELSE IF statement is true. Therefore, the statement
block specified after the second ELSE IF statement executes.

small num = 56000

largenum = 56000

IF (smallnum .GT. largenum) THEN
STOP

ELSE IF (smallnum .LT. largenum) THEN
total = largenum - smallnum

ELSE IF (smallnum .EQ. largenum) THEN
ASSIGN 533 TO equality

GOTO equality (133, 333, 533)
END IF

9-30 GLS FORTRAN Language Reference Manual

Statements

ENCODE Statement

The ENCODE statement transfers data from internal binary representation to external character form,
using a format specification. ENCODE is functionally equivalent to using a WRITE statement with
formatted records on an internal file connected for sequential access.

If there is an error during execution of the ENCODE statement, the I/0 system takes the following
actions: '

1. Terminates the ENCODE operation.
2. If IOSTAT is specified, sets status.

3. Passes control to the statement associated with errlabel. If ERR is not specified, a run-time error
occurs.

Syntax

ENCODE (char,format,loc [,JOSTAT=status) [,ERR=errlabel]) [transfer list]

char is an integer that specifies the number of characters to translate to external form

format is a format identifier that controls the editing of the data during the transfer. For
. more information, refer to the "Format Specification” chapter.

loc is the name of a variable, array, or array element that contains the characters after

translation to external form. If /loc is an array, ENCODE processes the elements in
column-major order.

status is an integer variable or array element where the I/O system posts the outcome of
the data transfer as follows: 0 means the transfer was successful, 1 or any number
greater than 1 means an error occurred.

errlabel is the label of an executable statement to which control passes if there is an error
when executing the ENCODE statement. The labeled statement must be in the
same program unit as the ENCODE statement.

transfer list is a list of variables to translate to an internal binary representation

Example

The following example transfers three characters from arxrl to varl in the format specified by the
format statement.

. ENCODE (3,100,arrl) varl

GLS FORTRAN Language Reference Manual 9-31

Statements

END Statement

Use the END statement to indicate the end of a program unit. The END statement must be the last

statement in a program unit. .

The END statement in a main program causes program execution to terminate. The END statement in
a subprogram causes control to return to the main program. (GLS FORTRAN treats an END
statement in a subprogram like a RETURN statement.)

Syntax

END

GLS FORTRAN Language Reference Manual

Statements

END DO Statement

+ The END DO statement is used to terminate a DO or DO WHILE loop. END DO is an alternative
terminator if a terminating statement label was not supplied with a DO or DO WHILE statement. The
END DO statement may also be used in conjunction with a terminating statement label specification,
just as a CONTINUE statement is used.
Syntax

END DO
Example

DO WHILE (i .LT. 10)

k=1i+1
END DO

or
DO J =1, 10

10 END DO

GLS FORTRAN Language Reference Manual 9-33

Statements

END IF Statement

Use an END IF statement to indicate the end of a block IF construct. Each block IF statement
must have a corresponding END IF statement.

Syntax
END IF
Example
The following example shows an END IF statement in a block IF construct.

IF (smallnum .GT. largenum) THEN
STOP

ELSE IF (smallnum .LT. largenum) THEN
total = largenum - smallnum

ELSE IF (smallnum .EQ. largenum) THEN
ASSIGN 533 TO equality

GOTO equality (133, 333, 533)
END IF

GLS FORTRAN Language Reference Manual

Statements

ENDFILE Statement

Use an ENDFILE statement to write an endfile record as the next record of the file. The file must
be connected for sequential access. After executing the ENDFILE statement, the I/O system
cannot process any further data transfer statements until it executes a BACKSPACE or REWIND
statement.

If an error occurs while processing the ENDFILE statement, the I/O system takes the following
actions:

1. Terminates the ENDFILE operation.

2. Specifies the file position as undefined. The only valid statements you can execute are
CLOSE, REWIND, BACKSPACE, or INQUIRE.

3. If IOSTAT is specified, sets starus.

4. Passes control to the statement associated with errlabel. If ERR is not specified, a run-time
€Iror occurs.

Syntax
ENDFILE {unit | ([UNIT=)unit [, JOSTAT=status] [, ERR=errlabel]) }
unit is an integer from 0 through 99 that specifies an external 1/O unit
status is an integer variable or array element where the I/O system posts the outcome of
the ENDFILE statement as follows: 0 means the endfile was written successfully, 1
or any number greater than 1 means an error occurred.
errlabel is the label of an executable statement to which control passes if there is an error
when executing the ENDFILE statement. The labeled statement must be in the
same program unit as the ENDFILE statement.
Example
The following example writes an endfile record to unit 4. If there is an error while the statement
executes, the I/0 system posts status in errorflag and passes control to the statement associated with

label 999.

ENDFILE(4, IOSTAT=erroxrflag, ERR=999)

GLS FORTRAN Language Reference Manual 9-35

Statements

ENTRY Statement

Use an ENTRY statement to specify an entry point in a procedure. An entry point enables execution of
the procedure to begin with an executable statement other than the first executable statement in the
procedure. A procedure can contain more than one ENTRY statement.

You can place an ENTRY statement anywhere after the FUNCTION statement in an external function
procedure or after the SUBROUTINE statement in a subroutine procedure. However, you cannot use
an ENTRY statement between a block IF statement and the corresponding END IF statement, or
between a DO statement and the last statement of the DO Joop.
Use the CALL statement to reference an entry point in a subroutine. To reference an entry point in a
function, use the entry point name in an expression. The dummy argument list in an ENTRY statement
does not have to match the dummy argument list in the SUBROUTINE or FUNCTION statement at
the beginning of the procedure. However, the actual arguments specified in an entry point reference
must correspond in number, order, and data type with the dummy arguments specified in the ENTRY
statement.
Syntax

ENTRY symbolic name [(dummy {, dummy] ...)]

symbolic name is the symbolic name of the entry point in the procedure

dummy is an argument that holds a place and specifies a data type for an actual argument .
specified in the procedure reference

Example

The following example specifies the entry point enter2 and the corresponding dummy arguments
pressure and volume.

ENTRY enter2 (pressure, volume)

9-36 GLS FORTRAN Language Reference Manual

EQUIVALENCE Statement

Use the EQUIVALENCE statement to enable two or more program entities to share the same memory
space. You can specify program entities of different data types in an EQUIVALENCE statement. For
example, if you specify an integer and a complex variable in one item list, the integer variable shares
storage with the real portion of the complex variable. No data type conversion takes place.

Syntax
EQUIVALENCE (item list) [, (item list)] ...

item list is a list of two or more variable names, array names, array element names, or
character substrings. The items must have the same starting address in memory,
even if the length of the items differs.

Examples

The following example specifies that DOUBVAR and the first two elements of the integer array INTARR
occupy the same storage units.

INTEGER*2 INTARR(5)
DOUBLE PRECISION DOUBVAR
EQUIVALENCE (INTARR(1l),DOUBVAR)

The following example specifies that the first five characters of two character variables share the same
storage units.

CHARACTER CODE*5, ZONE*12
EQUIVALENCE (CODE,ZONE)

A single subscript may be used in an EQUIVALENCE statement to identify an element of a
multidimensional array. The linear element number may then be used to reference the array elements.

The linear element numbers for array A as defined in the following statements are shown in the table
on the next page.

DIMENSION B(6)

DIMENSION A(2,3)
EQUIVALENCE (A(2),B(2))

GLS FORTRAN Language Reference Manual 9-37

Statements

Linear Array A Array B
Element Element Element

1 A(1,1) B(1)

2 A(2,1) B(2)

3 A(1,2) B(3)

4 A(2,2) B(4)

5 A(1.3) B(5)

6 A(2,3) B(6)

GLS FORTRAN Language Reference Manual

Statements

EXTERNAL Statement

Use the EXTERNAL statement to specify external and dummy procedure names for use as actual

. arguments.

Syntax
EXTERNAL symbolic name [, symbolic name] ...
symbolic name is the symbolic name of an external or dummy procedure. symbolic name can be
specified only once in a program unit and it cannot represent an intrinsic function.
To specify intrinsic functions as actual arguments, use the INTRINSIC statement.
For more information, refer to the INTRINSIC statement later in this chapter.
Example

The following example specifies alpha, bravo, and delta as external procedures.

EXTERNAL alpha, bravo, delta

GLS FORTRAN Language Reference Manual 9-39

Statements

FORMAT Statement

Use the FORMAT statement to define a format specification. The FORMAT statement must appear in
the same program unit where it is referenced. For more information about format specifications, refer
to the Chapter 8.
Syntax
label FORMAT ([r] edit descriptor [, [r] edit descripror ...])
label is the statement label
r is the repeat factor. The default is 1.
edit descriptor is a character string that describes the kind of editing being performed. One or
more edit descriptors comprise a format list. This list can be empty if the corre-
sponding I/0 list is empty. A format list can contain another format list, however,
the nested list cannot be empty.

Example

The following example prints ABC and DEF on two separate lines.

10 FORMAT (1X, ABC'//1X, 'DEF’) .

9-40 GLS FORTRAN Language Reference Manual

Statements

FUNCTION Statement

Use the FUNCTION statement to define a program unit as an external function. An external function
. is a program unit defined outside the program unit that invokes it.

An external function can receive control of execution from the main program or from another
procedure. Control transfers to an external function through a reference in an expressnon For more
information about external functions, refer to the "Program Structure” chapter.
You can write external functions using a programming language other than GLS FORTRAN, such as C
or assembly language. For more information about using external functions in C, refer to the GLS
Programming Guide.
Syntax

type FUNCTION symbolic name (dummy [, dummy] ...)

type is the data type of the value that the function returns

symbolic name is the symbolic name of the external function. symbolic name must be used as a
variable name within the function procedure.

dummy is a dummy argument that holds a place and specifies a data type for the actual
arguments supplied in the function reference. dummy can be a variable name, array
name, dummy procedure name, or an asterisk (alternate return specifier).
Example

The following example defines the program unit reset as an external function.

INTEGER FUNCTION reset(argl, arg2, arg3)

GLS FORTRAN Language Reference Manual 9-41

Statements

GOTO Statement (Assigned)

Use an assigned GOTO statement to transfer control to an executable statement identified with a

variable. The value assigned to the variable must represent the statement label of the executable

statement that is to receive control. The executable statement the variable identifies must be in the .
same program unit as the assigned GOTO statement. You assign a statement label to an integer

variable using the ASSIGN statement. For more information, refer to the ASSIGN statement earlier in

this chapter. :

You can transfer control to different executable statements using multiple ASSIGN statements. An
assigned GOTO statement and any related ASSIGN statements must be in the same program unit.

Syntax

GOTO variable name [[,] (list)]

variable name is the name of a labeled integer variable. If a program unit contains more than one
ASSIGN statement for variable name, the most recently executed ASSIGN state-
ment determines the value of variable name.

list contains the labels to which the assigned GOTO statement can transfer control. If
you specify list, your program compares the assigned value with the values in list. If
the program does not find the assigned value in list, the program interrupts

execution and issues an error message. If you specify list, you must include all valid
statement labels.

Examples
The following example transfers control to the executable statement associated with label 810.

ASSIGN 810 TO inert
GOTO inert

The following example transfers control to the executable statement associated with label 464.

ASSIGN 464 TO kalend
GOTO kalend (312, 1012, 464, 2000)

9-42 GLS FORTRAN Language Reference Manual

Statements

GOTO Statement (Computed)

Use a computed GOTO statement to transfer control to a statement in a list of executable statements
based on the value of an arithmetic expression. (The executable statements must be in same program
unit as the computed GOTO statement.) The value of the arithmetic expression specifies a number that

‘corresponds to the position of a statement label in the list of executable statements.

Syntax

GOTO (list) [,] arith exp

list is a list of statement labels of executable statements. The labels must be separated
with commas.

arith exp is an arithmetic expression that specifies a number that corresponds to the position
of a statement label in lisr. If arith exp is less than one or greater than the number
of labels in list, control transfers to the first executable statement following the
computed GOTO statement.

Examples

The following example selects one of four statement labels for the transfer of control depending on the
value of num.

GOTO (54, 166, 418, 500), num

The following example selects one of six statement labels for the transfer of control depending on the
value of velocity/t1-t2.

GOTO (250, 500, 1000, 2000, 2500, 3000) velocity/tl-t2

GLS FORTRAN Language Reference Manual 0-43

Statements

GOTO Statement (Unconditional)

Use an unconditional GOTO statement to transfer control to an executable statement. The executable

statement must be in the same program unit as the unconditional GOTO statement. .
Syntax

GOTO label

label is one to five digits associated with an executable statement. For more information

about statement labels, refer to Chapter 2.
Example
The following example transfers control to the statement associated with label 2189.

GOTO 2189

9-44 GLS FORTRAN Language Reference Manual

Statements

IF Statement (Arithmetic)

Use an arithmetic IF statement to transfer control to one of three executable statements. The
executable statements must be in same program unit as the arithmetic IF statement.

The value of an arithmetic expression determines which of the three statements receives control. If the
arithmetic expression evaluates to a number less than zero, control transfers to the first statement. If
the arithmetic expression evaluates to a number equal to zero, control transfers to the second
statement. If the arithmetic expression evaluates to a number greater than zero, control transfers to the
third statement.

All three labels are required, but they do not have to identify three different statements.
Syntax

IF (arithmetic exp) labell, label2, label3

arithmetic exp specifies the arithmetic expression

labell is the label of the statement to which control passes if arithmetic exp is less than
zero

label2 is the label of the statement to which control passes if arithmetic exp is equal to
zero

label3 is the label of the statement to which control passes if arithmetic exp is greater than
zero

Example

The following example transfers control to one of the following statements: statement 7514 if num is
greater than zero, statement 3500 if num is equal to zero, or statement 2000 if num is less than zero.

IF (num) 2000, 3500, 7514

GLS FORTRAN Language Reference Manual 9-45

Statements

IF Statement (Block)

Use the block IF statement to indicate the beginning of a block IF construct. A block IF

construct is a block of statements that execute if the logical expression is true. If the Jogical
expression is false, control transfers to the first executable statement following the END IF.

(Each block IF statement you specify must have a corresponding END IF statement to identify
the end of a block IF construct.)

Syntax

IF (logical exp) THEN

Statements

END IF
logical exp is a logical expression
starements is a block of statements that execute depending on the value of logical exp. A

statement block can be empty.

Example .

The following example shows a block IF construct that contains an expression that evaluates to true.
Because the expression is true, the statement block executes.

smallnum = 100/2

largenum = 100*2

IF (smallnum .LT. largenum) THEN
pi = 3.14159
radius = smallnum
area = pi * radius ** 2

END IF

9-46 GLS FORTRAN Language Reference Manual

IF Statement (Logical)

Use the logical IF statement to conditionally execute a GLS FORTRAN statement.

. Syntax

IF (logical exp) statement

logical exp is a logical expression. If logical exp is true, control transfers to statement. If logical
exp is false, control transfers to the first executable statement following the logical
IF statement.

statement is any complete, executable FORTRAN statement, except any of the block IF
statements, DO, END DO, or another logical IF statement

Example

The following example shows a logical expression that evaluates to true. Therefore, the STOP statement
specified in the logical IF statement executes.

largenum = 427
smallnum = 8.602
IF (largenum .GT. smallnum) STOP

GLS FORTRAN Language Reference Manual

Statements

IMPLICIT Statement

Use the IMPLICIT statement to change the data type of the specified letters from the implicit data type
convention. (The convention assigns the integer data type to symbolic names that begin with the letters
I to N and the real data type to symbolic names that begin with any other letter.)

A program unit can contain more than one IMPLICIT statement. However, IMPLICIT statements
must precede all other specification statements (except PARAMETER statements) in a program unit.

#t The IMPLICIT NONE statement is used to override all implicit defaults, forcing all symbolic names
to be declared explicitly. No other IMPLICIT statements are allowed in conjunction with IMPLICIT
NONE. The —undefined compile option performs the equivalent functions. Refer to your GLS Pro-
gramming Guide for details about compiler options and defaults.

Syntax

IMPLICIT rype [*length] (letter) [, (letter)] ...
HIMPLICIT NONE

rype is one of the following data types: INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, CHARACTER, or HOLLERITH.

length represents the length for the CHARACTER data type. length can be an unsigned
integer constant or integer constant expression enclosed in parentheses. The default .
is 1.

letter is one or more letters. You can specify a range of letters by specifying the first and

last letters in the range separated with a hyphen sign.
Examples

The following example specifies that all symbolic names beginning with the letters A, B, C, D, or E
have an implied data type of INTEGER*2.

IMPLICIT INTEGER*2(A, B, C, D, E)

The following example specifies that symbolic names beginning with letters A to M and S to Z are
CHARACTER data type and have a length of 10.

IMPLICIT CHARACTER*10(A~M, S-2Z)

9-48 GLS FORTRAN Language Reference Manual

Statements

INCLUDE Statement

The INCLUDE statement directs the compiler to interpret the contents of the specified INCLUDE
file as if it were a part of the program body.

The -Istring compile time option allows the user to specify a default directory location to be searched
for INCLUDE files. Refer to the GLS Programming Guide for details about FORTRAN INCLUDE
compiler options and default modes. -

Syntax
INCLUBDE file-spec
file-spec is the name of the included file. No default filename extension is assumed. The
INCLUDE file must not start with a continuation line, although it can contain
other INCLUDE statements.
Examples
FILEA.F:
COMMON /PCOM/I(10),J(10)
PROG.F:
INCLUDE 'FILEA.F’
DO 10 inpum = 1,10
j(inum) = i(inum) + 1
10 CONTINUE
END

Compiling PROG .F results in the following compiled statements:

COMMON /PCOM/I(10),J(10)
DO 10 inum = 1,10
j = i(inum) + 1
10 CONTINUE
END

GLS FORTRAN Language Reference Manual 9-49

Statemnents

INQUIRE Statement

Use the INQUIRE statement to obtain information about a file (inquire-by-file) or an I/0 unit
(inquire-by-unit). As shown below, the syntax for inquire-by-file requires the name of the file
and the syntax for inquire-by-unit requires the external I/O unit number.

Any variable or array element that becomes defined or undefined by being used as a specifier in
an INQUIRE statement cannot be referenced by another specifier in the same INQUIRE
statement.

If an error occurs during execution of the INQUIRE statement, the I/O system takes the
following actions:

1. Terminates the INQUIRE operation.

2. Specifies the file position as undefined, unless the error is an end-of-file condition. In
that case, the I/0 system positions the file pointer just past the endfile record, and the
only statements you can execute are CLOSE, BACKSPACE, and REWIND.

3. If IOSTAT is specified, sets iostat. All other specifiers become undefined.

4. Passes control to the statement associated with errlabel. If ERR is not specified, a run-
time error occurs.

Syntax .

INQUIRE({FILE="filename' | [UNIT=]Junit} [, ACCESS=acc] [, BLANK=bI]
[,CARRIAGECONTROL=car] [, DIRECT=dir] [, ERR=errlabel)
[LEXIST=exstat] [, FORM=formtype] [FORMATTED=form] [,JOSTAT=iostat)
[, NAME=fn] [NAMED=namestat} [, NEXTREC=nex] [NUMBER=num]
[,OPENED=opstar] [,ORGANIZATION=0rg] [, RECL=reclen]
[,SEQUENTIAL=seq] [, UNFORMATTED=unf])

filename is the name of the file being inquired about. filename does not have to exist or be
connected.
unit is an integer from O through 99 that specifies an external I/0 unit. The UNIT=

keyword is optional if and only if unir is the first parameter specified in the
INQUIRE statement.

acc is a character variable or element of a character array that the I/0O system assigns
as 'SEQUENTIAL’ if the file is connected for sequential access, or as '‘DIRECT"' if
the file is connected for direct access. If unit is specified, it must exist and be
connected to a file; otherwise acc remains unchanged or ¥ the I/O system returns
acc as 'UNKNOWN'.

9-50 GLS FORTRAN Language Reference Manual

bl

tcar

dir

errlabel

exstat

formtype

form

iostat

fn

Statements

is a character variable or element of a character array that the I/O system assigns
as 'NULL' for null blank control, or as ‘ZERO’ for zero blank control. The file
must be connected for formatted 1/0; H otherwise the I/O system specifies bl as
"UNKNOWN'. For more information, refer to the OPEN statement.

is a character variable that the I/O system assigns as 'FORTRAN' if the file uses
FORTRAN carriage control, as 'LIST' if the file has implied carriage control, or as
'NONE' if the file has no implicit carriage control. If the I/O system cannot
determine the carriage control attributes, it specifies car as 'UNKNOWN'.

is a character variable or element of a character array that the I/0O system assigns
as 'YES' or ‘NO’ depending on whether direct access is allowed for the file being
inquired about. If the I/O system cannot determine whether direct access is allowed
for the file, it specifies dir as 'UNKNOWN'. dir remains unchanged if exstar or
opstat is .FALSE..

is the label of an executable statement to which control passes if an error occurs
during execution of the INQUIRE statement. The labeled statement must be in the
same program unit as the INQUIRE statement.

is a logical variable or element of a logical array that the I/O system assigns as
.TRUE. or .FALSE. depending on whether filename or unit exists. When the I/0
system executes the INQUIRE statement, exstat is assigned a value unless an error
condition occurs.

is a character variable or element of a character array that the I/0 system assigns
as 'FORMATTEDY if the file being inquired about is connected for formatted 170,
or as 'UNFORMATTED)' if the file is connected for unformatted I/0. If exstar or
opstat is .FALSE., formiype remains unchanged or ffthe I/O system returns
formiype as 'UNKNOWN'.

is a character variable or element of a character array that the I/O system assigns
as 'YES' or 'NO’ depending on whether the file being inquired about can contain
formatted records. If the I/0 system cannot determine whether the file can contain
formatted records, it specifies form as 'UNKNOWN'. form remains unchanged if
exstat or opstat is .FALSE..

is an integer or element of an integer array that indicates the outcome of the
inquire operation as follows: 0 means the inquire operation was successful; 1 or any
number greater than 1 means an error occurred; —1 means an end-of-file was
encountered.

is a character variable or element of a character array that the I/O system assigns
the current name of the file being inquired about. fn remains unchanged if exstat or
opstat are .FALSE. or if the file has no name.

GLS FORTRAN Language Reference Manual 9-51

Statements

namestat

nexft

num

opsiat

ftorg

reclen

seq

unf

is a logical variable or element of a logical array the I/O system assigns as .TRUE.
if the file connected to unir has a name. Otherwise the I/O system specifies
namestat as .FALSE.. namestat remains unchanged if unir does not exist or is not
defined.

is an integer variable or element of an integer array the I/O system specifies as
n+1, where n is the number of the last record the I/0O system has read from or
written to in the file being inquired about. If the file is connected but the 1/0
system has not yet read or written any records, the I/0 system specifies next as 1.
The 1/0 system specifies next as 0 if the file is not connected for direct access or
the file position is undefined because of a previous error.

is an integer or element of an integer array to which the I/O system assigns the
number of the I/O unit currently connected to filename. If no 1/0 unit is con-
nected to filename, num remains unchanged.

is a logical variable or element of a logical array that the I/O system assigns as
.TRUE. if filename is connected to an I/O unit or if unit is connected to a file.
Otherwise the I/O system specifies opstar as .FALSE.. When the I/O system
executes the INQUIRE statement, opstat is assigned a value unless an error condi-
tion occurs. If opstat is .TRUE., the following specifiers can be defined: acc, bl,
next, reclen, and formtype.

is a character variable or array element that the 1/0 system assigns as 'SEQUEN-
TIAL' or 'RELATIVE' depending on file organization. If the I/O system cannot
determine the file organization, it specifies org as 'UNKNOWN'.

is an integer variable or element of an integer array that the I/O system assigns the
current value for the record length in the file being inquired about. reclen is the
number of bytes, or Hif the file is connected for unformatted 1/Q, reclen is the
number of 32-bit words. If the file is not connected, or is not connected for direct
access, reclen is set to 0. reclen remains unchanged if the file is not connected for
direct access, or if exstat or opstat is .FALSE..

is a character variable or element of a character array that the I/O system assigns
as 'YES' or 'NO’ depending upon whether the file can be accessed sequentially. If
the 1I/0 system cannot determine whether sequential access is allowed for the file, it
specifies seg as 'UNKNOWN'. seq remains unchanged if exstat or opstat is
.FALSE..

is a character variable or element of a character array that the I/O system assigns
as 'YES' or 'NO' depending on whether the file being inquired about can contain
unformatted records. If the I/O system cannot determine whether the file can
contain unformatted records, it specifies unf as 'UNKNOWN'. unf remains un-
changed if exstar or opstat is .FALSE..

GLS FORTRAN Language Reference Manual

Statements

Examples

The following example returns information about logical unit 3, if it exists. The filename is returned in
the variable fname and the open status (. TRUE. or .FALSE.) in the variable estat.

INQUIRE (3, NAME=fname, OPENED=estat)

The following example returns information about the file tmp.dat. The logical unit number, if any,
is returned in the variable fileunit.

INQUIRE (FILE= tmp.dat’, NUMBER=fileunit)

GLS FORTRAN Language Reference Manual 9-53

Statements

INTEGER Statement

Use the INTEGER data type statement to specify an integer data type for symbolic names that
represent integer constants, variables, arrays, external functions, and statement functions. .

Syntax
INTEGER[*number] symbolic name {, symbolic namej ...
*number is the number of bytes that each integer value occupies in memory. You can specify
1-, 2-, or 4-byte integers. A 2-byte integer can represent values from -65536

through 65535. A 1-byte integer can represent values from —~128 through 127. The
default is 4 bytes.

symbolic name is the name of an integer constant, variable, array, external function, or statement
function

Example

The following example specifies the integer data type for arrayl. Each variable and element in arrayl
occupies two bytes.

INTEGER*2 varl, var2, arrayl(10)

9-54 GLS FORTRAN Language Reference Manual

Statements

INTRINSIC Statement

Use the INTRINSIC statement to specify intrinsic function names for use as actual arguments. For
. more information about intrinsic functions, refer to Chapter 10.

Syntax
INTRINSIC symbolic name [, symbolic name) ...
symbolic name is the symbolic name for an intrinsic function

Example

The following example declares exp, tan, and sqrt as representing intrinsic functions.

INTRINSIC exp, tan, sqrt

GLS FORTRAN Language Reference Manual 9-55

Statements

Logical Assignment Statement

Use a logical assignment statement to assign the value of a logical expression to a logical variable or
array element. A logical expression must evaluate to a logical value, either true or false. For more
information about logical expressions, refer to Chapter 5. .
Syntax

symbolic name = logical exp

symbolic name is the symbolic name of a logical variable or array element

logical exp is a logical expression
Examples
The following example assigns the logical constant . false. to the logical variable switch.

switch = .false.

The following example evaluates a logical expression, then assigns the result to the logical variable
prnout.

prnout = varl/var7 .GT. 128 .AND. var2/var8 .LT. 128 .

9-56 GLS FORTRAN Language Reference Manual

Statements

LOGICAL Statement

Use the LOGICAL data type statement to specify the logical data type for symbolic names that
. represent constants, variables, arrays, external functions, and statement functions.

Syntax
LOGICAL[*number] symbolic name [, symbolic name] ...

*number is the number of bytes that each logical value occupies in memory. You can specify
1-, 2-, or 4-byte logical variables. The default is 4 bytes.

symbolic name is the symbolic name of a constant, variable, array, external function, or statement
function

Example

The following example assigns the logical data type to array2. Each variable and element in array2
occupies one byte.

LOGICAL*1 varl, var2, array2(10)

GLS FORTRAN Language Reference Manual 9-57

Statements

NAMELIST Statement

+ Use the NAMELIST statement to group together a list of variables and/or arrays under a single
unique symbolic group name. group can then be used to reference all or part of the list in an I/O
statement.

The order in which the list elements are specified in the NAMELIST statement defines the output
order in NAMELIST-directed 1/0. Elements can be of any data type, either explicit or-implicit, but
cannot consist of individual array elements, substrings, records, or dummy arguments. However,
NAMELIST-directed input can be used to assign values to substrings, array elements, and/or records.
NAMELIST-directed I/O can be used only for list elements previously defined with the NAMELIST
statement. However, a list element that is defined in a NAMELIST statement need not be referenced
elsewhere.
Syntax

NAMELIST /group/ namelist { [,)/group/ namelist ...}

group is a unique symbolic name

namelist is a list of variables and/or array names, separated by commas, that are to be
referenced by group

Example

In the following example, payroll in the first NAMELIST statement associates the variables name,

empnum, date, and hours. Several data types can be grouped together under a single group. Note that

the variables name and empnum are associated under two groups, payroll and vacation.
CHARACTER*20 name

NAMELIST /payroll/ name,empnum,date, hours
NAMELIST /vacation/ name,empnum,vacdays

9-58 GLS FORTRAN Language Reference Manual

Statemnents

NML NAMELIST Specifier
The NAMELIST specifier is used in the control list of a READ or WRITE statement to indicate
. that NAMELIST-directed I/O is to be performed on the specified group. The NML keyword is

optional if and only if both of the following conditions are met:

O The first parameter of the 1/0 control list is a logical unit number without the optional
UNIT= keyword.

O The NAMELIST parameter directly follows the unit number in the fist.
You cannot use a NAMELIST specifier in a statement that contains a FORMAT specifier. For
more information about control list specifiers, refer to the READ and WRITE statements later in
this chapter.
Syntax

[NML=]group
Example
The following example illustrates valid and invalid uses of the NAMELIST specifier.

C

. C valid formats for NAMELIST-directed I/O:

READ (5,payroll)
WRITE (UNIT=2, NML=vacation)

(o]

Invalid formats for NAMELIST-directed I/O:

READ (UNIT=5,payroll) IMust use NML= if UNIT= is used
WRITE (5,100) vacation INAMELIST not allowed with FORMAT specifiers

GLS FORTRAN Language Reference Manual 9-59

Statements

NAMELIST-Directed 1/0

The NAMELIST-directed READ statement reads records sequentially until the specified group

name is encountered, translates NAMELIST data into internal format according to the corre-
sponding data types of the data, and assigns the translated data to the specified NAMELIST .
elements.

The NAMELIST-directed WRITE statement takes the internal data for the NAMELIST elements,
translates it from internal format to the appropriate data types, and writes the translated data to
external records for a sequential file. Every NAMELIST element is written out along with its
associated value, one element-value pair per record. The format of the output data in a
NAMELIST-directed WRITE is compatible with the format required by a NAMELIST-directed
READ or ACCEPT statement. The NAMELIST elements are written out in the order they occur in
the NAMELIST statement.

NAMELIST Record Format

NAMELIST data records are enclosed within a pair of dollar sign ($) or ampersand (&) special
characters. The starting record must have either a dollar sign or an ampersand in the first nonblank
column of the record, followed by the NAMELIST group specifier. The NAMELIST data is
terminated by a closing dollar sign or ampersand, optionally followed by the keyword END. You
can use either a pair of dollar signs or a pair of ampersands, but you cannot mix a dollar sign and
an ampersand in a single data record set. Values are assigned to NAMELIST elements in the form
element=value.

Syntax

$group element=value | element=value ...] $ [END]

group is the group defined in a NAMELIST statement
element is an element in the NAMELIST-defined group
value is the assigned value for that element

The value assigned to an element may consist of one or more constants. Constants can be integer, real,
logical, complex, or character values. If the data type of the specified constant does not match the data
type of the corresponding NAMELIST element, conversion is performed following standard rules for
arithmetic assignments. Conversion between numeric and character data types is not permitted.

You cannot use a symbol defined in a PARAMETER statement as a constant in a NAMELIST
element=value assignment. Multiple occurrences of a single constant value can be represented in the
form n*c (n is the number of occurrences of the constant value ¢). Multiple null values can be specified
in the form n* (n is an integer number indicating the number of nulls to be supplied).

9-60 GLS FORTRAN Language Reference Manual

Statements

If a list of values is to be assigned to an array, the first value specified in the list will be stored in the
first array element, and so forth. You do not need to assign every array element; however, the total
number of values specified cannot exceed the array length. Consecutive commas within a value list
indicate null assignments. If an array element (rather than array name) is specified, the corresponding
values are assigned beginning with that element.

You do not need to assign a value to every element in a NAMELIST group. If the value is to remain
unchanged, you can omit the element name from the record.

Input records for NAMELIST-directed I/O are subject to the following rules:

Q The NAMELIST group name cannot contain spaces or tabs and must be specified at the
beginning of the record

O The value assigned to a NAMELIST element cannot contain spaces or tabs, except within the
parentheses of a subscript or substring

A
Q element-value pairs cannot span records; both the NAMELIST elemens and its associated value
must be contained in a single record

O Constants used in value assignments must be specified in standard FORTRAN format. For
example, a complex constant takes the form of a real or integer number pair, separated by a
comma and enclosed in parentheses. Only leading and/or trailing spaces are allowed; spaces
cannot appear within a numeric constant.

O Logical constants can be assigned a logical TRUE or FALSE value with one of the following
special symbols:

= TRUE .TRUE., T, .T, t, or .t
= FALSE .FALSE., F, .F, f,or .f

O Character constants must be enclosed in apostrophes. An apostrophe within a character constant
can by specified by two consecutive apostrophes ().

O Hollerith, octal, and hexadecimal constants are not allowed in NAMELIST records

O A sequence of constants can be separated by spaces, tabs, or commas. Two consecutive commas
specifies a null value, indicating that the corresponding array value should remain unchanged. A
null value can be used to represent an entire complex constant, but not for just one of the values
in a complex pair.

O element-value pairs can be separated by spaces, tabs, or commas. Consecutive commas, which

would imply a nuil assignment for an unspecified variable, are not allowed. Any number of spaces
or tabs may be placed on either side of the equal sign (=) in an element-value pair assignment.

GLS FORTRAN Language Reference Manual 9-61

Statements

Examples

The input file records below illustrate the NAMELIST record format. This example shows the use of
the dollar sign pair in the first record and the ampersand pair in the second record. This example also
shows that input element-value pairs for a record can be specified on one or more lines.

or

Svacation name=’'Smith’, rate=1.2 accrued=20.5 $END

&vacation
name="Jones"’
rate=1.2
accrued=40.5

&

The following program reads vacation file records from logical unit 2, calculates the vacation
accrued at the monthly rate, and writes the updated records to logical unit 3.

C
Cc

MONTHLY VACATION UPDATE PROGRAM

NAMELIST /vacation/ name,rate,accrued
CHARACTER*15 name

REAL*4 rate,accrued,weekly,deduct
INTEGER emp_no

READ (2,vacation)

accrued = accrued + rate
WRITE (3,vacation)

The following record was written out using the first example input record and the example program

above.
SVACATION
NAME ='Smith Yy
RATE = 1.200000 ’

ACCRUED = 21.70000

$END

GLS FORTRAN Language Reference Manual

Statements

Prompting for NAMELIST Values

In an interactive session, you can prompt a program that is executing a NAMELIST-directed
READ statement for the NAMELIST elements the program will accept. To prompt the program,
enter a dollar sign (§) or ampersand (&) followed by the group name and one or more spaces, then

a question mark followed by a carriage return. For example, if the program is executing the
statement

READ (5,vacation)
and waits for input, you can enter
$vacation ?
and the program display the variables as follows:
$VACATION
NAME
RATE

ACCRUED
$END

GLS FORTRAN Language Reference Manual 9-63

Statements

OPEN Statement

Use the OPEN statement to:
Q Create a file and connect it to an I/0 unit
O Create a preconnected file

O Connect an existing file to an I/O unit

O Change the characteristics of an existing I/O unit-to-file connection

If an error occurs while processing the OPEN statement, the I/O system takes the following
actions:

1. Terminates the OPEN operation.

2. Specifies the file position as undefined. The only valid statements you can execute are

CLOSE, BACKSPACE, REWIND, and INQUIRE.
3. If IOSTAT is specified, sets iostatus.

4. Passes control to the statement associated with errlabel. If ERR is not specified, a run-time

error occurs. .

Note that if the file is connected to an I/O unit, the only specifier that can be changed with the
OPEN statement is bl. The file position is not affected.

The OPEN statement must contain a unit number; all other specifiers are optional, but there can be
only one of each.

Syntax

OPEN({ [UNIT]=unit} [, ACCESS=acc] [H,ASSOCIATEVARIABLE=var] |, BLANK=b!]
[,CARRIAGECONTROL=car] [t ,DISPOSE=disposition] [,ERR=errlabel]
[,FILE=name] [, FORM=formtype] [,JOSTAT=iostatus] [,ORGANIZATION=0rg]
[,LRECL=reclen] [, STATUS=status] [t ,USEROPEN=routine])

unit is an integer from O through 99 that specifies an external I/0O unit. The UNIT=
keyword is optional if and only if unit is the first parameter specified in the OPEN
statement,

acc specifies the access method as 'SEQUENTIAL’, 'DIRECT’, or ##'APPEND’. The

default is 'SEQUENTIAL'. You cannot specify RECL=reclen when the access
method is 'SEQUENTIAL’. If you specify 'DIRECT’, you must also specify
RECL=reclen. TH1If you specify 'APPEND’, the file is accessed sequentially after

the last record in the file.

9-64 GLS FORTRAN Language Reference Manual

Hvar

bl

Hear

H disposition

errlabel

name

formtype

Statements

If the file already exists, the access method must match the file's characteristics.
If the file does not exist, the OPEN statement creates it with the specified access
method. .

is an INTEGER*4 variable that reflects the record number of the next sequential
record in a direct access file (valid for direct access files only)

specifies how the 1/O system treats blank characters in formatted records. If you
specify 'NULL', the 1/0O system ignores blank (20h) characters in numeric,
formatted input fields. The only exception is a field of blank characters that has a
value of zero (30h). If you specify 'ZERO’, the I/O system treats all biank
characters, except leading blank characters, as zeros. The default is 'NULL'. bl is
not valid with unformatted records.

If the file is connected to an 17O unit, the only specifier that can be changed with
the OPEN statement is &/. The file position is not affected.

is one of the following: 'FORTRAN', 'LIST’, or 'NONE'. The default is
'FORTRAN' if formatted files are used; otherwise the default is 'NONE'. If you
specify 'FORTRAN’, normal FORTRAN interpretation of the initial character is
used when printing a file. If you specify 'LIST’, the file is printed with single
spaces between records. If you specify 'NONE', no implied carriage control is
used when the file is printed.

specifies the disposition of a file as 'KEEP, 'SAVE', 'PRINT/DELETE',
'SUBMIT/DELETE’, or 'DELETE' when the associated logical unit is closed.
The default is 'KEEP'. If you specify 'KEEP' or ‘SAVE' (which are equivalent),
the file is retained after the close operation. If you specify 'PRINT/DELETE’,
'SUBMIT/DELETE', or 'DELETE' (which are equivalent; the print or submit
operation is not performed), the file is deleted after the close operation. The
DISPOSE= keyword can be abbreviated to DISP=. Disposition exceptions occur
if you try to retain a scratch file or delete a read-only file. In these cases, the
conflicting disposition is ignored.

is the label of an executable statement to which control passes if an error occurs
when executing the OPEN statement. The labeled statement must be in the same
program unit as the OPEN statement.

is the name of the file to be connected to the specified I/O unit. name must be in
the operating system’s file structure. If you omit name and the I/O unit is not
preconnected, the I/O system connects the I/O unit to the file fort.n or
FORnnn.DAT, where n or nnn is the number of the I/0 unit.

specifies the file as 'FORMATTED' or 'UNFORMATTED'. The default is
'"UNFORMATTED' for direct access files or 'FORMATTED’ for sequential
access files.

GLS FORTRAN Language Reference Manual 9-65

Statements

iostatus

frorg

reclen

status

#t routine

Examples

is an integer variable or array element where the 1I/0 system posts the outcome of
the open operation as follows: 0 means the open operation was successful, 1 or
any number greater than 1 means an error occurred.

specifies the organization of the file as 'SEQUENTIAL’ or 'RELATIVE'. If the
file does not already exist, the default is 'SEQUENTIAL’. If the file exists and
you do not specify org, the I/O system uses the organization of the existing file. If
you specify org for an existing file, it must have the same value as that file.

is a positive integer that indicates the length of each record in the file. The file
must be connected for direct access. reclen is the number of bytes, or Hif the
records are unformatted, reclen is the number of 32-bit words.

If the file is connected for direct access, reclen must be specified. If the file is
connected for sequential access, reclen must not be specified.

specifies the status of the file as 'NEW’, ‘OLD’, 'SCRATCH’', or '"UNKNOWN'.
The default is UNKNOWN'. 'NEW’ and ‘OLD’ are valid only if you specify name
or if the file is preconnected. If you specify 'SCRATCH’, the I/0O system
connects the specified 170 unit to a temporary file. The connection lasts until you
execute a CLOSE statement or the program terminates. If you specify
'SCRATCH', you must not specify FILE=name. If you specify 'UNKNOWN' and
the file exists, the I/O system connects the file. If you specify 'UNKNOWN' and
the file does not exist, the I/O system first creates the file, then connects it.
The keyword TYPE= is equivalent to STATUS=.

is the symbolic name of a user-supplied replacement for the run-time OPEN
routine. The GLS FORTRAN Compiler accepts the USEROPEN= keyword and
the run-time library supports it; however, its use implies the existence of a user-
supplied replacement for the run-time OPEN routine. The FORTRAN OPEN
routine has its own calling conventions and is not intended to be a replacement
for any other such run-time routine. User replacement of this routine is a
significant undertaking, which, at a minimum, requires licensed access to the
library source.

The following example opens logical unit 3.

OPEN(3)

The following example opens logical unit 3 and connects it to a temporary file.

OPEN(UNIT=3, STATUS='SCRATCH')

GLS FORTRAN Language Reference Manual

Statements

The following example opens unit 8 for direct access. The file name is overdues.dat. The result of
the open process is returned in the variable errorflag and, if an error occurs, control passes to
the statement labeled 999.

’ OPEN(8, FILE='overdues.dat’, IOSTAT=errorflag, ERR=999,ACCESS=" DIRECT')

GLS FORTRAN Language Reference Manual 9-67

Statements

OPTIONS Statement

Use the OPTIONS statementto override a subset of FORTRAN command line options in effect for

a given program unit. .

Only one OPTIONS statement is allowed per program unit, and must precede every other
statement in the program unit, including PROGRAM, SUBROUTINE, FUNCTION, and BLOCK
DATA statements. The OPTIONS qualifiers override (or confirm) qualifiers specified on the
FORTRAN command line. However, they remain in effect only to the end of the program unit that
they begin, so an OPTIONS statement is needed at the beginning of every program unit in which
you wish to override the command line or default qualifiers.

Syntax
OPTIONS oprion [,option)

option is a valid OPTIONS string. One or more option values may be specified on the
OPTIONS line, separated by commas.

Example

The statement

OPTIONS /CHECK=BOUNDS .

causes address references for arrays to be checked.

Table 9-1 lists the valid option values, along with their command line equivalents.

9-68 GLS FORTRAN Language Reference Manual

Statements

Table 9—1. OPTION Values and Command Line Equivalents

OPTIONS String Cmd Line Equivalent Summary Description
Overtflow, underflow, bounds,
. /CHECK=ALL none checking
No run-time checks
/CHECK=NONE default performed
/CHECK=0OVERFLOW n/a Ignored
/CHECK=NOOVERFLOW n/a Ignored
/CHECK=UNDERFLOW n/a Ignored
/CHECK=NOUNDERFLOW n/a Ignored
/CHECK=BOUNDS ~bounds, -X57 Check array bounds
/CHECK=NOBOUNDS none Do not check array bounds
/G_FLOATING n/a Ignored
/NOG_FLOATING n/a ignored
Default operation
. /14 none (INTEGER"4 and LOGICAL"4)
z Use INTEGER®2 and
IS -2 LOGICAL"2 as defaults
/F77 none Default operation
/NOF77 onetrip One iteration DO loops
/NOCHECK none Ignored

GLS FORTRAN Language Reference Manual 9-69

Statements

PARAMETER Statement

Use the PARAMETER statement to assign a symbolic name to a constant, compile-time constant
expression, or another symbolic name. Once you assign a symbolic name to a constant using the
PARAMETER statement, you can use the symbolic name in place of the actual constant in the .
program unit.

In the first syntax format given below, one or more PARAMETER pairs can be assigned within a single
PARAMETER statement. Each pair is delimited by commas, and the entire statement is enclosed in
parentheses. This format requires the data type of the symbolic name to be defined, either implicitly or
explicitly, before the constant is referenced in the PARAMETER statement.

H The second syntax format given below is used when the symbolic name does not have a specific type
that has been defined in a type declaration. The type of the symbolic name is taken from the type of
the expression.

Syntax

PARAMETER (symbolic name = expression [,symbolic name = expression] ...)
HPARAMETER symbolic name = expression

symbolic name is the symbolic name to assign. A symbolic name must be of the same data type as
the expression it is being assigned to. For example, a symbolic name of real data

type real can be assigned only to a real constant. .

expression is an expression.

9-70 GLS FORTRAN Language Reference Manual

Statements

Compile—Time Expressions

In the PARAMETER statement, expression can be a logical, character, or arithmetic expression,

. subject to the following rules:
O A logical expression is a compile-time constant expression if:

s Each operand is a constant; the symbolic name of a constant; one of the intrinsic functions
IAND, IEOR, IOR, ISHFT, LGE, LLE, or LLT with constant arguments; or another
compile-time constant expression.

= Each operand is of a logical or an integer data type

= Each operator is Boolean or a relational operator

Q A character expression is a compile-time expression if:

= Each operand is a constant; the symbolic name of a constant; the function CHAR with a
constant argument; or another compile-time constant expression.

= Fach operand is of character data type
= Each operator is the concatenation operator //
‘ O An arithmetic expression is a compile-time constant expression if:
= Each operand is a constant; the symbolic name of a constant; one of the intrinsic functions
ABS, AIMAG, CMPLX, CONJG, DIM, DPROD, ICHAR, MAX, MIN, MOD, or NINT
with constant arguments; or another compile-time constant expression.

» Each operand is of an integer, real, or complex data type

s Each operator is a +, —, *, /, or ** operator. (The exponentiation operator ** is evaluated at
compile time only if the exponent is of integer data type.)

GLS FORTRAN Language Reference Manual 9-71

Statemnents

Symbolic Names in Constant Expressions

A symbolic name equated to a constant will assume a data type based on explicit type declarations
preceding the PARAMETER statement, or by using the default conventions for determining implicit
data types. .

Symbolic constants are subject to the following rules:

0 If the symbolic name is used as the length specifier in a CHARACTER statement, it must be
enclosed in parentheses

O The symbolic name of a constant cannot appear as part of another constant, except that it can
appear as either the real or the imaginary part of a complex constant

O A constant can be defined in a PARAMETER statement only once within a program or
subroutine
Examples
The first example uses the first syntax format of the PARAMETER statement to define a variety of

constants. This format requires the data type to be defined, implicitly or explicitly, before the constant
is referenced in a PARAMETER statement.

C Note that ONE and ZERO are implicitly REAL*4 .
C This format requires all data types to be predefined
REAL*8 E, ESQ

COMPLEX*8 I

PARAMETER (namelength=10)
CHARACTER* (namelength) lastname
PARAMETER (one=1.,0,zero=0.0)
PARAMETER (I=(zero,one}))
PARAMETER (E=2.7182818284D0)
PARAMETER (ESQ=E*E)

+ The second example uses the alternative format of the PARAMETER statement,

C Alternative format of PARAMETER statement
C
C Data types must NOT be predefined

PARAMETER lastname="Karamazov °

PARAMETER one=1.0,zero=0.0

PARAMETER I=(zero,one} .
PARAMETER E=2.7182818284D0

PARAMETER (esq=E*E)

9-72 GLS FORTRAN Language Reference Manual

Statements

PAUSE Statement
Use the PAUSE statement to temporarily suspend program execution.

Syntax
PAUSE [message]
message is a character constant or a string of up to five digits. If you specify message, the

PAUSE statement displays the message on the console screen, suspends program
execution, and waits for user response from the console.

Example
The following example displays the message TYPE ANY KEY TO CONTINUE before suspending execution.

PAUSE ‘TYPE ANY KEY TO CONTINUE’

GLS FORTRAN Language Reference Manual

Statements

PRINT Statement

Use the PRINT statement to transfer formatted data to the default output I/O unit. The PRINT
statement is functionally equivalent to using a WRITE statement with formatted records.

When executing the PRINT statement, the I/O system does not print the first character in a formatted
record. Instead, the I/O system uses this character to determine the vertical spacing to use before
printing the remainder of the record. The PRINT statement then prints any remaining characters in the
record on one line, beginning at the lefthand margin.

The following table lists the amount of vertical spacing determined by the first character.

Vertical Space Output Before
Character | Hex Value Printing Formatted Record
Blank 20h Advance one line
o] 30h Advance two lines
1 31h Advance to first line of next page
+ 2Bh No advance

Syntax
PRINT format [,ourput list)

format is the format specification. For more information, refer to the "Format
Specification” chapter.

output list is a list of the items, separated by commas, to be written. outpur list can be one of
the following:

0O Variable name

Q Array name. If you use an array name, the I/O system writes the array in
column-major order.

O Array element name

O Expression containing one of the following data types: CHARACTER,
COMPLEX, DOUBLE PRECISION, INTEGER, LOGICAL, or REAL

O Implied DO loop. The PRINT statement can write a range of subscripted
array elements specified as follows:

(input list,var = el e2 [,e3])

9-74 GLS FORTRAN Language Reference Manual

Statements

input list is the array to be written. var is an integer, real, or double precision

variable whose value controls the looping. el is the initial value of var. €2 is

the limit value of var. 3 is the increment value of var. The default for el is

1. output list can contain nested implied DO loops. For more information

about implied DO loops, refer to the DO statement earlier in this chapter.
Example

The following example prints name and score.

PRINT 35, name, score

GLS FORTRAN Language Reference Manual 9-75

Statements

PROGRAM Statement

Use the PROGRAM statement to define a program unit as the main program. The main program is the
program unit that receives control at the beginning of execution. During execution, the main program .

can invoke subprograms to perform different tasks. Control returns to the main program to terminate
execution unless you use a STOP statement in a subprogram.

The PROGRAM statement is not required, but if used, it must be the first statement-of the main
program. For more information, refer to Chapter 6.

Syntax
PROGRAM symbolic name
symbolic name is the symbolic name of the main program
Example
The following example specifies a main program with the symbolic name main.

PROGRAM main

9-76 GLS FORTRAN Language Reference Manual

Statements

READ Statement

Use the READ statement to transfer data from a specific I/O unit to internal processor storage. You
can use the READ statement to reference both internal and external files. The READ statement can
transfer both formatted and unformatted records.

The I/O system takes the following actions if there is an error or end-of-file condition while processing
the READ statement: 2

1. Terminates the READ operation.

2. If an error is encountered, the I/QO system specifies the file position as undefined. If an end-of-
file condition is encountered, the I/O system positions the file pointer just past the endfile
record, and the only statements you can execute are CLOSE, BACKSPACE, REWIND, or
INQUIRE.

3. If IOSTAT is specified, sets iostat to 1 for an error or -1 for an end-of-file condition.

4. If there is an error or end-of-file condition, the I/O system passes control to the statement
identified by errlabel or endlabel, respectively. If ERR or END is not specified, a run-time error
occurs.

The READ statement must contain an I/0 unit specifier; all other specifiers are optional, but there can
be only one of each. In the form READ format {inputlist], the I/0O unit is the default input unit.

Syntax

READ ({ [UNIT=)unir} [[FMT=}ormat | [H NML=Jgroup] [,REC=recnum] [, JOSTAT=iostar]
[,LERR=erriabel] [, END=endlabel]) [input list}
READ formar [input list]

unit is an external I/O unit. unit can be an unsigned integer from O through 99, an
asterisk (*), or an internal file. An asterisk specifies the default input 1/0O unit. If
you do not use UNIT =, unir must be the first specifier. If unit specifies an internal
file, format must be specified (it cannot be an asterisk) and recnum cannot be
specified.

format is a format identifier that controls the editing of the data during the transfer. If
format is an asterisk (*), specifying list-directed formatting, recnum cannot be
specified. For more information, refer to the "Format Specification” chapter. If you
do not use the FMT= keyword, then you cannot use the UNIT= keyword and
format must be specified immediately after unir.

group is the symbolic name of a group of associated elements defined in a NAMELIST
statement and indicates that NAMELIST-directed 1/0 is to be performed on the
specified group. You cannot use group in a READ statement that contains formar.
If you do not use the NML= keyword, then you cannot use the UNIT= keyword

GLS FORTRAN Language Reference Manual 9-77

Statements

recnum

iostat

errlabel

endlabel

input list

Examples

and group must be specified immediately after unit. For more information, refer to
the NAMELIST statement earlier in this chapter.

is a nonzero integer expression that specifies the number of the record to read.
recnum must be specified if the file is connected for direct access.

is an integer variable or array element where the I/O system assigns iostat the
outcome of the data transfer as follows: 0 means the transfer was successful, 1 or
any number greater than 1 means an error occurred, -1 means an end-of-file
condition occurred.

is the label of an executable statement to which control passes if there is an error
during execution of the READ statement. The labeled statement must be in the
same program unit as the READ statement.

is the label of an executable statement to which control passes when there is an
end-of-file condition. The labeled statement must be in the same program unit as
the READ statement and the file must be connected for sequential access.

is a list of items that receive the input data. These items can be names of variables,
arrays or array elements. (The I/0 system reads arrays in column-major order.) To
specify a range of subscripted array elements for inpur list, use an implied DO list
as follows:

(input list,var = el e2 {,e3])

var is the control variable, el is the initial value, €2 is the limit value, and e3 is the
increment value. input list can contain other implied DO lists. For more
information about implied DO lists, refer to the DO statement earlier in this
chapter.

The following example reads from unit 10 in format 200 to name and score.

READ(10,200)

name, score

The following example reads record 5 from unit 3 to altitude. The outcome of the data transfer is
reported in errorflag. If there is an error, control passes to the statement associated with label 200.
If there is an end-of-file condition, control passes to the statement associated with label 999.

READ(3,REC=05,I0STAT=errorflag, ERR=200,END=999) altitude

The following example, using the ' form of relative record specification, reads record 7 from a
direct access file on logical unit 10.

READ (10°7)A

GLS FORTRAN Language Reference Manual

Statements

REAL Statement

Use the REAL data type statement to specify the real data type for symbolic names that represent
. real constants, variables, arrays, external functions, and statement functions.

Syntax
REAL[*number) symbolic name|, symbolic name] ...
*number is the number of bytes that each real number occupies in memory. You can specify
4- or 8-byte real values. (Specifying an 8-byte real values with the REAL*8 type
statement is equivalent to using the DOUBLE PRECISION type statement.) The
default is 4 bytes.

symbolic name is the symbolic name of a real constant, variable, array, external function, or
statement function

Example
The following example specifies varl, var2, and array3 as the real data type with 8-byte real values.

REAL*8 varl, var2, array3(10)

GLS FORTRAN Language Reference Manual 9-79

Statements

RETURN Statement

Use a RETURN statement to terminate execution of a procedure and to transfer control back to the
program unit that referenced the procedure.

When a RETURN statement executes in a procedure, control passes to the program unit that called the
procedure. If the procedure is a function, the value of the function must be defmed before the
RETURN statement executes.

When the RETURN statement executes, the program entities in the procedure become undefined
except for the following:

U Entities in a blank (unnamed) common block
Q Entities that are initially defined but do not become redefined or undefined in the procedure

O Entities in a named common block that appear in the procedure and in at least one other
program unit that references the procedure

To retain the definition status of a program entity, use the SAVE statement.

The RETURN statement is not required to terminate a procedure. The END statement declares the
physical end of a procedure subprogram. (An END statement used in a procedure has the same effect

as a RETURN statement.) .

Syntax
RETURN [integer exp)

inreger exp indicates which alternate return asterisk in the dummy argument list of the
SUBROUTINE or ENTRY statement to use for the return. infeger exp must be
greater than or equal to one and less than or equal to the number of asterisks
specified in the dummy argument list. Each asterisk in the dummy argument list
corresponds to an actual argument supplied in the CALL statement that invokes
the subroutine. Actual arguments are statement numbers that indicate the alternate
return points. For more information about alternate return specifiers, refer to the
"Program Structure” chapter.

Example

The following example returns control to the program unit.

largenum = 30
smallnum = 15
IF (smallnum .LT. largenum) RETURN

9-80 GLS FORTRAN Language Reference Manual

Statements

REWIND Statement

Use the REWIND statement to move the file pointer to the initial point of the file. (The file must be
. connected for sequential access and cannot be an internal file.)

If an error occurs during execution of the REWIND statement, the I/O system takes the following
actions:

1. Terminates the REWIND operation.

2. Specifies the file position as undefined, and the only valid statements you can execute are
CLOSE, BACKSPACE, REWIND, and INQUIRE.

3. If IOSTAT is specifies, sets iostatus.

4. Passes control to the statement associated with errlabel. If ERR is not specified, a run-time error
occurs.

Syntax
REWIND {unit | (UNIT=] unit [, JOSTAT=iostatus) [,ERR=erriabel]) }
unit is an integer from O through 99 that specifies an external 1/0 unit
. iostatus is an integer variable or array element where the I/O system posts the outcome of

the rewind operation as follows: 0 means the rewind operation was successful, 1 or
any number greater than 1 means an error occurred.

errlabel is the label of an executable statement to which control passes if there is an error
during execution of the REWIND statement. The labeled statement must be in the
same program unit as the REWIND statement.

Example

The following example rewinds external unit 4. errorflag will contain the status of the operation and
if there are any errors, control passes to the statement associated with label 999.

REWIND(4,X0STAT=errorflag, ERR=999)

GLS FORTRAN Language Reference Manual

Statements

SAVE Statement

Use the SAVE statement to retain the definition status of a program entity following the execution of a
RETURN or END statement. The RETURN and END statement in a procedure cause the program .

entities in that procedure to become undefined except for the following:
O Entities in a blank (unnamed) common block
O Entities that are initially defined but do not become redefined or undefined in the procedure

O Entities in a named common block that appear in the procedure and in at least one other
program unit that references the procedure

Entities specified in SAVE statements for one program unit do not become undefined when a
RETURN or END statement executes in that program unit. However, if the entities are in a common
block, they may become undefined in another program unit.
Syntax
SAVE [symbolic name [, symbolic name] ...]
symbolic name is the symbolic name of a variable, array, or named common block. (You cannot
use the names of procedures, entities within a common block, or dummy
arguments.) The common block name must be enclosed in forward slashes as
follows: /common block/. If symbolic name is not specified, all program entities in
the program units that contain the SAVE statement are saved.

Example

The following example saves the definition status of varl, arrayl, and /block/ following the
execution of a RETURN or END statement in the program unit.

SAVE varl, arrayl, /block/

9-82 GLS FORTRAN Language Reference Manual

Statements

STOP Statement

Use the STOP statement to terminate program execution.

. Syntax

STOP [message]
message is a character constant or a string of up to five digits. If you specify message, the

STOP statement displays the message on the console screen, terminates program
exdcution, and returns control to the operating system.

Example

The foliowing example displays the message END OF PROGRAM and then terminates execution.

STOP 'END OF PROGRAM’

GLS FORTRAN Language Reference Manual 9-83

Statements

SUBROUTINE Statement

Use the SUBROUTINE statement to define a program unit as a subroutine. A subroutine is an
external procedure that is defined outside the program unit that invokes it. .

A subroutine can receive control of execution from the main program or from another procedure.
Execution control transfers to a subroutine through the CALL statement. A subroutine cannot invoke

itself. For more information, refer to Chapter 6.

You can write subroutines using a programming language other than GLS FORTRAN, such as C or
assembly language. For more information about using C subroutines, refer to GLS Programming Guide.

Syntax
SUBROUTINE symbolic name [(dummy [, dummy] ...)]
symbolic name is the symbolic name of the program unit
dummy is a dummy argument that reserves a place and specifies a data type for the actual
arguments supplied in the subroutine call. dummy can be one of the following:

variable name, array name, dummy procedure name, or an asterisk (alternate
return specifier).

Example .

The following example defines the program unit calculations as a subroutine.

SUBROUTINE calculations (argl, arg2, arg3)

9-84 GLS FORTRAN Language Reference Manual

Statements

TYPE Statement

The TYPE statement transfers data from internal (processor) storage to standard output. It is the
same as the formatted sequential WRITE statement, except that it cannot write to any unit other than
standard output.

Syntax

TYPE formatr spec [,iolist]
TYPE * [,iolist]

TYPE group

format spec is a numeric format specifier

N implies list-directed output

group is a NAMELIST group specifier

iolist is a list of elements to be output
Example

In the following example, the first TYPE statement writes character data from array name. The second
TYPE statement writes the values of I, J, and K. The third TYPE statement writes the NAMELIST
values of mylist. All output is to the implicit unit (standard output).

CHARACTER*12 name(5)
NAMELIST /mylist/ A,B,C,D
TYPE *,name(1l)
TYPE 1000,I,J,K
TYPE mylist

1000 FORMAT (3I5)

GLS FORTRAN Language Reference Manual 9-85

Statements

VIRTUAL Statement

The VIRTUAL statement is equivalent to the DIMENSION statement. It has been included for
compatibility with PDP-11 FORTRAN.

9-86 GLS FORTRAN Language Reference Manual

Statements

VOLATILE Statement

The VOLATILE statement is used to specify variables, arrays, and common blocks that will not
be subject to certain compiler optimizations. This allows storage to be retained for these items if
they are declared but not referenced in the program body. For any array name or common block
name specified in the statement, the entire array or common block becomes volatile.

Syntax
VOLATILE nlist
nlist is a list of one or more variable names, named common blocks, or array names in
any combination. Each item in the list is separated from the succeeding item (if
any) by a comma. The name of a common block is preceded and followed by a
slash (/).
Example

In the following example the common block STOCK and the integer variable TEMP are volatile.

PROGRAM TEST
INTEGER A,B,C,D,TEMP
COMMON /STOCK/A,B,C

. VOLATILE /STOCK/TEMP

GLS FORTRAN Language Reference Manual 9-87

Statements

WRITE Statement

Use the WRITE statement to transfer data from internal processor storage to a specific IO unit.
You can use the WRITE statement to reference both internal and external files. The WRITE
statement can transfer both formatted and unformatted records.

If there is an error during execution of the WRITE statement, the I/O system takes the following

actions:

1. Terminates the WRITE operation.

2. Specifies the file position as undefined, and the only statements you can execute are CLOSE
and INQUIRE.

3. If IOSTAT is specified, sets iostat.

4. Passes control to the statement associated with errlabel. If ERR is not specified, a run-time

€rror occurs.

Syntax

WRITE([UNIT=] unit |, [FMT=] format | 1 [NML=]group] [,REC=recnum|
[LIOSTAT=iostar] [, ERR=errlabel]) [outpur lisi)

unit

format

Htgroup

recnum

is the external I/O unit. unit can be an unsigned integer from 0 through 99, an
asterisk (*), or an internal file. The asterisk specifies the default output I/O unit. If
you do not use UNIT=, then unit must be the first specifier. If unir designates an
internal file, formar must be specified (it cannot be an asterisk) and recnum cannot
be specified.

is a format identifier that controls the editing of the data during the transfer. For
more information, refer to the "Format Specification” chapter. If you do not use
FMT=, then you cannot use UNIT= and format must be specified immediately after
unit. If format is an asterisk (*), specifying list-directed formatting, num cannot be
specified.

is the symbolic name of a group of associated elements defined in a NAMELIST
statement and indicates that NAMELIST-directed I/0O is to be performed on the
specified group. You cannot use group in a WRITE statement that contains format.
If you do not use the NML= keyword, then you cannot use the UNIT= keyword
and group must be specified immediately after unir. For more information, refer to
the NAMELIST statement earlier in this chapter.

is a nonzero integer expression that specifies the number of the record to write.
recnum must be specified if the file is connected for direct access.

GLS FORTRAN Language Reference Manual

iostat

errlabel

output list

Example

Statements

is an integer variable or array element where the I/0 system posts the outcome of
the write operation as follows: 0 means the write operation was successful, 1 or any
number greater than 1 means an error occurred.

is the label of an executable statement to which control passes if there is an error
during execution of the WRITE statement. The labeled statement must be in the
same program unit as the WRITE statement.

is the list of items to be written. outpur list can be the name of a variable, array,
array element, or an expression. If you use an array name, the I/O system writes
the array in column-major order. To write a range of subscripted array elements
from output list, use an implied DO list as follows:

(output list,var = el,e2 [,e3])

var is the control variable, el is the initial value, €2 is the limit value, and e3 is the
increment value. oufpur list can contain other implied DO lists. For more
information about implied DO lists, refer to the DO statement earlier in this
chapter.

The following example transfers name and score to I/O unit 10. If there is an error during the transfer,
the I/0O system sets errorflag and passes control to the statement associated with label 350.

WRITE(10,200,I0STAT=errorflag,ERR=350) name, score

GLS FORTRAN Language Reference Manual 9-89/(9-90 Blank)

Chapter 10

System Subroutines, Built—Ins, and
Intrinsic Functions

This chapter identifies and describes the # system subroutines, H built-in functions, and intrinsic
functions supported by the GLS FORTRAN Compiler.

System Subroutines

HFORTRAN supplies subroutines that can be called in the same way as a user-written subroutine.
Table 10-1 is a summary of system subroutines. Detailed descriptions for each routine follows. Note
that all integer values describes in the following sections must be INTEGER*4.

Table 10-1. System Subroutines

Subroutine Description
DATE Returns system date as a character string
ERRSNS Returns information about most recent runtime error
EXIT Terminates program, closes files, and exits to the operating system
IDATE Returns integer values for month, day, and year
GETARG Gets arguments from the command line
IARGC Returns an integer corresponding to number of command line arguments
specified when program was invoked
MVBITS Copies a bit pattern from one location to another
RAN Returns a pseudo-random number between 0.0 and 1.0 inclusive
SECNDS Returns difference between supplied value and current system time
TIME Returns system time as a character string

GLS FORTRAN Language Reference Manual

System Subroutines, Buill-ins, and Intrinsic Functions

DATE

The DATE subroutine takes no arguments and returns the current system date as a 9-character string

value. datebuf is a 9-byte variable that stores the system date. The datebuf variable can be a character

string, substring, array, or array element. The date returned is in the dd—mmm—yy format, where dd is .
the 2-digit day, mmm is a 3-letter month abbreviation, and yy is the last two digits of the current year.

For example, the string "03—-JUN-88" is returned if the current system date is June 3rd, 1988.

Syntax

CALL DATE (datebuf)

ERRSNS

The ERRSNS subroutine returns information about the most recent run-time error detected.
iermum returns a 1 if an error occurs or a 0 if no error has occurred since the previous call or start
of execution; and iunir contains the unit number on which the last error occurred. The parameters
iosts and iostv are unchanged and are included only for compatibility with VAX/VMS FORTRAN.
The parameter icondval is set to zero.

NOTE error numbers, rather than a 1. Therefore, programmers should ensure that code

In future releases of the GLS FORTRAN compiler, ierrnum will return specific
does not depend on a fixed value of 1, but rather a value of 1 or greater. .

Syntax

CALL ERRSNS (ierrmums,iosts, iostv,iunit,icondval)

EXIT

The EXIT subroutine takes an optional status return code argument and is called to perform a
"clean” exit, closing all open files, terminating program execution, and returning control to the
operating’ system. istatus is an optional integer argument used to return status code information
when the program terminates. Refer to the GLS Programming Guide for return status code
conventions.

Syntax

CALL EXIT [(istatus)) .

10-2 GLS FORTRAN Language Reference Manual

Systern Subroutines, Built-ins, and Intrinsic Functions

GETARG

The GETARG subroutine gets arguments from the command line. GETARG takes two arguments.
The first argument, k, is an integer indicating which command line argument is desired. The second
argument, s, is a character string where the command line argument is to be placed. The length of s
should be larger than the longest expected command line argument. GETARG reads the command
line argument specified by k into the string specified by s. If s is shorter than the corresponding
command line argument, the rightmost characters of the command line argument are truncated. If s
is longer than the corresponding command line argument, s is padded on the right with blanks. It is
illegal to attempt to access GETARG with k greater than IARGC () ~1. Calling GETARG with a k
of zero returns the command name.

Syntax

GETARG (k,s5)

IARGC

The IARGC subroutine takes no arguments, and returns an integer corresponding to the number of
command line arguments specified when the program is invoked. Because the number of command
line arguments includes the command name, IARGC is always greater than 0.

Syntax

IARGC ()

IDATE

The IDATE subroutine takes no arguments and returns the current system date as three integer
values, representing month, day, and year. imon contains the month number, iday contains the day,
and iyear contains the integer value for the last two digits of the current system year. For example,
a system date of March 27th, 1990 would return imon = 3, iday = 27, and iyear = 90.

Syntax

CALL IDATE (imon,iday,iyear)

GLS FORTRAN Language Reference Manual 10-3

System Subroutines, Built-Ins, and Intrinsic Functions

MVBITS

The MVBITS subroutine copies data from one integer variable to another, allowing the user to

specify starting bit positions and number of bits to copy. src is the variable source of the bit field to

be copied, sstart is the starting bit position within src, and len is the total number of bits to be .
copied to the destination variable dsr. The designated bits of src are copied to dst starting at bit

location dstart. All MVBITS parameters are of data type INTEGER*4. Bit locations are determined

from right (bit 0) to left (bit 31). The values for (sstarr+len) and (dstart+len) must be less than 32.

Syntax

CALL MVBITS (src,sstart,len,dst,dsiart)

Example

INTEGER*4 isrc,idst

C isrc initialized to 0111111111111111
C idst initialized to 0000000000000000
isrc = "77777°0
idst = "00000°0
C copy last 4 bits from isrc to idst

CALL MVBITS (isrc,3,4,idst,3)

c idst now contains 0000000001111000 .

RAN

The RAN function takes a single seed argument and returns a pseudo-random number between 0.0
and 1.0 inclusive. Successive calls to RAN produce a uniformly distributed set of numbers. iseed is
an INTEGER™*4 variable used as in initial seed value for the random number generator. RAN alters
the value of iseed using the formula

iseed = 69069 * iseed + 1 (mod 2**32)
so that subsequent calls to RAN return a different ranval number. As a general rule, different iseed
values should be used for each execution so that distinct sets of random values are obtained. RAN
calculates a value for ranval by taking the high order 24 bits of iseed and converting that to a
floating-point number.

Syntax

ranval = RAN (iseed)

10-4 GLS FORTRAN Language Reference Manual

System Subroutines, Built-ins, and Intrinsic Functions

SECNDS

The SECNDS function accepts a single REAL*4 argument and returns the difference between the
supplied value and the current system time (represented as seconds since midnight). SECNDS is

. useful for calculating elapsed time during program execution. SECNDS is accurate to the resolution
of the system clock. delta is a REAL*4 variable that contains the difference between the current
system and the user-supplied value 1. Successive calls return the elapsed time, in seconds, since the
previous call.

Syntax
delta = SECNDS (f)
Example

REAL*4 a, b
a = SECNDS(0.0)
TYPE 10
10 FORMAT ("~ Enter carriage return”,$)
ACCEPT 15
15 FORMAT (A)
b = SECNDS(a)

TYPE 20,b

20 FORMAT(" That took °, F4.2," seconds”)
END

TIME

The TIME subroutine takes no arguments and returns the current system time in hours, minutes,
and seconds. timebuf is an 8-byte variable that receives the system time, in 24-hour format, as an
ASCII string. The format of fimebuf is hh:mm:ss, where hk is a 2-digit hour, mm is a 2-digit
minute, and ss is a 2-digit value for seconds. For example, a call to TIME 1 minute and 30 seconds
after noon returns 12:01:30.
Syntax

CALL TIME (timebuf)

GLS FORTRAN Language Reference Manual

Systemn Subroutines, Built-Ins, and Intrinsic Functions

Built—In Functions

The built-in functions described in this section are provided to facilitate communications between
FORTRAN and non-FORTRAN subprograms. These functions are: .

0 %VAL

0 %REF

0 %DESCR

Q %LOC
The first three functions — % VAL, %REF, and %DESCR - are used to pass arguments in forms
other than standard FORTRAN. They must be used only within an actual CALL statement or

function argument list. The fourth function listed - %LOC - is provided to obtain the internal
storage address of an element.

%VAL

The %VAL function is used to pass arguments by value. arg is to be passed as a 32-bit value. If
argument is shorter than 32 bits, the value is sign-extended to the full 32 bits. Refer to the ZEXT
function later in this chapter if zero extension is required. Only INTEGER, REAL*4, and
LOGICAL data types can be passed by value. Array names and procedure values must be passed
by reference.

Syntax

%V AL(argument)

%REF

The %REF function is used to pass arguments by reference. This is the default method for
argument passing and can be used with any data type.

Syntax

%REF(argument)

10-6 GLS FORTRAN Language Reference Manual

System Subroutines, Built-ins, and Intrinsic Functions

%LOC

The %LOC function returns the internal address of the storage element argument as an
INTEGER*4 value. argument is an array name, memory reference, aggregate reference, or external

procedure name.
Syntax

%LOC(argument)

GLS FORTRAN Language Reference Manual 10-7

System Subroutines, Built-Ins, and Intrinsic Functions

Intrinsic Functions

This section presents the intrinsic functions in alphabetical order according to the generic function
name, except the following functions, which are listed according to the specific function name
(these functions do not have a generic name): AIMAG, CHAR, DIMAG, DPROD, DREAL,
ICHAR, INDEX, LEN, LGE, LGT, LLE, LLT.

Functions can be called by generic name (except those listed above) or by specific function name.
Using the specific name further identifies the function to GLS FORTRAN and enforces data

typing.

Each function description contains a description of the function, the syntax, and a a table that lists
the specific function name, the data type for the arguments, and the type of the return value. For
more information about functions, refer to the "Functions” section in Chapter 6.

ABS Function

The ABS function returns the absolute value of an integer, real, or complex number.

Syntax

return value = ABS(argument)

Specific Name Type of argument Type of return value
HIIABS INTEGER*2 INTEGER*2
HJIIABS INTEGER*4 INTEGER*4

ABS REAL*4 REAL*4
DABS REAL*8 REAL*8
CABS COMPLEX*8 REAL*4

CDABS COMPLEX*16 REAL*8

#1If you do not use the —X181 compile option, the CDABS function must by replaced by ZABS.

10-8 GLS FORTRAN Language Reference Manual

System Subroutines, Built-Ins, and Intrinsic Functions

ACOS Function
The ACOS function returns the trigonometric arccosine of a real number expressed in radians.
Syntax

return value = ACOS(argument)

Specific Name Type of argument Type of return value
ACOS REAL*4 REAL*4
DACOS REAL*8 REAL*8

ACOSD Function

H The ACOSD function returns the trigonometric arccosine of a real number expressed in degrees.
Syntax

return value = ACOSD(argument)

Specific Name Type of argument Type of return value
#ACOSD REAL*4 REAL*4
H#DACOSD REAL*8 REAL*8

AIMAG Function

The AIMAG function returns the imaginary part of a complex number with a real data type.
Syntax

return value = AIMAG (argument)

Specific Name Type of argument Type of return value
AIMAG COMPLEX*8 REAL*4
HDIMAG COMPLEX*16 REAL*8

GLS FORTRAN Language Reference Manual 10-9

System Subroutines, Built~Ins, and Intrinsic Functions

AINT Function

The AINT function truncates a real number to an integer but maintains the original data type
specification. If the number you want to truncate is an integer, the AINT function returns that
integer. .

If the number you want to truncate is a real number with an absolute value less than 1, the AINT
function returns 0. If the number you want to truncate is a real number with an absolute value
greater than 1, the AINT function truncates the largest integer that does not exceed the value of
the original number and returns it as a real (REAL*4 or REAL*8).

Syntax

return value = AINT (argument)

Specific Name Type of argument Type of return value
AINT REAL*4 REAL*4
DINT REAL*8 REAL*8

AMAXO Function

The AMAXO function returns the largest value from a list of integers and converts the data type to
real. All arguments specified must be of the same data type.

Syntax

return value = AMAXO(argumentl,argument2 [,argument...])

Specific Name Type of argument Type of return value
AIMAXO0 INTEGER*2 REAL*4
Ft ATMAXO INTEGER*4 REAL*4

10-10 GLS FORTRAN Language Reference Manual

System Subroutines, Built-ins, and Intrinsic Functions

AMINO Function

The AMINO function determines the smallest value from a list of integers and converts the data
. type to real. All arguments specified must be of the same data type.

Syntax

return value = AMINO(argumentl,argumen:t2 ,argument...])

Specific Name Type of argument Type of return value
H AIMINO INTEGER*2 REAL*4
H ATMINO INTEGER*4 REAL*4

ANINT Function

The ANINT function translates a real number to the nearest whole number value and maintains the
original data type. If the number you want to translate is an integer, the AINT function returns that

integer.
Syntax
. return value = ANINT (argument)
Specific Name Type of argument Type of return value
ANINT REAL*4 REAL™4
DNINT REAL*8 REAL*8

ASIN Function

The ASIN function returns the trigonometric arcsine of a real number expressed in radians.
Syntax
return value = ASIN(argument)
Specific Name Type of argument Type of reruml value

ASIN REAL*4 REAL*4

. DASIN REAL*8 REAL*8

GLS FORTRAN Language Reference Manual a 10-11

System Subroutines, Built-ins, and Intrinsic Functions

ASIND Function

The ASIND function returns the trigonometric arcsine of a real number expressed in degrees.

Syntax .

return value = ASIND(argument)

Specific Name Type of argument Type of return value
ASIND REAL*4 REAL*4
H# DASIND REAL*S REAL*8

ATAN Function
The ATAN function returns the trigonometric arctangent of a real number expressed in radians.
Syntax

return value = ATAN(argument)

Specific Name Type of argument Type of return value
ATAN REAL*4 REAL*4 .
DATAN REAL*8 REAL*8

ATAND Function

#The ATAND function returns the trigonometric arctangent of a real number expressed in
degrees.

Syntax

return value = ATAND(argument)

Specific Name Type of argument Type of return value
HATAND REAL*4 REAL*4
HDATAND REAL*8 REAL*8

10-12 GLS FORTRAN Language Reference Manual

System Subroutines, Built-Ins, and Intrinsic Functions

ATAN2 Function

The ATAN2 function returns the trigonometric arctangent of a quotient expressed in radians.
argument] is the dividend, and argument? is the divisor.

Syntax

retum value = ATAN2(argumentl,argument2)

Specific Name Type of argument Type of return value
ATAN2 REAL*4 REAL*4
DATAN2 REAL*8 REAL*8

ATAN2D Function

HThe ATANZ2D function returns the trigonometric arctangent of a quotient expressed in degrees.
argumentl] is the dividend, and argumen:2 is the divisor.

Syntax

return value = ATAN2D(argumentl,argument2)

Specific Name Type of argument Type of return value
HATANZD REAL*4 REAL*4
HDATAN2D REAL*8 REAL*8

BTEST Function

#The BTEST function tests the specified bit location in the supplied bit pattern and returns a
logical TRUE if the bit is set (one) or FALSE if the bit is clear (zero). Bit number ibir is checked
in the integer bit pattern buf. If this bit is set to 1, a logical TRUE is returned; otherwise a logical
FALSE is returned.

Syntax

return value = BTEST(buf,ibit)

Specific Name Type of argument Type of return value
BITEST INTEGER*2 LOGICAL*2
HBITEST INTEGER*4 LOGICAL*4

GLS FORTRAN Language Reference Manual 10-13

System Subroutines, Built~Ins, and Intrinsic Functions

CHAR Function

The CHAR function converts an integer to the corresponding ASCII character representation.
argument is from 0 through 127.

Syntax

return value = CHAR (argument)

Specific Name Type of argument Type of return value
CHAR LOGICAL*1 CHARACTER
ftCHAR INTEGER*2 CHARACTER

CHAR INTEGER*4 CHARACTER

CMPLX Function

The CMPLX function converts an integer or real number to a complex number (COMPLEX*8). If
you use CMPLX with one argument, the function uses the argument for the real portion of the
complex value. The imaginary portion becomes 0.

If you use CMPLX with two arguments, the function uses argumentl for the real portion of the
complex value and argument2 for the imaginary part. Both arguments must be of the same data
type.

Syntax

return value = CMPLX(argumentI{,argument2])

Specific Name Type of argument Type of return value
- INTEGER*2 COMPLEX*8
- INTEGER*4 COMPLEX*8
- . x REAL*4 COMPLEX*8
- REAL*8 COMPLEX*8
= COMPLEX*8 COMPLEX*8
H- COMPLEX*16 COMPLEX*8
10-14 GLS FORTRAN Language Reference Manual

System Subroutines, Built-ins, and Intrinsic Functions

CONJG Function
The CONJG function returns the conjugate of a complex number.
Syntax

return value = CONJG(argument)

Specific Name Type of argument Type of return value
CONJG COMPLEX*8 COMPLEX*8
#DCONIJG COMPLEX*16 COMPLEX*16

COS Function

The COS function returns the trigonometric cosine of a real or complex number expressed in
radians.

Syntax

return value = COS(argument)

Specific Name Type of argument Type of return value
CcOos REAL*4 REAL*4
DCOS REAL*8 REAL*8
CCOS COMPLEX*8 COMPLEX*8
Hcpcos COMPLEX*16 COMPLEX*16

#1f you do not use the ~X181 compile option, the CDCOS function must by replaced by ZCOS.

COSD Function

The COSD function returns the trigonometric cosine of a real or complex number expressed in
degrees.

Syntax

return value = COSD(argument)

Specific Name Type of argument Type of return value
#cosp REAL*4 REAL*4
#DCOSD REAL*8 REAL*8

GLS FORTRAN Language Reference Manual 10-15

System Subroutines, Built-Ins, and Intrinsic Functions

COSH Function

The COSH function returns the trigonometric hyperbolic cosine of a real number.

Syntax
return value = COSH(argument)
Specific Name Type of argument
COSH REAL*4
DCOSH REAL*8

DBLE Function

Type of return value

REAL*4
REAL*8

The DBLE function converts an integer, real, or complex number to a double precision real
number. If the number you want to convert is already a double precision real number, the DBLE

function simply returns that double precision number.

For a complex number, the DBLE function ignores the imaginary portion and returns the real

portion converted to double precision.
Syntax
return value = DBLE(argument)

Specific Name

H- INTEGER*2
= INTEGER*4
DBLE REAL*4
= REAL*8
- COMPLEX*8
H- COMPLEX*16

10-16

Type of argument

Type of return value

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

GLS FORTRAN Language Reference Manual

System Subroutines, Built-ins, and Intrinsic Functions

DCMPLX Function

#The DCMPLX function converts an integer or real number to a complex number
(COMPLEX*16). If you use DCMPLX with one argument, the function uses the argument for the
real portion of the complex value. The imaginary portion becomes 0.

If you use DCMPLX with two arguments, the function uses argumentl for the real portion of the
complex value and argument2 for the imaginary part. Both arguments must be of the same data

type.
Syntax

return value = DCMPLX(argumentI[,argument2])

Specific Name Type of argument Type of reiurn value
- INTEGER*2 COMPLEX*16
H- INTEGER*4 COMPLEX*16
- REAL*4 COMPLEX*16
- REAL*8 COMPLEX*16
- COMPLEX*8 COMPLEX*16
H- COMPLEX*16 COMPLEX*16

DFLOAT Function
The DFLOAT function converts an integer number to the REAL*8 data type.
Syntax

return value = DFLOAT (argument)

Specific Name Type of argument Type of return value
HDFLOTI INTEGER*2 REAL*8
#DFLOTJ INTEGER*4 REAL*8

GLS FORTRAN Language Reference Manual 10-17

System Subroutines, Built-ins, and Intrinsic Functions

DIM Function

The DIM function returns the difference between two integers or real numbers, if that difference is

a positive value. If argument] is greater than argument2, DIM returns the positive difference. If
argumentl is less than argument2, DIM returns 0. .

Syntax

return value = DIM(argumentl,argument2)

Specific Name Type of argument Type of return value
HI1IDIM INTEGER*2 INTEGER*2
#JIDIM INTEGER*4 INTEGER*4

DIM REAL*4 REAL*4
DDIM REAL*S REAL*8

DPROD Function

The DPROD function returns the product of two real number factors as a double precision real
number.

Syntax .
return value = DPROD (argumentl,argument2)
Specific Name Type of argument Type of return value

DPROD REAL*4 REAL*8

DREAL Function

#The DREAL function ignores the imaginary portion of a COMPLEX*16 number and returns the
real portion as a REAL*8 number.

Syntax
return value = DREAL(argument)
Specific Name Type of argument Type of return value

HDREAL COMPLEX*16 REAL*S .

10-18 GLS FORTRAN Language Reference Manual

Systemn Subroutines, Built-ins, and Intrinsic Functions

EXP Function

The EXP function returns the constant e raised to a specified real or complex exponent. argument is
the specified exponent.

Syntax

return value = EXP(argument)

Specific Name Type of argument Type of return value
EXP REAL*4 REAL*4
DEXP REAL*8 REAL*8
CEXP COMPLEX*8 COMPLEX*8
#CDEXP COMPLEX*16 COMPLEX*16

1f you do not use the -X181 compile option, the CDEXP function must by replaced by ZEXP.

FLOAT Function
The FLOAT function converts an integer number to the REAL*4 data type.
Syntax

return value = FLOAT(argument)

Specific Name Type of argument Type of return value
HFLOATI INTEGER*2 REAL*4
HFLOAT] INTEGER*4 REAL*4

IABS Function
The IABS function returns the absolute value of an integer number.
Syntax

return value = IABS(argument)

Specific Name Type of argument Type of return value
H1ABS INTEGER*2 INTEGER*2
HIJABS INTEGER*4 INTEGER*4

GLS FORTRAN Language Reference Manual 10-19

Systemn Subroutines, Built—Ins, and Intrinsic Functions

IADDR Function
The IADDR function returns the address of the specified argument.
Syntax .
return value = IADDR (argument)
Specific Name Type of argument Type of return value

IADDR all types INTEGER*4

IAND Function

7t The IAND function performs a logical AND of two integer arguments and returns an integer
result.

Syntax

return value = IAND(argumentl,argument2)

Specific Name Type of argument Type of return value
HIIAND INTEGER*2 INTEGER*2 .
HIIAND INTEGER*4 INTEGER*4

#1If you do not use the ~X181 compile option, the IAND function must by replaced by AND.
Example
The following two lines of code are functionally equivalent:

return value = argumentl. AND .argument2
return value = TAND (argument],argument2)

10-20 GLS FORTRAN Language Reference Manual

System Subroutines, Built-Ins, and Intrinsic Functions

IBCLR Function

The IBCLR function clears (sets to 0) the specified bit location and returns the integer value of
the supplied bit pattern with the specified bit cleared. Bit number ibit is cleared in the integer bit

pattern buf.
Syntax

return value = IBCLR(buf,ibir)

Specific Name Type of argument Type of return value
HIIBCLR INTEGER*2 INTEGER*2
##JIBCLR INTEGER*4 INTEGER*4

IBITS Function

The IBITS function returns a bit field, specified by starting bit and length, from an integer bit
pattern. buf is the bit pattern from which Jen number of bits are extracted starting at bit location

Start.

Syntax

return value = IBITS(buf,start,len)

Specific Name Type of argument Type of return value
FIIBITS INTEGER*2 INTEGER*4
#JIBITS INTEGER*4 INTEGER*4

IBSET Function

##The IBSET function sets to 1 the specified bit location and returns the integer value of the
supplied bit pattern with the specified bit set. Bit number ibif is set in the integer bit pattern buf.

Syntax

return value = IBSET (buf,ibif)

Specific Name Type of argument Type of return value
#IIBSET INTEGER*2 INTEGER*2
JIBSET INTEGER*4 INTEGER*4

GLS FORTRAN Language Reference Manual 10-21

System Subroutines, Built—ins, and Intrinsic Functions

ICHAR Function

The ICHAR function converts an ASCII character to its corresponding decimal integer value.

argumenr must have a length of 1. .

Syntax
return value = ICHAR (argument)
Specific Name Type of argument Type of return value

ICHAR CHARACTER INTEGER*4

IDIM Function

The IDIM function returns the difference between two integers numbers, if that difference is a
positive value. If argument] is greater than argument2, IDIM returns the positive difference. If
argumentl is less than argument2, IDIM returns 0.

Syntax
return value = IDIM(argumentl,argument2)
Specific Name Type of argument Type of return value .
HIIDIM INTEGER*2 INTEGER*2
HI1DIM INTEGER*4 INTEGER*4

IDINT Function
The IDINT function converts a real number to an integer. If the number you want to convert is a
real number with an absolute value less than 1, the IDINT function returns 0. If the number you

want to convert is a real number with an absolute value greater than 1, the IDINT function returns
the largest integer that does not exceed the value of the original number.

Syntax

return value = IDINT (argument)

Specific Name Type of argument Type of rémm value
HIIDINT REAL*8 INTEGER*2
JIDINT REAL*8 INTEGER*4

10-22 GLS FORTRAN Language Reference Manual

System Subroutines, Built-ins, and Intrinsic Functions

IDNINT Function
The IDNINT function converts a real number to the nearest integer.

Syntax

return value = IDNINT(argument)

Specific Name Type of argument Type of return value
FHIIDNNT REAL*8 INTEGER*2
##JIDNNT REAL*8 INTEGER*4

IEOR Function

1 The IEOR function performs an exclusive OR of two integer arguments and returns an integer
result.

Syntax

returit value = IEOR(argumentl,argument2)

Specific Name Type of argument Type of return value
HIEOR INTEGER*2 INTEGER*2
#JIEOR INTEGER*4 INTEGER*4

Example

The following two lines of code are functionally equivalent:

return value = argumentl XOR .argument2
return value = TEOR (argument],argument2)

GLS FORTRAN Language Reference Manual 10-23

System Subroutines, Built-Ins, and Intrinsic Functions

IFIX Function

The IFIX function converts a real number to an integer. If the number you want to convert is a

real number with an absolute value less than 1, the IFIX function returns 0. If the number you want
to convert is a real number with an absolute value greater than 1, the IFIX function returns the .

largest integer that does not exceed the value of the original number.

Syntax

return value = IF1X(argument)

Specific Name Type of argument Type of return value
HIIFIX ' REAL*4 INTEGER*2
HITFIX REAL*4 INTEGER*4

INDEX Function

The INDEX function returns an integer value that indicates the starting position of a substring
within a string.

Syntax .
return value = INDEX(string,substring) .
Specific Name Type of argument Type of return value
INDEX CHARACTER INTEGER*4

10-24 GLS FORTRAN Language Reference Manual

System Subroutines, Bullt-Ins, and Intrinsic Functions

INT Function

The INT function converts a real or complex number to an integer. If the number you want to
. convert is already an integer, the INT function returns that integer.

If the number you want to convert is a real number with an absolute value less than 1, the INT
function returns 0. If the number you want to convert is a real number with an absolute value
greater than 1, the INT function returns the largest integer that does not exceed the value of the
original number.

If the number you want to convert is a complex number, the INT function applies the same rules as
for real numbers to the real portion of the complex number. The INT function ignores the
imaginary portion of a complex number.

Syntax

return value = INT(argument)

Specific Name Type of argument Type of return value
- REAL*4 INTEGER*4
= REAL*8 INTEGER*4

HIINT REAL*4 INTEGER*2

HIINT REAL*4 INTEGER*4

. HIODINT REAL*8 INTEGER*2
f IIDINT REAL*8 INTEGER*4

- COMPLEX*8 INTEGER*2

s COMPLEX*8 INTEGER*4

H- COMPLEX*16 INTEGER*2

H- COMPLEX*16 INTEGER*4

GLS FORTRAN Language Reference Manual 10-25

System Subroutines, Built-Ins, and Intrinsic Functions

IOR Function

The IOR function performs an inclusive OR of two integer arguments and returns an integer
result.
Syntax .

retum value = I10R (argument1,argument2)

Specific Name Type of argument Type of return value
HI1I0R INTEGER*2 INTEGER*2
H#IIOR INTEGER*4 INTEGER*4

fH1If you do not use the —X181 compile option, the IOR function must by replaced by OR.
Example
The following two lines of code are functionally equivalent:

return value = argumentl . OR.argument2
return value = 10OR(argumentl,argument2)

ISHFT Function .

The ISHFT function performs a linear shift, either right or left, of a bit pattern. Bits shifted out
either end are discarded, and zero values are added on one end as old values are shifted out the
other end. buf is the integer value to be shifted, and the absolute value of number indicates the
number of bits to be shifted. A positive value for number indicates a shift to the left is to be
performed; a negative value indicates a shift to the right.

Syntax

return value = ISHFT (buf ,number)

Specific Name Type of argument Type of return value
HIUSHFT INTEGER*2 INTEGER¥*2
HIISHFT INTEGER*4 INTEGER*4

10-26 GLS FORTRAN Language Reference Manual

System Subroutines, Built—Ins, and Intrinsic Functions

ISHFTC Function

+ The ISHFTC function performs a linear shift, either right or left, of a bit pattern. Bits shifted
out either end are shifted in at the other end. The rightmost field bits of buf are shifted number
times, where number is taken as an absolute value. A positive value for number indicates a shift to
the left is to be performed; a negative value indicates a shift to the right.

Syntax

return value = ISHFTC(buf,number,field)

Specific Name Type of argument Type of return value
HIISHFTC INTEGER*2 INTEGER*4
HIISHFTC INTEGER*4 INTEGER*4

ISIGN Function

The ISIGN function transfers the sign of argument2 to argumentil. ISIGN returns the absolute value
of argumentl if argument2 is greater than or equal to 0, or the negative of argument1 if argument2 is
less than 0.

Syntax

return value = ISIGN(argumentl,argument2)

Specific Name Type of argument Type of return value
HIISIGN INTEGER*2 INTEGER*2
JISIGN INTEGER*4 INTEGER*4

LEN Function
The LEN function returns an integer value that indicates the length of a specified character entity.
Syntax
return value = LEN(argument)
Specific Name Type of argument Type of return value

LEN CHARACTER INTEGER*4

GLS FORTRAN Language Reference Manual 10-27

System Subroutines, Built-ins, and Intrinsic Functions

LGE Function

The LGE function compares two strings according to the rules of the ASCII character collating

sequence. LGE returns a logical TRUE if argumentl equals or follows argumeni2 in the collating

sequence. Otherwise, LGE returns a logical FALSE. .

If the string arguments are unequal in length, the LGE function pads the shorter string on the right
with blanks.

Syntax
return value = LGE(argumentl argument2)
Specific Name Type of argument Type of return value

LGE CHARACTER LOGICAL*4

LGT Function
The LGT function compares two strings according to the rules of the ASCII character collating
sequence. LGT returns a logical TRUE if argument! follows argument2 in the collating sequence.

Otherwise, LGT returns a logical FALSE.

If the string arguments are unequal in length, the LGT function pads the shorter string on the right .
with blanks.

Syntax
return value = LGT(argumentl,argument2)
Specific Name Type of argument Type of return value

LGT CHARACTER LOGICAL*4

10-28 GLS FORTRAN Language Reference Manual

System Subroutines, Built-Ins, and Intrinsic Functions

LLE Function

The LLE function compares two strings according to the rules of the ASCII character collating
sequence. LLE returns a logical TRUE if argument] equals or precedes argument2 in the collating
. sequence. Otherwise, LLE returns a logical FALSE.

If the string arguments are unequal in length, the LLE function pads the shorter string on the right
with blanks.

Syntax
return value = LLE(argumentl,argumen:2)
Specific Name Type of argument Type of retun value

LLE CHARACTER LOGICAL*4

LLT Function
The LLT function compares two strings according to the rules of the ASCII character collating
sequence. LLT returns a logical TRUE if argumentl precedes argumeni2 in the collating sequence.

Otherwise, LLT returns a logical FALSE.

. If the string arguments are unequal in length, the LLT function pads the shorter string on the right
with blanks.

Syntax
return value = LLT(argumentl,argument2)
Specific Name Type of argument Type of retumn value

LLT CHARACTER LOGICAL*4

GLS FORTRAN Language Reference Manual 10-29

System Subroutines, Built-Ins, and Intrinsic Functions

LOG Function
The LOG function returns the natural logarithm of a real or complex number.
Syntax

return value = LOG(argument)

Specific Name Type of argument Type of return value
ALOG REAL*4 REAL*4
DLOG REAL*8 REAL*8
CLOG COMPLEX*8 COMPLEX*8

H#CDLOG COMPLEX*16 COMPLEX*16

#1f you do not use the —X181 compile option, the CDLOG function must by replaced by ZLOG.

LOG10 Function
The LOGI10 function returns the base 10 logarithm of a real number.
Syntax

return value = LOG10(argument)

Specific Name Type of argument Type of return value
ALOGI10 REAL*4 REAL*4
DLOG10 REAL*8 REAL*8

MAX Function

The MAX function returns the largest value from a list of integer or real numbers. All arguments
must be of the same data type.

Syntax

return value = MAX(argumentl,argument2 {,argumentn...})

Specific Name Type of argument Type of return value
H#I1MAX0 INTEGER*2 INTEGER*2
H#IMAXO0 INTEGER*4 INTEGER*4
AMAX1 REAL*4 REAL*4
DMAX1 REAL*8 REAL*8

10-30 GLS FORTRAN Language Reference Manual

System Subroutines, Built-ins, and intrinsic Functions

MAXO Function

The MAXO function returns the largest value from a list of integer numbers. All arguments must be
of the same data type.

Syntax

return value = MAXO(argument] ,argument2 [,argumenm...])

Specific Name Type of argument Type of return value
frIMAXO INTEGER*2 INTEGER*2
#IimMaXxo INTEGER*4 INTEGER*4

MAX1 Function

The MAX1 function returns the largest value from a list of real numbers and converts the data type
to integer. All arguments must be of the same data type.

Syntax

return value = MAX1(argumentl,argument2 [,argumenm...})

Specific Name Type of argument Type of return value
HiIMAX1 REAL*4 INTEGER*2
ffiMaXx1 REAL*4 INTEGER*4

MIN Function

The MIN function returns the smallest value from a list of integer or real numbers. All arguments
must be of the same data type.

Syntax

return value = MIN(argument1,argumeni2 [,argumenm...])

Specific Name Type of argument Type of return value
H#IMINO INTEGER*2 INTEGER*2
IMINO INTEGER*4 INTEGER*4
AMIN1 REAL*4 REAL*4
DMIN1 REAL*8 REAL*8

GLS FORTRAN Language Reference Manual

System Subroutines, Built-Ins, and Intrinsic Functions

MINO Function

The MINO function returns the smallest value from a list of integer numbers. All arguments must

be of the same data type.
Syntax .

return value = MINO(argumentl argument2 [,argumentn...])

Specific Name Type of argument Type of return value
T IMINO INTEGER*2 INTEGER*2
IMINO INTEGER*4 INTEGER*4

MIN1 Function

The MIN1 function returns the smallest value from a list of real numbers and converts the data type
to integer. All arguments must be of the same data type.

Syntax

return value = MIN1(argumentl,argument2 [,argumentn...])

Specific Name Type of argument Type of return value .
FIMINI REAL*4 INTEGER*2
#IMIN1 REAL*4 INTEGER*4

MOD Function

Syntax

The MOD function returns the remainder from an integer or real number division. MOD divides
argumentl by argument2 and returns the remainder.

return value = MOD(argumentl,argument2)

Specific Name Type of argument Type of return value
ffimMoD INTEGER*2 INTEGER*2
#IMOD INTEGER*4 - INTEGER*4
AMOD REAL*4 REAL*4
DMOD REAL*8 REAL*8

10-32 GLS FORTRAN Language Reference Manual

System Subroutines, Built-ins, and Intrinsic Functions

NINT Function

The NINT function converts a real number to the nearest integer value. Note that the NINT
function converts the data type to integer.

Syntax

return value = NINT (argument)

Specific Name Type of argument Type of return value
FHININT REAL*4 INTEGER*2
HININT REAL*4 INTEGER*4

HIIDNNT REAL*§ INTEGER*2
f JIDNNT REAL*8 INTEGER*4

NOT Function
The NOT function returns the bit complement of an integer argument.
Syntax

return value = NOT (argument)

Specific Name Type of argument Type of return value
HINOT INTEGER*2 INTEGER*2
#iNot INTEGER*4 INTEGER*4

Example

The following two lines of code are functionally equivalent:

return value = .NOT.argument
return value = NOT (argument)

GLS FORTRAN Language Reference Manual 10-33

System Subroutines, Built-ins, and Intrinsic Functions

REAL Function

The REAL function converts an integer, real, or complex number to the REAL*4 data type. If the
number you want to convert is already a REAL*4, the REAL function returns that number.

For a complex number, the REAL function ignores the imaginary poriion and returns the real
portion.

Syntax
return value = REAL(argument)
Specific Name

Type of argument Type of return value

HFLOATI INTEGER*2 REAL*4
HFLOATI INTEGER*4 REAL*4
- INTEGER*4 REAL*4

= REAL*4 REAL*4
SNGL REAL*8 REAL*4

S COMPLEX*8 REAL*4

- COMPLEX*16 REAL*4

SIGN Function

The SIGN function transfers the sign of argument2 to argumentl. SIGN returns the absolute value
of argument] if argument2 is greater than or equal to 0, or the negative of argumentl if argumen:2 is
less than 0.

Syntax
retum value = SIGN(argumentl,argument2)
Specific Name

Type of argument Type of return value

FHIISIGN INTEGER*2 INTEGER*2
FIISIGN INTEGER*4 INTEGER*4
SIGN REAL*4 REAL*4
DSIGN REAL*8 REAL*8

10-34 GLS FORTRAN Language Reference Manual

System Subroutines, Built-Ins, and Intrinsic Functions

SIN Function
The SIN function returns the trigonometric sine of a real or complex number expressed in radians.
Syntax

return value = SIN(argument)

Specific Name Type of argument Type of return value
SIN REAL*4 REAL*4
DSIN REAL*8 REAL*8
CSIN COMPLEX*8 COMPLEX*8
fcosSIN COMPLEX*16 COMPLEX*16

H1f you do not use the —X181 compile option, the CDSIN function must by replaced by ZSIN.

SIND Function

#The SIND function returns the trigonometric sine of a real or complex number expressed in
degrees.

Syntax

return value = SIND(argument)

Specific Name Type of argument Type of return value
#SIND REAL*4 REAL*4
DSIND REAL*8 REAL*8

SINH Function
The SINH function returns the trigonometric hyperbolic sine of a real number.
Syntax

return value = SINH(argument)

Specific Name Type of argument Type of return value
SINH REAL*4 REAL*4
DSINH REAL*8 REAL*8

GLS FORTRAN Language Reference Manual 10-35

System Subroutines, Built-ins, and Intrinsic Functions

SQRT Function

The SQRT function returns the square root of a real or complex number.

Syntax .

return value = SQRT(argument)

Specific Name Type of argument Type of return value
SQRT REAL*4 REAL*4
DSQRT REAL*8 REAL*8
CSQRT COMPLEX*8 COMPLEX*8
#CDSQRT COMPLEX*16 COMPLEX*16

HIf you do not use the ~X181 compile option, the CDSQRT function must by replaced by
ZSQRT.

TAN Function

The TAN function returns the trigonometric tangent of a real number expressed in radians.

Syntax .

return value = TAN(argument)

Specific Name Type of argument Type of return value
TAN REAL*4 REAL*4
DTAN REAL*8 REAL*8

TAND Function
+ The TAND function returns the trigonometric tangent of a real number expressed in degrees.
Syntax

return value = TAND(argument)

Specific Name Type of argument " Type of return value

HTAND REAL*4 REAL*4
H#DTAND REAL*8 REAL*8

10-36 GLS FORTRAN Language Reference Manual

System Subroutines, Built-Ins, and Intrinsic Functions

TANH Function

The TANH function returns the trigonometric hyperbolic tangent of a real number.

. Syntax

return value = TANH (argument)

Specific Name Type of argument Type of return value
TANH REAL*4 REAL*4
DTANH REAL*8 REAL*8

ZEXT Function

#The ZEXT function copies logical or integer data types to integer and zero extends (fills) the
upper bytes with zeros when the data type of argument is smaller than the data type of the refurn
value.

Syntax

return value = ZEXT(argument)

. Specific Name Type of argument Type of return value
HIZEXT LOGICAL*1 INTEGER*2
HIZEXT LOGICAL*2 INTEGER*2
HIZEXT INTEGER*2 INTEGER*2
HIZEXT LOGICAL*1 INTEGER*4
HIZEXT LOGICAL*2 INTEGER*4
H#IZEXT LOGICAL*4 INTEGER*4
fHIZEXT INTEGER*2 INTEGER*4
#IZEXT INTEGER*4 INTEGER*4

GLS FORTRAN Language Reference Manual 10-37/(10-38 Blank)

GLS FORTRAN Language Reference Manual

Chapter 11

Records, Structures, and Unions

This chapter describes records, structures, and unions.

Records

H Records are data structures that are like arrays except that they allow you to group together
disparate but related items. For example, you can group time and temperatures, or names and
account balances, and so forth. Unlike arrays, the disparate items may even have different data
types. The format or structure of a record is defined via a STRUCTURE statement.

Note that "record” in this context bears no relation to a "record”, an external file, you can read or
write to.

Structure Declarations

A structure declaration defines the form of a record, as a blueprint defines the form of a building.
Just as several buildings may be built with different materials from the same blueprint, so several
different records may be defined with the same structure but with different names and contents.

Syntax

STRUCTURE /structure-name/
[data type declarations)
[PARAMETER statements)
[sub-structure and mapped common statements]
[union declarations)
END STRUCTURE

structure-name is a symbolic name used to reference the structure
One or more structure definition statements (data type declarations, PARAMETER statements, sub-

structure and mapped common statements, or union declarations) may be specified within the
STRUCTURE block ‘and may appear in any order.

11-1

Records, Structures, and Unions

Data type declaration statements are allowed in STRUCTURE statements, subject to the following

rules:

O All field names must be explicitly typed. Implicit typing, or typing via an IMPLICIT

statement has no effect within a STRUCTURE.

O Any valid FORTRAN data type can be used

O Array dimensions, if any, must be specified within the type statement. No DIMENSION

statements are allowed.

0O Adjustable size arrays and passed length CHARACTER declarations are not allowed

QO Field names within a single structure level must be unique, however names used in a
substructure may duplicate those specified in an outer structural level

Examples

STRUCTURE /ADDR_STRUCT/

CHARACTER*30 STREET_ADDR

CHARACTER*15 CITY

CHARACTER*2 STATE

INTEGER ZIP_CODE
END STRUCTURE

STRUCTURE /STUDENT_FILE/
CHARACTER*25 NAME
CHARACTER*15 MAJOR

RECORD /ADDR_STRUCT/

END STRUCTURE

11-2

ADDRESS

GLS FORTRAN Language Reference Manual

Records, Structures, and Unions

UNION Declarations

A union declaration allows you to define more than one set of fields within a STRUCTURE that
can be used to reference a single data area. Unlike an EQUIVALENCE statement, union declara-
tions allow a single data space to be used alternately. When fields of one map declarations are
referenced, the other map declaration values become undefined.

Syntax

UNION
MAP
field-declaration
[field-declaration]
END MAP
MAP

END MAP

END MAP]
. END UNION
field-declaration is any valid STRUCTURE field definition statement.
Examples
The following example defines the structure DATA_BUFFER, which can alternately contain payroll

data or vacation information. A structure of this form might be used to alternately read data from
an employee payroll file, or from the vacation file.

GLS FORTRAN Language Reference Manual 11-3

Records, Structures, and Unions

STRUCTURE /DATA_BUFFER/
CHARACTER*20 LAST_NAME
CHARACTER*15 FIRST_NAME
INTEGER EMPL_NBR

UNION
MAP
INTEGER HOURLY_ WAGE
INTEGER YTD_EARNING
END MAP
MAP
INTEGER VAC_RATE
INTEGER VAC_DAYS
END MAP
END UNION

END STRUCTURE

Using RECORDS and STRUCTURES

Records consist of one or more fields, which are either ordinary variables or array elements or
substructures themselves. Fields may be referenced either individually, or as an aggregate entity
involving the entire record.

Records may be referenced by aggregate fields and/or scalar fields. An aggregate field reference
refers to a single record or sub-structure. A scalar field reference refers to an individual variable or
array.
Syntax

record_namel.aggr-namel[.aggr-name...|[scalar-field)
record_name is the name used in a RECORD statement to identify a record.

aggr-name is the name of a field that is a substructure (a record or a nested structure
- declaration) within the record structure specified by the record name.

scalar-field is the name of a typed data item defined within the structure declaration.
Because all periods are used to delimit fields in record references, you should not define field

names that, when set off with periods, signify:relational operators (.EQ., .XOR.), logical constants
(.TRUE., .FALSE.), or logical operators (.AND., .NOT., .OR.).

11-4 GLS FORTRAN Language Reference Manual

Records, Structures, and Unions

Aggregate Assignment Statement

Aggregate record assignments may be made when the aggregates to the left and right of the equal

. sign have the same structure. Using the previous example, one could write:
GRADUATE(S5) . NAME =UNDERGRAD(47) .NAME
GRADUATE(5) . MAJOR =UNDERGRAD(47) .MAJOR
GRADUATE(5) . ADDRESS =UNDERGRAD(47) . ADDRESS
or simply
GRADUATE(5) =UNDERGRAD(47)

Scalar Field References

A scalar field reference refers to a single, typed data item and may be treated like an ordinary
reference to a FORTRAN variable or array element. The type conversion rules for these references
are the same as the rules for variables and array elements. Scalar field references may be used in
statement functions and executable statements. However, they may not be used in COMMON,
SAVE, NAMELIST, or EQUIVALENCE statements.

. Aggregate Field References in I/0 Statements

Aggregate field references may be used in unformatted I/O statements (one 1/O record is written
no matter how many aggregate and array name references there are in the I/O list) - but they may
not be used in formatted or NAMELIST 1/0 statements.

GLS FORTRAN Language Reference Manual * 11-5/(11-6 Blank)

Appendix A

. ASCIlI and Hexadecimal Conversions

DECIMAL | ASCII | HEX | DECIMAL | ASCHI | HEX | DECIMAL | ASCIl | HEX | DECIMAL | ASCHl | HEX
0 NUL | 00 32 SP | 20 64 @ 40 926 60
1 SOH | o1 33 ! 21 65 A 41 97 a 61
2 STX | 02 34 " 22 66 B 42 98 b 62
3 ETX | 03 35 # 23 67 C 43 99 c 63
4 EOT | 04 36 $ 24 68 D 44 100 d 64
5 ENQ | 05 37 % 25 69 E 45 101 e 65
6 ACK | 06 38 & 26 70 F 46 102 1 66
7 BEL | 07 39 ' 27 71 G a7 103 g 67
8 | BS | 08 40 (28 72 H 48 104 h 68
9 [HT 09 41) 29 73 i 49 105 i 69
10 LF | oA 42 E 2A 74 J an 106 i 6A
11 v | 0B 43 + 2B 75 K 48 107 K 6B
12 FF | oC 44 2C 76 L 4c | - 108 I 6C
13 CR | oD 45 - 2D 77 M 4D 109 m 6D
14 SO | oE 46 . 2E 78 N 4E 110 n 6E
15 sl OF 47 / 2F 79 o 4F 111 0 6F
16 DLE | 10 48 0 30 80 P 50 112 p 70
17 DC1 | 11 49 1 31 81 Q 51 113 q 71
18 pcz | 12 50 2 32 82 R 52 114 ' 72
19 DC3 | 13 51 3 33 83 s 53 115 s 73

20 DC4 | 14 52 4 34 84 T 54 116 1 74
21 NAK | 15 53 5 35 85 u 55 117 u 75
22 SYN | 16 54 6 36 86 v 56 118 v 76
23 ETB | 17 55 7 37 87 w 57 119 w 77
24 CAN | 18 56 8 38 88 X 58 120 x 78
25 EM | 19 57 9 39 89 Y 59 121 y 79
26 suB | 1A 58 3A 20 z 5A 122 z 7A
27 ESC | 1B 59 ; 3B o1 [5B 123 { 78
28 Fs | 1C 60 < 3C 92 5C 124 f 7C
29 GS | 1D 61 - 3D 93] 50 125 } 7D
30 RS | 1E 62 > 3E 94 : SE 126 - 7E
31 us | 1F 63 ? 3F 95 - SF 127 DEL | 7F

GLS FORTRAN Language Reference Manual

A-1/(A-2 Blank)

Appendix B

VAX/VMS Language Extensions

Line Formatting Extensions

Comments may be indicated by C, !, or * in column 1
Comments may be indicated by ! in the statement field
D in column 1 is a debug statement indicator
Continuation convention extension: tab character followed by any of the characters 1..9
Allow up to 99 continuation lines
INCLUDE statement syntax: INCLUDE pathname
Not supported for INCLUDE statement:

Include files in text libraries

/LIST and /NOLIST options

Lexical Extensions

$, . in identifiers

Identifiers up to 31 characters long

‘nnn’O and ‘nnn’X octal and hexadecimal integer constants
Radix-50 constants

Hollerith typeless constants

Declaration Extensions

BYTE data type

DATA statement in any place in program unit

IMPLICIT NONE statement

VOLATILE statement

VIRTUAL statement

Extended PARAMETER statement with additional operators and functions

*n size qualifier on function names and identifier declarations

Declare multifield records with STRUCTURE statement (no initialization allowed)
Single subscript in EQUIVALENCE of multidimensional array

Initialization Extensions

Initialization in type declaration statements
Initialize CHARACTER variables with integer values
Initialize static and COMMON storage to 0 if not specified (UNIX only)

GLS FORTRAN Language Reference Manual

VAX/VMS Language Extensions

Expression Extensions

%VAL(), %REF(), %LOC(), accept and ignore %DESCR

Logical type allowed in integer context in expressions

Logical operators apply (bitwise) to integers .
Use non-integer type expression in integer context: convert to integer

Built-In Subroutine and Function Extensions

Degree-style trigonometric functions
System subroutines: DATE, IDATE, ERRSNS, EXIT, SECNDS, TIME, RAN, MVBITS

Statement Extensions

DO WHILE statement

END DO statement

Extended range DO loops

Ampersand (&) or asterisk (*) for alternative return

OPTIONS statement with full VAX syntax. Ignore all options except /14, /NOI4, /D_LINES

Input/Output .

NAMELIST

ACCEPT statement

TYPE statement

ENCODE/DECODE statements

Accept full VAX/VMS syntax for OPEN and CLOSE statements, but ignore most options
LIBM ('n) form of relative record specification

Format Extensions

O (octal) and Z (hexadecimal) edit descriptors, including the form On.n
H edit descriptor on input

Q edit descriptor

$ edit descriptor

Default field widths for IOZLFEDGA edit descriptors match data type
$ and \0 carriage control ~ mapped to UNIX carriage control

1Not a VAX/VMS extension, but supported by the GLS FORTRAN Compiler when the —-X181 compile option
is set.

B-2 GLS FORTRAN Language Reference Manual

VAX/VMS Language Extensions

Intrinsic Functions

ACOSD CDSQRT FLOATI IIEOR ISHFT JISHFT
AIMAXO COSD FLOATJ ITFIX ISHFTC JISHFTC
AIMINO DACOSD IAND IINT IZEXT JISIGN
AIMAXO0 DASIND IBCLR IIOR JIABS JMAXO0
AJMINO DATAN2D IBITS IISHFT JIAND JIMAX1
ASIND DATAND IBSET IISHFTC JIBCLR JMINO
ATAN2D DCMPLX IEOR IISIGN JIBITS JMIN1
ATAND DCONJG IIABS IMAXO0 JIBSET JMOD
BITEST DCOSD IIAND IMAX1 JIDIM JNINT
BJTEST DFLOAT NIBCLR IMINO JIDINT JNOT
BTEST DFLOTI IIBITS IMIN1 JIDNNT JZEXT
CDABS DFLOTJ IIBSET IMOD JIEOR NOT
CDCOS DIMAG IIDIM ININT JIFIX SIND
CDEXP DREAL IIDINT INOT JINT TAND
CDLOG DSIND IIDNNT IOR JIOR ZEXT
CDSIN DTAND

Compiler Complexity Equal to or Better Than VAX/VMS FORTRAN

o

DO and IF statement nesting

Arguments in a CALL or function reference
Named COMMON blocks

Format group nesting

Labels in computed GOTO

40 Parentheses in nested expressions

10 Include file nesting

99 Continuation lines (with compiler option)
132 Source line length in characters

31 Identifier length

2000 Constant length, character, and Hollerith
12 Constant length, Radix-50

7 Array dimensions

250 Number of names in a NAMELIST group

w
S

0ot Dt

g

Unimplemented VAX/VMS FORTRAN Extensions

REAL*16, COMPLEX*32

Indexed files

Expressions in FORMAT statements (F<i+j> <k-1>)
DELETE statement for relative files

REWRITE statements for relative files

Initialization of STRUCTUREs

DEFINE FILE statement

FIND statement

GLS FORTRAN Language Reference Manual B-3/(B-4 Blank)

Appendix C

Quick Reférence

This appendix contains a quick reference of GLS FORTRAN statements, system subroutines, and

built-in functions.

GLS FORTRAN Statements

Statement Syntax

ACCEPT ACCEPT format spec {,iolist]
ACCEPT * [,olist]
ACCEPT group

ASSIGN ASSIGN label TO symbolic name

Assigment (Arithmetic) symbolic name = arithmetic exp

(Character) symbolic name = character exp
(Logical) symbolic name = logical exp

BACKSPACE BACKSPACE {unit | ([UNIT]=unit {,JOSTAT=status] [,ERR=erriabel] }}

BLOCK DATA BLOCK DATA [symbolic name]

BYTE BYTE symbolic name [,symbolic name)...

CALL CALL symbolic name [(argument [,argument] ...}}

CHARACTER CHARACTER(*number | ("} | name [*number | (*}] {,name ["number |
1.

CLOSE CLOSE([UNIT=]unit number [,DISPOSE=disposition]
[.STATUS=status] [,ERR=errlabel]
[LIOSTAT=iostatus])

COMMON COMMON {/symbolic name/} common list [[.) / [symbolic name] /
common list] ...

COMPLEX COMPLEX[*number] symbolic name [,symbolic name] ...

CONTINUE CONTINUE

DATA DATA name list / constant list / [[,] name list / constant list /] ...

DECODE DECODE { char,format,loc [JOSTAT=status] [,ERR=erriabel)) [transfer
list}

GLS FORTRAN Language Reference Manual

Quick Reference

{cont.)
Statement Syntax
DIMENSION DIMENSION symbolic name {(dim {,dim]...) [,symbolic name (dim
Lim}..)] ...
DO DO label |,] variable = exp1, exp2 [,exp3]
DO WHILE DO [labe! [,]] WHILE (expression)

DOUBLE PRECISION

DOUBLE PRECISION symbolic name [,symbolic name] ...

ELSE ELSE..block..block

ELSE IF ELSE IF {logical exp) THEN

ENCODE Fr\:]CODE (char,format,loc [,|OSTAT=status] [,ERR=errlabel]) [transfer
is

END END

END DO END DO

END IF END IF

ENDFILE ENDFILE {unit | ([JUNIT=]unit [,IOSTAT=status) [,ERR=errlabel]) }

ENTRY ENTRY symbolic name { (dummy [,dummy] ...) |

EQUIVALENCE

EQUIVALENCE (item fist) {, (item list}] ...

EXTERNAL EXTERNAL symbolic name [,symbolic name] ...
FORMAT label FORMAT {([r] edit descriptor |, [r] edit descriptor ...])
FUNCTION type FUNCTION symbolic name (dummy [,dummy] ...)

GOTO {Assigned)
(Computed)
(Unconditional)

GOTO variable name [[,] (list)]
GOTO (list) {,] arith exp
GOTO label

IF (Arithmetic) IF (arithmetic exp) labell, label2, label3
(Block) IF (logical exp) THEN...statements END IF
{Logical) IF (logical exp) statement

IMPLICIT IMPLICIT type [*length] (letter) [, (letter)] ...

IMPLICIT NONE

INCLUDE | INCLUDE file-spec

GLS FORTRAN Language Reference Manual

Quick Reference

{cont.)
Statement Syntax

INQUIRE INQUIRE({FILE="filename’ | {UNIT=]unit}
[LACCESS=acc] [,BLANK=b/] [, CARRIAGECONTROL=car]
[.DIRECT=dir] [,ERR=erriabel] [,EXIST=exstat] [,FORM=formtype]
[,FORMATTED=form] [IOSTAT=iostat] [, NAME=fn]
[,NAMED=namestat] [NEXTREC=next] [NUMBER=num]
[LOPENED=0pstat] {, ORGANIZATION=org} [, RECL=reclen]
[.SEQUENTIAL=seq] [UNFORMATTED=unf] }

INTEGER INTEGER([*number] symbolic name [,symbolic name]...

INTRINSIC INTRINSIC symbolic name [,symbolic name]...

LOGICAL LOGICAL[*number) symbolic name [,symbolic name]...

NAMELIST NAMELIST /group/ namelist [[,)/group/ namelist

OPEN OPEN({ [UNIT]=unit} [,ACCESS=acc] [ASSOCIATEVARIABLE=var]
[.BLANK=b/] [, CARRIAGECONTROL=car] [,DISPOSE=disposition]
[.ERR=erriabel] [,FILE=name] [,FORM=formtype] [, JOSTAT=iostatus]
[LORGANIZATION=0rg] [,RECL=reclen] [STATUS=status]
[LUSEROPEN=routine])

OPTIONS OPTIONS option [,option]

PARAMETER PARAMETER (symbolic name = expression [,symbolic = expression]
..
PARAMETER symbolic name = expression

PAUSE PAUSE [message)

PRINT PRINT format [,output list]

PROGRAM PROGRAM symbolic name

READ READ ({ [UNIT=]unit} { [FMT=]format | [NML=]group] [,REC=recnum]
[.IOSTAT=iostat] [,ERR=erriabel] [,END=endlabel]) finput list]
READ format {input list]

REAL REAL[*number] symbolic name [.symbolic name]...

RETURN RETURN [integer exp]

REWIND REWIND {unit | ([UNIT=}unit [,IOSTAT=iostatus]
[,ERR=erriabel] } }

SAVE SAVE [symbolic name [,symbolic name)]...]

STOP STOP [message]

SUBROUTINE SUBROUTINE symbolic name [(dummy [,dummy] ...)]

GLS FORTRAN Language Reference Manual

Quick Reference

Statement
TYPE TYPE format spec [,iolist]
TYPE * [Jjolist]
TYPE group
VIRTUAL VIRTUAL
VOLATILE VOLATILE nlist
WRITE WRITE ([UNIT=} unit {, [FMT=] format | [NML=}group]

[.REC=recnum] [,IOSTAT=/jostat] [ERR=errlabel]) [output list]

GLS FORTRAN Language Reference Manual

System Subroutines

Quick Reference

Subroutine

Syntax

Description

DATE

CALL DATE (datebuf)

Returns system date as
a character string.

ERRSNS

CALL ERRSNS
(ferrnum, iosts,iostv,iunit,icondval)

Returns information
about most recent
runtime error.

EXIT

CALL EXIT [(istatus))

Terminates program,
closes files, and exits to
operating system.

IDATE

CALL IDATE (imon,iday,iyear)

Returns integer values
for month, day, and year

MVBITS

CALL MVBITS (src,sstart,len,dst,dstart)

Copies a bit pattern
from one location to
another.

RAN

ranvalu = RAN (iseed)

Returns a pseudo-
random number between
0.0 and 1.0 inclusive.

SECNDS

delta = SECNDS (t)

Returns ditference
between supplied value

and current system time.

TIME

CALL TIME (timebuf)

Returns system time as
a character string.

GLS FORTRAN Language Reference Manual

Quick Reference

Built—in Functions

Function Syntax Description
%VAL %VAL(argument) Passes arguments by value.
%REF %REF(argument) Passes arguments by reference.
%LOC %LOC(argument) | Returns the interna! address of the
storage element argument as an
INTEGER"4 value.

GLS FORTRAN Language Reference Manual

Glossary

The FORTRAN-77 standard defines the concepts and terminology specific to the language. This
glossary presents the GLS FORTRAN terms.

—-—A—-

array
Sequence of data items collectively identified with one unique symbolic name and a data

type.

array elements
Individual data items that form an array. To reference a particular element in an array,
specify the array name with a subscript. The subscript value is an integer expression that
determines which element is referenced.

array declarator
Symbolic name and number of dimensions in an array. The number of dimensions deter-
mines the number and configuration of array elements.

association
Enables data to be identified by different symbolic names within the same program unit or
. in different program units within the same executable program. There are four forms of
association: common, equivalence, argument, and entry.

~B~-

block data subprogram
Nonexecutable program unit used to provide initial values for variables and array elements
in named common blocks. A block data subprogram has a BLOCK DATA statement as its
first statement.

-C-

character storage unit
Amount of storage required to hold one character of data. GLS FORTRAN uses one byte
of storage per character.

comment line

Character sequence within the program code, used to provide program documentation. A
comment line does not affect an executable program in any way. All comment lines start

. with the letter C or an asterisk.

GLS FORTRAN Language Reference Manual Glossary-1

Glossary

constant
Program entity that has an unchanging value during the execution of a program. Constants
can be arithmetic constants, logical constants, or character constants.

continuation line
Used to contain portions of a GLS FORTRAN statement that exceed the 72 character
columns available in the initial line for statement syntactic items. A statement can have up
to nineteen continuation lines.

-D-

defined
Definition status of a program entity. A defined entity has a value that does not change
until the entity is redefined with a different value. An entity must be defined before it can
be referenced.

definition status
Defined or undefined condition of a syntactic entity.

dummy argument .
Symbolic name or an asterisk (*) used in the argument list of a procedure. Symbolic name
dummy arguments hold a place for actual arguments passed to the procedure in the
procedure reference. Symbolic name dummy arguments can be variables, arrays, array
elements, functions, or subroutines, and must correspond to the number, type, and se-
quence of actual arguments in the procedure reference. An asterisk dummy argument .
indicates that the corresponding actual argument in a subroutine reference is an alternate
return specifier for the subroutine. |

—E- |

entity
Generic term that refers to any language or program element, such as a program unit, a
procedure, a variable, or an array. The term syntactic entity or syntactic item refers to
individual elements that make up statements and expressions, such as statement labels,
keywords, symbolic names, constants, operators, and special characters.

executable program
Program units that consists of a main program and any number, including zero, of subpro-
grams and external procedures. An executable program cannot have more than one main
program.

executable statement
Any statement that specifies some processing action, such as a GOTO or RETURN

statement. . |

Glossary—2 GLS FORTRAN Language Reference Manual

Glossary

external procedure
Subroutine or external function specified outside of the program unit that calls or refer-
ences it. External procedures can be written in another language for use in a GLS
FORTRAN program.

-F-—-

function subprogram)
Executable procedure that can be referenced in an expression. A function subprogram
returns a value to the expression that references it. There are three categories of functions:
intrinsic, statement, and external.

-I-

initial line
First line of a statement. If the statemen! exceeds the initial line, you can use up to nineteen
continuation lines.

initially defined
Definition status of an entity. An entity is initially defined if it is assigned a value in a
DATA statement.

—K—-

keyword
Sequence of letters that identify a statement, intrinsic function, or statement separator.
Examples are DIMENSION, CONTINUE, ABS, SQRT, THEN, and TO.

-L—-

list
Nonempty sequence of syntactic entities separated by commas. The entities in the list are
called list items.

-M-

main program
Program unit that receives control from the operating system to begin execution of a GLS
FORTRAN program. Main programs can execute isolated from any other program unit or
can call and reference subprograms during execution. However, you cannot reference the
main program from a subprogram. There can be only one main program in an executable
GLS FORTRAN program.

GLS FORTRAN Language Reference Manual Glossary~3

Glossary

-N=—-

nonexecutable statement
Statements that classify and define program units, specify entry points in subprograms,
specify editing information, and specify initial values and execution characteristics for data.

numeric storage unit
Amount of storage required to hold an integer, real, or logical numeric value. A double
precision or complex numeric value uses two numeric storage units in a storage sequence.
The storage unit establishes a means of referring to data storage without implying a specific
storage technology.

—P-

procedure, procedure subprogram
Subroutine and function subprograms. There are three categories of function subprograms:
intrinsic functions, statement functions, and external functions. The term external proce-
dure refers to subroutines and external functions only. You can write external procedures in
another programming language for use in a GLS FORTRAN program.

program unit
Sequence of GLS FORTRAN statements and optional comment lines. A program unit is
either a main program or subprogram.

~R-

reference
Applies to syntactic entities and function procedures. To reference a syntactic entity means
to use the name of an entity in a statement that requires the value of that particular entity
for execution within the program context. To reference a function procedure means to use
the name of a function in an expression or statement that requires that particular function
operation for execution within the program context.

—-S—

scope
Extent to which a given symbolic name or statement label can affect a program. For
example, a statement label has the scope of a program unit. A statement label in one
program unit does not affect any other program unit.

sequence
Set of elements ordered by a one-to-one correspondence with the numbers 1, 2, 3, through
n. The number of elements in a sequence is n. An empty sequence contains no elements.

statement
Sequence of syntactic items. Except for assignment and statement function statements, all
statements begin with a keyword. Statements are written in one or more lines.

Glossary—4 GLS FORTRAN Language Reference Manual

Glossary

statement label
Sequence of one to five digits. One of the digits must be nonzero. Statement labels are used
to identify specific statements in a program.

. subprogram
Program unit that is called or referenced from either the main program or another subpro-
gram. There are two classes of subprograms: block data and procedures.

subroutine subprogram
External procedure. An external procedure is specified outside of the program unit that
calls it. A subroutine is referenced with the CALL statement.

substring
Contiguous sequence of characters that represents a portion of a character datum. A
character datum is a string of one or more characters. Substrings are identified with a
substring name. The substring name is used to define and reference the substring.

symbolic name
A sequence of alphanumeric characters. The first character in a symbolic name must be a
letter. Symbolic names can identify constants, variables, arrays, main programs, subpro-
grams, common blocks, and dummy procedures. Character sequences that serve within the
program context as format edit descriptors and keywords are not considered symbolic

names.
. syntactic item, syntactic entity
Generic terms that refer to individual elements that make up statements and expressions,

such as statement labels, keywords, symbolic names, constants, operators, and special
characters. See entity for more information.

-V-
variable
Entity that can assume a changing value during program execution through implicit or

explicit redefinition. A variable has both a name and a type.

VAX/VMS . .
The trademark of a proprietary computer system from Digital Equipment Corporation.

GLS FORTRAN Language Reference Manual Glossary—-5/(Glossary—6 Blank)

arguments, 6-4
actual, 6-4, 6-6
calling, 6-4
dummy, 6-4, 6-5
formal, 6-4
array declarators, 4-6
adjustable, 4-9
assumed-sized, 4-10
arrays, 4-6, 4-7
array declarator, 4-6
declare an array, 4-6
dimension declarators, 4-6
multidimensional, 4-9
one—-dimensional, 4-8
assignment statements, 9-1
arithmetic, 9-8
ASSIGN, 9-7
character, 9-9
DATA, 9-21
LOGICAL, 9-57
logical, 9-56
auxiliary I/O statements, 7-6
CLOSE, 7-7
INQUIRE, 7-7
OPEN, 7-6

built-in functions, 10-6, 10-7
%LOC, 10-7
%REF, 10-6
%VAL, 10-6

carriage control, 9-51
character, 5-7
comment lines, 2-4
complex, 5-7
constant, 4-1
hexadecimal, 4-2, 4-3
octal, 4-2, 4-3
Radix-50, 4-4
continuation lines, 2-6
control statements, 9-2
arithmetic IF, 9-45
assigned GOTO, 9-42
block IF, 9-46

GLS FORTRAN Language Reference Manual

INDEX

CALL, 9-14

computed GOTO, 9-43
CONTINUE, 9-20
DO, 9-25

DO WHILE, 9-27
ELSE, 9-29

ELSE IF, 9-30

END, 9-32

END DO, 9-33

END IF, 9-34
INCLUDE, 9-49
logical IF, 9-47
OPTIONS, 9-68
PAUSE, 9-73
RETURN, 9-80

STOP, 9-83
unconditional GOTQO, 9-44

data transfer, 7-7
editing performed during the transfer, 7-8
formatted, 7-7
unformatted, 7-9
data transfer statements, 7-5
DECODE, 7-6
ENCODE, 7-6
PRINT, 7-5
READ, 7-5
WRITE, 7-5
data types
character, 3-1, 3-5
complex, 3-1, 3-4
double precision, 3-1, 3-4
Hollerith, 3-1, 3-6
integer, 3-1
logical, 3-1, 3-5
real, 3-1, 3-3
size qualifier, 3-1
specify a data type, 3-6
dimension declarators, 4-6

edit descriptors
$, 8-18

edit descriptors, 8-3
A,D,E,F,G,I,and L, 83

Index—1

INDEX [continued]

edit descriptors [continued]
Alw], 8-4
conditional line—termination descriptor :,
8-23
D, E, F, and G, 8-10
D,E,F, G, and]I, 85
Dw.d and Ew.d[Ee], 8-6
Fw.d, 8-7, 8-8
Gw.d[Ee], 8-8
Iw and Iw.m, 8-11
kP, 8-20
line-termination descriptor /, §-22
Lw, 8-15
nH, 8-17
nonrepeatable, 8-10, 8-16
numeric, 8-5
O and Z, 8-3, 8-5
Ow{.m], 8-12
repeatable, 8-3
S, SS, and SP, 8-21
Tc, TLc, TRc, and nX, 8-21
Zw[.m], 8-13
expressions, 5-1, 5-4
arithmetic, 5-3
character, 5-5
logical, 5-8
precedence, 5-2
relational, 5-6
extended-range DO loop, 9-26
external procedure, 6-5

fields
aggregate, 11-4
scalar, 11-4
file, 7-1
accessing, 7-3
file disposition, 9-65
file organization, 9-52
file positioning statements, 7-6
BACKSPACE, 7-6
ENDFILE, 7-6
REWIND, 7-6
floating—point, 8-6
format specification, 8-1

Index-2

character, 8-2
editing of character, logical, and numeric
data, 8-3

format, 8-1

format control, 8-2

list—directed formatting, 8-23

list-directed input, 8-24

list-directed output, 8-26

repeatable edit descriptors, 8-3
functions, 6-6

external, 6-7

statement, 6~-7

hexadecimal constant, 4-2, 4-3

I/0 statements, 7-3, 9-3
ACCEPT, 9-6
auxiliary 1/0, 7-6
BACKSPACE, 9-10
CLOSE, 9-16
DECODE, 9-23
ENCODE, 9-31
ENDFILE, 9-35
file positioning, 7-6
FORMAT, 9-40
INQUIRE, 9-50
OPEN, 9-64
PRINT, 9-74
READ, 9-77
REWIND, 9-81
TYPE, 9-85
WRITE, 9-88

1/0 unit, 7-2

intrinsic functions, 10-8 70 10-37
ABS function, 10-8
ACOS function, 10-9
ACOSD function, 10-9
AIMAG function, 10-9
AINT function, 10-10
AMAXO function, 10-10
AMINO function, 10-11
ANINT function, 10-11
ASIN function, 10-11
ASIND function, 10-12

GLS FORTRAN Language Reference Manual

INDEX [continued]

intrinsic functions [continued]
ATAN function, 10-12
ATAN? function, 10-13
ATAN2D function, 10-13
ATAND function, 10-12
BTEST function, 10-13
CHAR function, 10-14
CMPLX function, 10-14
CONIJG function, 10-15
COS function, 10-15
COSD function, 10-15
COSH function, 10-16
DBLE function, 10-16
DCMPLX function, 10-17
DFLOAT function, 10-17
DIM function, 10-18
DPROD function, 10-18
DREAL function, 10-18
EXP function, 10-19
FLOAT function, 10-19
IABS function, 10-19
IADDR function, 10-20
IAND function, 10-20
IBCLR function, 10-21
IBITS function, 10-21
IBSET function, 10-21
ICHAR function, 10-22
IDIM function, 10-22
IDINT function, 10-22
IDNINT function, 10-23
IEOR function, 10-23
IFIX function, 10-24
INDEX function, 10-24
INT function, 10-25
IOR function, 10-26
ISHFT function, 10-26
ISHFTC function, 10-27
ISIGN function, 10-27
LEN function, 10-27
LGE function, 10-28
LGT function, 10-28
LLE function, 10-29
LLT function, 10-29
LOG function, 10-30

GLS FORTRAN Language Reference Manual

LOG10 function, 10-30
MAX function, 10-30
MAXO0 function, 10-31
MAX1 function, 10-31
MIN function, 10-31
MINO function, 10-32
MINI1 function, 10-32
MOD function, 10-32
NINT function, 10-33
NOT function, 10-33
REAL function, 10~34
SIGN function, 10-34
SIN function, 10-35
SIND function, 10-35
SINH function, 10-35
SQRT function, 10-36
TAN function, 10-36
TAND function, 10-36
TANH function, 10-37
ZEXT function, 10-37

NAMELIST record format, 9-60
NAMELIST-directed 1/0, 9-58 10 9-63
nonrepeatable edit descriptors, 8-16

octal constant, 4-2, 4-3
OPEN routine
user-supplied, 9-66

procedures, 6—4

program lines, 2-1
column-based format, 2-2, 2-3
comment lines, 2-2
continuation lines, 2-1
free-field format, 2-2
initial line, 2-1

program unit, 6-4

program units, 6-1, 6-2
block data subprograms, 6-2, 6-3
procedures, 6-2

Radix-50, 4-4, 4-5
record, 7-1

Index-3

special characters, 2-5

specification statements, 9-4

BYTE, 9-13
CHARACTER, 9-15
COMMON, 9-18
COMPLEX, 9-19
DIMENSION, 9-24

DOUBLE PRECISION, 9-28

EQUIVALENCE, 9-37
EXTERNAL, 9-39
IMPLICIT, 9-48
IMPLICIT NONE, 9-48
INTEGER, 9-54
INTRINSIC, 9-55
NAMELIST, 9-58
PARAMETER, 9-70
REAL, 9-79
SAVE, 9-82
VIRTUAL, 9-86
VOLATILE, 9-87
statements, 9-1
ACCEPT, 9-6
arithmetic, 9-8
arithmetic IF, 9-45
ASSIGN, 9-7
assigned GOTO, 9-42
BACKSPACE, 9-10
BLOCK DATA, 9-12
block IF, 9-46
BYTE, 9-13
CALL, 9-14
CHARACTER, 9-15
character, 9-9
CLOSE, 9-16
COMMON, 9-18
COMPLEX, 9-19
computed GOTO, 9-43
CONTINUE, 9-20
DATA, 9-21
DECODE, 9-23
DIMENSION, 9-24
DO, 9-25
DO WHILE, 9-27

DOUBLE PRECISION, 9-28

index—4

INDEX [continued]

ELSE, 9-29
ELSE IF, 9-30
ENCODE, 9-31
END, 9-32
END DO, 9-33
END IF, 9-34
ENDFILE, 9-35
ENTRY, 9-36
EQUIVALENCE, 9-37
EXTERNAL, 9-39
FORMAT, 9-40
FUNCTION, 9-41
IMPLICIT, 9-48
IMPLICIT NONE, 9-48
INCLUDE, 9-49
INQUIRE, 9-50
INTEGER, 9-54
INTRINSIC, 9-55
LOGICAL, 9-57
logical, 9-56
logical IF, 9-47
NAMELIST, 9-58
nonexecutable, 2-1
OPEN, 9-64
OPTIONS, 9-68
PARAMETER, 9-70
PAUSE, 9-73
PRINT, 9-74
PROGRAM, 9-76
READ, 9-77
REAL, 9-79
RETURN, 9-80
REWIND, 9-81
SAVE, 9-82
STOP, 9-83
SUBROUTINE, 9-84
TYPE, 9-85
unconditional GOTOQO, 9-44
VIRTUAL, 9-86
VOLATILE, 9-87
WRITE, 9-88
structural statements, 9-5
BLOCK DATA, 9-12
ENTRY, 9-36

GLS FORTRAN Language Reference Manual

INDEX [continued]

. structural statements [continued]
FUNCTION, 9-41
PROGRAM, 9-76
SUBROUTINE, 9-84
structure declaration, 11-1
subroutine, 6-5
substring, 4-11
symbolic name, 2-3
system subroutines
DATE, 10-2
ERRSNS, 10-2
EXIT, 10-2
GETARG, 10-3
IARGC, 10-3
IDATE, 10-3
MVBITS, 10-4
RAN, 10-4
SECNDS, 10-5
TIME, 10-5

. union declaration, 11-3

variables, 4-5

GLS FORTRAN Language Reference Manual Index—5/(Index—6 Blank)

Please comment on the publication’s completeness, accuracy, and readability. We also
appreciate any general suggestions you may have to improve this publtication.

If you found any errors in this publication, please specify the page number or include a
copy of the page with your remarks.

Your comments will be promptly investigated and appropriate action will be taken.

O If you require a written answer please check this box and include your address below.

Comments:

Manual Title

Manual Order Number Issue Date

Name Position

Company

Address

Telephone ()

S3LvVLS d3iiNn
JHL NI
a3UVA i
AYVSS3I03N
JOVISOd ON

088 "S°W ‘NOLLVINIWNNDOOAd TVIOINHOIL ‘uonusny

6609—0veee 14 ‘ITvayaanvt "id
6609 X049 "'O°'d

avod gvN2W "M 0591

"ONI ‘SWALSAS HILNDIWOD HYINAOW

33SS3HAAV AL dIvd 39 THM 3DV1LSOd

B60€EE 14 ‘3TvAH3IANVYT "Ld ¥29€ "ON LIWH3d SSV1O LSHId

TIVIN A'1ddY SSANISNH

an AEG company

MODCOMP, founded in 1970, is a
worldwide supplier of high-
performance, real-time computer
systems, products, and services to
the industrial automation, energy,
transportation, scientific, and
communications markets.
MODCOMP is an AEG company.

Corporate Headquarters:
Modular Computer Systems, Inc
1650 West McNab Road

P.O. Box 6099

Ft. Lauderdale, FL 33340-6099
Tel: (305) 974-1380

Twx: 510-956-9414

International Headguarters:
Modular Computer Services, Inc
The Business Centre

Molly Millars Lane

Wokingham, Berkshire

RG11 2JQ, UK

Tel: 0734-786808, TLX: 851849149

Latin American-Caribbean
Headquarters:

Modular Computer Systems, Inc.,
1650 West McNab Road

P.O. Box 6099

Ft. Lauderdale, FL 33340-6099
Tel: (305) 977-1795, TLX: 3727852

Canadian Headguarters:
MODCOMP Canada, Ltd.,

400 Matheson Blvd. East, Unit 24
Mississauga, Ontario

Canada L4Z 1N8

Tel: (416) 890-0666

Fax: (416) 890-0266

Sales & Service Locations
Throughout the World

Copyright © 1989, Modular Computer Systems, Inc.
MODCOMP is a registered trademark of Modular Computer Systems, Inc

ation. are subject fo change without notice

The technical contents of ihis document whie accurate as of the date of public:

Printed in USA e

Library Reference Manual

GLS™ FORTRAN Interface

to System Services
Open Architecture Systems

215—-856001—-002

Propety 7 RECEIVED DEC 2 2 0gb

o of —. :
LOGICAL DATA CORPOHAT[ON
o

MANUAL HISTORY

Manual Number: 215-856001-002

Title: GLS FORTRAN Interface to System Services Library Reference Manual

Revision Level Date Issued
000 11/89
001 05/90
002 02/91

Description
Initial Issue.

Reissue. Corrected TIMES(2F) and pathnames of in-
stalled directories to reflect INSTALL script.

Reissue. Compatible with B.0 of GLS compilers for open
architecture systems. Added new system calls.

Contents subject to change without notice.

MODCOMP, Tri-Dimensional, Tri-D, REAL/IX, and CLASSIC are registered trademarks of Modular

Computer Systems, Inc.

GLS is a trademark of Modular Computer Systems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

Copyright © 1989, 1991 by Modular Computer Systems, Inc.

All Rights Reserved.
Printed in the United States of America.

GLS FORTRAN Interface to System Services

il

PROPRIETARY NOTICE

THE INFORMATION AND DESIGNS DISCLOSED HEREIN WERE ORIGINATED BY AND ARE THE PROPERTY OF
MODULAR COMPUTER SYSTEMS, INC. (MODCOMP). MODCOMP RESERVES ALL PATENT, PROPRIETARY DESIGN,
MANUFACTURING, REPRODUCTION, USE, AND SALES RIGHTS THERETO, AND RIGHTS TO ANY ARTICLE
DISCLOSED THEREIN, EXCEPT TO THE EXTENT RIGHTS ARE EXPRESSLY GRANTED TO OTHERS. THE FOREGOING
DOES NOT APPLY TO VENDOR PROPRIETARY PARTS.

SPECIFICATIONS REMAIN SUBJECT TO CHANGE IN ORDER TO ALLOW THE INTRODUCTION OF DESIGN
IMPROVEMENTS.

FOR GOVERNMENT USE THE FOLLOWING SHALL APPLY:
RESTRICTED RIGHTS LEGEND

USE, DUPLICATION, OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
RIGHTS IN DATA CLAUSES DOE 952.227-75, DOD 62,227-7013, AND NASA 18-52.227-74 (AS THEY APPLY TO
APPROPRIATE AGENCIES).

MODULAR COMPUTER SYSTEMS, INC.
1650 WEST McNAB ROAD

P.O. BOX 6099

FORT LAUDERDALE, FL 33340-609%

THIS MANUAL IS SUPPLIED WITHOUT REPRESENTATION OR WARRANTY OF ANY KIND. MODULAR COMPUTER
SYSTEMS, INC. THEREFORE ASSUMES NO RESPONSIBILITY AND SHALL HAVE NO LIABILITY OF ANY KIND
ARISING FROM THE SUPPLY OR USE QF THIS PUBLICATION OR ANY MATERIAL CONTAINED HEREIN.

GLS FORTRAN Interface to System Services

PREFACE

Audience
This manual is written for programmers using the General Language System (GLS) FORTRAN
. compiler. It assumes you have previous FORTRAN programming experience.

Subject
This manual describes how to install and use the GLS FORTRAN system calls library. Each system
call includes a synopsis, description, and related error definitions.

Product Requirements
The FORTRAN interface system calls are used with the GLS FORTRAN compiler on an open
architecture system under the REAL/IX Operating System.

Related Publications
Refer to the following manuals for additional information. When you order additional manuals, use
the manual order number listed below. The most current revision level (REV) will be shipped.

GLS FORTRAN Language Reference Manual (210-856001-REV)
Describes the form and interpretation of language elements specific to GLS FORTRAN.,

GLS Programming Guide for Open Architecture Systems (216-856005-REV)
Describes how to install and execute the GLS C, FORTRAN, and Pascal compilers.

GLS Symbolic Debugger User's Guide (216-856007-REV)
Describes how to imstall and use the GLS Symbelic Debugger (mndl) and its rules and sytax.

REAL/IX Operating System, 97xx Systems Concepts and Characteristics (205-855001-REV)
Gives an overview of the internals of the REAL/IX Operating System and introduces the
available tools and facilities.

REAL/IX Reference Manual

Sections 1, IM, and IR

Sections 2, 3, and 5
Contains manual pages for user commands (Section 1), administrative commands (Sec-
tion 1M), realtime commands (Section 1R), system calls (Section 2), library routines
(Sections 3C, 3M, 3N, 38, and 3X), and miscellaneous information (Section 5).

GLS FORTRAN Interface to System Services v

vl

MODCOMP Service and Assistance

MODCOMP® offers a variety of programs and services that demonstrate our commitment to
customer satisfaction. Our Technical Education department provides comprehensive hands-on
instruction either at our facilities or at customer—designated sites. OQur worldwide field service
organization is ready to provide installation assistance, free service during the warranty period, and
flexible service programs tailored to your requirements.

Questions, Problems, and Suggestions

Your MODCOMP sales and service representatives can help you with any questions, problems, or
suggestions you may have regarding our products and services. In addition, for your convenience
MODCOMP maintains the following toll-free telephone numbers at which we can be reached for
questions, problems, and suggestions. Please feel free to use the following numbers:

QO For questions, sales information, or suggestions: in the U.S. and Canada, 1-800-255-2066
(In countries outside the U.S. and Canada, please call your regional sales support office or

1-305-974-1380 extension 1800 worldwide.)

QO For service: in Florida, 1-800-432-1405; in the U.S., 1-800-327-8928; in Canada,
1-416-890-0666 (In countries outside the U.S. and Canada, please call your regional serv-
ice/support office.)

3 For Technical Education information: in the U.S., 1-305-977-1708 (In countries outside the
U.S., please call your regional support office.)

For comments about documentation, please use the response form at the back of this manual.

GLS FORTRAN Interface to System Services

002

ACCEPT(2F)
BIND(2F)
CONNECT(2F)
GETMSG(2F)
GETPEERNAME(2F)
GETSOCKNAME(2F)
GETSOCKOPT(2F)
LISTEN(2F)
MEMCTL(2F)
PATHCONF(2F)
PUTMSG(2F)
READLINK(2F)
RECV(2F)
RENAME(2F)
SEND(2F)
SETGROUPS(2F)
SETPGID(2F)
SETPSR(2F)
SIGACTION(2F)
SIGPENDING(2F)
SIGPROMASK(2F)
SIGSETOPS(2F)
SLEEP(2F)
SOCKET(2F)
SYMLINK(2F)
UMOUNT(2F)
WAITPID(2F)

001

REVISION SUMMARY

O New system calls were added

Accepts a connection on a socket

Binds a name to a socket

Initiates a connection on a socket

Gets next message off a stream

Gets name of connected peer

Gets socket name

Gets and sets options on sockets

Listens for connections on a socket
Controls write/execute attributes of memory
Gets configurable pathname variables
Sends a message on a stream

Reads value of a symbolic link

Receives a message from a socket
Changes the name of a file

Sends a message from a socket

Sets group access list

Sets process group ID for job control
Sets/gets Processor Status Register (PSR)
Examines or changes signal action
Examines pending signals

Examines and changes blocked signals
Manipulates signal sets

Suspends execution for interval

Creates an endpoint for communication
Makes symbolic link to a file

Unmounts a file system

Waits for child process to stop or terminate

O Corrected TIMES(2F) and pathnames of installed directories to reflect INSTALL script.

GLS FORTRAN Interface to System Services

vii/(viii Blank)

TABLE OF CONTENTS

SYSTEM CALLS (2F)

T introduction to system calls and error numbers
absinterval il set the expiration time of a process interval timer
acancel cancel one or more asynchronous I/O requests
S O accepts a connection on a socket
ACCESS v vvvseeeneetseiasteteat et ate et e e e determine accessibility of a file
... enable or disable process accounting
... set a process alarm clock

read from file in an asynchronous manner

arimit ... e initialize structures before requesting an asynchronous read
arwfreeo free internal resources for asynchronous 1/0 from the process
Y initialize structures before requesting an asynchronous write
- 1A write to file in an asynchronous manner
bind .. e binds a name to a socket
5 change data segment space allocation
bSfrEe o e free a binary semaphore
L get a binary semaphore
ehdir ... e change working directory
chmod .. e change mode of file
ChOWR .o e change owner and group of a file
CBr00 Lt e s change root directory
T wait for a connected interrupt
ClOSE e e e s close a file descriptor
COMBECE & vttt et eentteteee i iensaassoaarnaneeeananeenaeenens initiates a connection on a socket
L 4T PP create a new file or rewrite an existing one
1 N duplicate an open file descriptor
BS Al L e e e et raas get extended file status
L | event control operations
o A get an event identifier
Lo o1 P post an event to a process
2 receive any queued event
EVICVl L e receive any queued event from a specified list
L1 release an event identifier
(5 execute a file
BRI Lt e e e, terminate process
1T file control
;:)i;l: .. create a new process
B et ettt e e e e e e aan get time
getdents ...l read directory entries and put in a file system independent format
getinterval i get the current value for a process interval timer
OIS o i i ittt get next message off a stream
BELPEEIMAIME ... vvvtniteteiiins it seaanccoonnnsenannenssannnennns get name of connected peer
getpid . e get process, process group, and parent process IDs
¢ get scheduling priority
BEISOCKDAME ...\ttt ittt ettt i et gets socket name
BELSOCKOPE .o \v ittt it it e e, get and set options on sockets
gethimert get the current value for a system-wide realtime timer
gettimerid get a unique identifier for a process interval timer
getuid ...l get real user, effective uscr, real group, and effective group IDs
L | control device
€ send a signal to a process or a group of processes
Bk .o e et link to a file

Table of Contents

1 listens for connections on a socket
T < move read/write file pointer
memctl ... e i control write/execute attributes of memory
100 < T make a directory
MKNOd ..ot e i i e make a directory, or a special or ordinary file
MSECHl oot e e message control operations
1 R get message queue
IISEOP + e v e neutntnenetnataotonansaeaenaaeineearatanentntitttratnrrartanrns message operations
T change priority of a process
) 1= U open for reading or writing
pathconf e get configurable pathname variables
PAUSE et neentnenvatataeen et en ettt et e aaaaas suspend process until signal
13«1 create an interprocess channel
PloCK e e e e lock process, text, or data in memory
Prealloc ..ot e e, preallocate contiguous file space
PULIISE ettt nttttnn s aten it eae e teaereenaenneaneensinsaneneansnnss send a message on a stream
=TV read from file
FEAdtnK .o uvit it e e e read value of a symbolic link
FEAAV .o ittttiteit it te et i i e e do multiple reads from a file
FECV toeunnesoannnonsnnnenmmpamensns e s ssises sy essnss s receive a message from a socket
relinquish ..o e voluntarily give up CPU

reltimerid oot e release a process interval timer identifier
FEOAME o ettt vneesenneanaeensonseanssssssasesoneeioseioneenseennenns change the name of a file
1ESADS .. viti i get resolution and maximum time value of process interval timer
resident ... e e e make locked segments resident in memory
restimer0. get the resolution and maximum time values for a system-wide realtime timer
FESUITIE &« vvvvvnseeenneennesssonsssonssanssoneeessoenssenssoeansensss resume a suspended process
s 1 S remove a directory
] L= S synchronous I/O multiplexing
SEMOLl .t e e e e e semaphore control operations
SEIHIZEE « v tittet ittt e e get set of semaphores
SEIMOP « - s e v e emeeee e e e ettt et semaphore operations
T 1 P sends a message from a socket
F L set group access list
SELPEId L e e set process group ID for job control
3= o S set process group ID
T set scheduling priority
E 11 set/get Processor Status Register
T« e set realtime privileges
SELTEUSEIS .+ttt ittt iaaiat e riisesaaanaecaannaasinannreaans set realtime privileged users list
SEISHICE vt i i e e e i e it e set CPU time slice size
SELMET . .ovetinii e set the current value for a system-wide realtime timer
T 11T e set user and group IDs
shmetl L. e e e e shared memory control operations
SAMEEL .« v e e get shared memory segment identifier
11317+ e shared memory operations
3T Vet 110 1 PPN examine or change signal action
signal ... e specify what to do upon receipt of a signal
sigpending ...l e i i e e examine pending signals
SIGPTOCINASK .+ vviuiiiiiein i i e e examine and change blocked signals
1Y PR signal management
SIZSELOPS v v vt vn ettt i et et eaeaaaaes manipulate signal sets
SlEED i e e suspend execution for interval
SOCKEE oottt i e i i e create an endpoint for communication
L get file status
SEALES L.t e it e i i get file system information
SHITIE vt enee s ietenteennenneceneenaeesnesnsnsnesnneasnsossosensosnessnssonsoansonnnns set time

Table of Contents

SEKEXD + vt e i expand the stack region of the data segment
R 1 T suspend the calling process
SWECh o e s switch into a process
SymHBK ..o e e makes symbolic link to a file
3 TP update super block
L get file system type information
SYSIIOBK .. e e e machine specific functions
T get process and child process times
L8 truncate file space
BAAMID .« e e e administrative control
L get and set user limits
UMASK ... e e e i e sct and get file creation mask
UIOUDE & s ettt ittt ittt et ettt ee e eeaineesennnsensnnsnsssnonnens unmount a file system
UBGIMIE &ttt e it teeeneeeenanee s iatateseanneeessaneanraaruneeenonanssnnn get name of current system
unlink .. remove directory entry
L PP get file system statistics
LU T set file access and modification times
WAL ot e e e wait for child process to stop or terminate
Waitpid e wait for child process to stop or terminate
W ot ettt ettt e e e write on a file
R do multiple writes from a file

APPENDIX A (installation section)

INDEX

xi/(xii blank)

INTRO(2F) INTRO(2F)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
include <sysf/errno.i>
integer®4 iretval
iretval = ftn name (argl, arg2,..)
DESCRIPTION
This section describes the FORTRAN interface to a subset of the C system calls library. The C system
calls are described in section 2 of the REAL /IX System Calls, Library Routines, and Files Reference
Manual.

To compile and link a program, enter a line similar to the following:
ef77 source.F -o executable -Ifs -1/usr/include/gls

executable is the resultant executable file name. The -Ifs option uses the FORTRAN System Calls
Library (libfs). The -I option tells the preprocessor where to find the include files. The compiler
invokes the preprocessor when it sees the .F source file extension.

Many calls use the C preprocessor directives. You must have the pound sign in column one. To exe-
cute the preprocessor, the FORTRAN source must be saved with a .F extension before compilation.
The preprocessor is more powerful than the FORTRAN INCLUDE statement. For information con-
cerning the preprocessor and its directives, see the ¢pp(l) manual page in the REAL/IX Commands
and Utilities Manual.

The calls are listed in alphabetical order. Some pages describe more than one call. To find a call not
otherwise found in the page headers, check the permuted index, center column, for the function name.
The right-hand column provides the page header name.

The format for the FORTRAN Interface to System Calls section (2F), is similar to other REAL/IX
manual pages. Each page uses the name of the call together with the section number in the page
header. All entries are presented using the following format (not all of the following headers appear in
every system call manual page):

o NAME - gives the primary name and a brief statement of purpose.

o SYNOPSIS - summarizes usage. Statements which begin with a pound sign (#), will be evaluated by
the preprocessor. Boldface strings should be typed as they appear. Jtalic strings represent variable
names. Square brackets [] indicate the argument is optional.

e DESCRIPTION - provides a detailed explanation of the system call and its parameters.

e EXAMPLE - shows the system call used in context. Consult the GLS FORTRAN Language Refer-
ence Manual for more information.

¢ ERROR CODES - describe possible error code return values. To use them, you must include the
preprocessor statement # include <sysf/errno.i>.

o NOTES - provide additional helpful information.
o SEE ALSO - routes you to other sources of information.
© DIAGNOSTICS - describe return values and/or error codes.

Most of these calls have one or more error returns. A negative returned value indicates the error con-
dition.

INTRO(2F) INTRO(2F)

Functions that declare the string character*SIZE, can also pass that string explicitly, by defining it
between quotes. For example, instead of:

string = ’a string’
iretval = func (string)
you can substitute the following code sequence: .

iretval = func(‘a string’)

The following list describes the error numbers and their names as they are defined in <errno.i>.
Each system call description attempts to list all possible error numbers.

-1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to its
owner or superuser. It is also returned for attempts by ordinary users to do things allowed
only to the superuser.

-2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or when
one of the directories in a path name does not exist.

-3 ESRCH No such process
No process can be found corresponding to that specified by pid in kill(2F) or ptrace(2F).

-4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it will
appear as if the interrupted system call returned this error condition.

-5 EIO 1/0 error
Some physical I/O error has occurred. This error may in some cases occur on a call following
the one to which it actually applies.

-6 ENXIO No such device or address
1/0 on a special file refers to a subdevice which does not exist, or beyond the limits of the dev-
ice. It may also occur when, for example, a tape drive is not on-line or no disk pack is loaded
on a drive.

-7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member of the exec (2F) family.

-8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does
not start with a valid magic number [see a.out(4)].

-9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (2F) [respectively, write (2F)] request is
made to a file which is open only for writing (respectively, reading).

-10 ECHILD No child processes
A wait was executed by a process that had no existing or unwaited-for child processes.

-11 EAGAIN No more processes
A fork failed because the system’s process table is full or the user is not allowed to create any
more processes. Or a system call failed because of insufficient memory or swap space.

-12 ENOMEM Not enough space
During an exec(2F), brk(2F), or sbrk(2F), a program asks for more space than the system is
able to supply. This may not be a temporary condition; the maximum space size is a system
parameter. The error may also occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not enough swap space during a
Jork(2F). If this error occurs on a resource associated with Remote File Sharing (RFS), it

INTRO(2F) INTRO(2F)

indicates a memory depletion which may be temporary, dependent on system activity at the
time the call was invoked.

-13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

-14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument of a system call.

-15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required, e.g., in mount(2F).

-16 EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file (open file, current directory, mounted-on
file, active text segment). It will also occur if an attempt is made to enable accounting when it
is already enabled. The device or resource is currently unavailable.

-17 EEXIST File exists

An existing file was mentioned in an inappropriate context, e.g., link(2F).
-18 EXDEV Cross-device link

A link to a file on another device was attempted.
-19 ENODEV No such device

An attempt was made to apply an inappropriate system call to a device; e.g., read a write-only
device.

-20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path prefix or as
an argument to chdir(2F).
-21 EISDIR Is a directory
An attempt was made to write on a directory.
-22 EINVAL Invalid argument
Some invalid argument (c.g., dismounting a non-mounted device; mentioning an undefined
signal in signal(2F) or kill(2F); reading or writing a file for which /seek(2F) has generated a
negative pointer). Also set by the math functions described in the (3M) entries of this manual.
-23 ENFILE File table overflow
The system file table is full, and temporarily no more opens can be accepted.

-24 EMFILE Too many open files
No process may have more than NOFILES (default 100) descriptors open at a time.

-25 ENOTTY Not a character device (or) Not a typewriter
An attempt was made to ioct/(2F) a file that is not a special character device.

-26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is currently open for writing,
Also an attempt to open for writing o to remove a pure-procedure program that is being exe-
cuted.

-27 EFBIG File too large
The size of a file exceeded the maximum file size or ULIMIT [see ulimit (2F)].

-28 ENOSPC No space left on device
During a write(2F) to an ordinary file, there is no free space left on the device. In fent/(2F),
the setting or removing of record locks on a file cannot be accomplished because there are no
more record entries left on the system.

-29 ESPIPE Illegal seek
An Iseek(2F) was issued to a pipe.

INTRO(2F) INTRO (2F)

-30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.
-31 EMLINK Too many links
An attempt to make more than the maximum number of links (1000) to a file.
-32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition normally gen-
erates a signal; the error is returned if the signal is ignored.

-33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the function.
-34 ERANGE Result too large

The value of a function in the math package (3M) is not representable within machine preci-
sion.

This error number is also used for the EINPROG error code returned for asynchronous I/0
operations,

-35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on the specified mes-
sage queue {see msgop (2F)].

-36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the removal of an identifier
from the file system’s name space [see msgct! (2F), semctl(2F), and shmctl (2F)].

This error number is also used for the ECANCELED error code returned for asynchronous
I/0 operations.

-37 through -44 are reserved numbers

-45 EDEADLK Deadlock
A deadlock situation was detected and avoided. This error pertains to file and record locking.

-46 ENOLCK No lock
In fent!(2F) the setting or removing of record locks on a file cannot be accomplished because
there are no more record entries left on the system.

-60 ENOSTR Not a stream (UNSUPPORTED)
A putmsg(2F) or getmsg(2F) system call was attempted on a file descriptor that is not a
STREAMS device.

INTRO(2F) INTRO(2F)

-62 ETIME Stream ioctl timeout (UNSUPPORTED)
The timer set for a STREAMS ioct/(2F) call has expired. The cause of this error is device
specific and could indicate either a hardware or software failure, or perhaps a timeout value
that is too short for the specific operation. The status of the ioct/(2F) operation is indeter-
minate.

-63 ENOSR No stream resources (UNSUPPORTED)
During a STREAMS open(2F), either no STREAMS queues or no STREAMS head data struc-
tures were available.

-64 ENONET Machine is not on the network (UNSUPPORTED)
This error is Remote File Sharing (RFS) specific. It occurs when users try to advertise, unad-
vertise, mount, or unmount remote resources while the machine has not done the proper
startup to connect to the network.

-65 ENOPKG No package
This error occurs when users attempt to use a system call from a package which has not been
installed.

-66 EREMOTE Resource is remote (UNSUPPORTED)
This error is RFS specific. It occurs when users try to advertise a resource which is not on the
local machine, or try to mount,/unmount a device (or pathname) that is on a remote machine.

-67 ENOLINK Virtual circuit is gone (UNSUPPORTED)
This error is RFS specific. It occurs when the link (virtual circuit) connecting to a remote
machine is gone.

-68 EADV Advertise error (UNSUPPORTED)
This error is RFS specific. It occurs when users try to advertise a resource which has been
advertised already, or try to stop the RFS while there are resources still advertised, or try to
force unmount a resource when it is still advertised.

-69 ESRMNT Srmount error (UNSUPPORTED)
This error is RFS specific. It occurs when users try to stop RFS while there are resources still
mounted by remote machines.

-70 ECOMM Communication error (UNSUPPORTED)
This error is RFS specific. It occurs when trying to send messages to remote machines but no
virtual circuit can be found.

-71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is generally not related to a
hardware failure.

-74 EMULTIHOP Multihop attempted (UNSUPPORTED)
This error is RFS specific. It occurs when users try to access remote resources which are not
directly accessible.
-77 EBADMSG Bad message (UNSUPPORTED)
During a read(2F), getmsg(2F), or ioctl(2F) 1_RECVFD system call to a STREAMS device,
something has come to the head of the queue that can’t be processed. That something
depends on the system call:
read(2F) - control information or a passed file descriptor
getmsg(2F) - passed file descriptor
ioctl(2F) - control or data information

-83 ELIBACC Cannot access a needed shared library
Trying to exec(2F) an a.out that requires a shared library (to be linked in) and the shared
library doesn’t exist or the user doesn’t have permission to use it.

INTRO(2F) INTRO(2F)

-84 ELIBBAD Accessing a corrupted shared library
Trying to exec(2F) an a.out that requires a shared library (to be linked in) and exec(2F) could
not load the shared library. The shared library is probably corrupted.

-85 ELIBSCN .lib section in @.out corrupted
Trying to exec(2F) an a.out that requires a shared library (to be linked in) and there was
erroncous data in the .lib section of the g.out. The .lib section tells exec(2F) what shared
libraries are needed. The a.out is probably corrupted.

-86 ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec(2F) an a.out that requires more shared Libraries (to be linked in) than is allowed
on the current configuration of the system.

-87 ELIBEXEC Cannot exec a shared library directly
Trying to exec(2F) a shared library directly. This is not allowed.

The following error numbers and their names are supplied for network applications:
-90 EWOULDBLOCK Operation would block

-91 EINPROGRESS Operation now in progress

-92 EALREADY Operation already in progress

-93 ENOTSOCK Socket operation on non-socket

-94 EDESTADDRREQ Destination address required

-95 EMSGSIZE Message too long

-96 EPROTOTYPE Protocol wrong type for socket

-97 ENOPROTOOPT Protocol not available

-98 EPROTONOSUPPORT Protocol not supported

-100 EOPNOTSUPP Operation not supported on socket
-101 EPFNOSUPPORT Protocol family not supported
-102 EAFNOSUPPORT Proto fam doesn’t support addr fam
-103 EADDRINUSE Address already in use

-104 EADDRNOTAVAIL Can'’t assign requested address
-105 ENETDOWN Network is down

-106 ENETUNREACH Network is unreachable

-107 ENETRESET Network dropped connection on reset
-108 ECONNABORTED Software caused connection abort
-109 ECONNRESET Connection reset by peer

-110 ENOBUFS No buffer space available

-114 ETOOMANYREFS Too many references: can’t splice
-115 ETIMEDOUT Connection timed out

-116 ECONNREFUSED Connection refused

INTRO(2F) INTRO(2F)

DEFINITIONS

Process ID Each active process in the system is uniquely identified by a positive integer called a process
ID. The range of this ID is from 1 to 30,000.

Parent Process ID A new process is created by a currently active process [see fork(2F)]. The parent
process ID of a process is the process ID of its creator.

Process Group ID Each active process is a member of a process group that is identified by a positive
integer called the process group ID. This ID is the process ID of the group leader. This grouping per-
mits the signaling of related processes [see kill (2F)].

tty Group ID Each active process can be a member of a terminal group that is identified by a positive
integer called the tty group ID. This grouping is used to terminate a group of related processes upon
termination of one of the processes in the group [see exit (2F) and signal(2F)).

Real User ID and Real Group ID Each user allowed on the system is identified by a positive integer (0
to 65535) called a real user ID.

Each user is also a member of a group. The group is identified by a positive integer called the real
group ID.

An active process has a real user ID and real group ID that are set to the real user ID and real group
1D, respectively, of the user responsible for the creation of the process.

Effective User ID and Effective Group ID An active process has an effective user ID and an effective
group ID that are used to determine file access permissions (see below). The effective user ID and
effective group ID are equal to the process’s real user ID and real group ID respectively, unless the pro-
cess or one of its ancestors evolved from a file that had the set-user-ID bit or set-group ID bit set [see

exec(2F)).

Superuser A process is recognized as a superuser process and is granted special privileges, such as
immunity from file permissions, if its effective user ID is 0.

Special Processes The processes with a process ID of 0 and a process ID of 1 are special processes and
are referred to as proc0 and procl.

proc(is the scheduler. procl is the initialization process (init). Procl is the ancestor of every other
process in the system and is used to control the process structure.

File Descriptor A file descriptor is a small integer used to do I/O on a file. The value of a file descrip-
tor is from 0 to (NOFILES - 1). A process may have no more than NOFILES file descriptors open
simultaneously. A file descriptor is returned by system calls such as open(2F), or pipe(2F). The file
descriptor is used as an argument by calls such as read(2F), write(2F), ioct!(2F), and close(2F).

File Name Names consisting of 1 to 14 characters may be used to name an ordinary file, special file or
directory. These characters may be selected from the set of all character values excluding \0 (null) and
the ASCIH code for / (slash).

INTRO(2F) INTRO(2F)

Note that it is generally unwise to use *, 2, [, or] as part of file names because of the special meaning
attached to these characters by the shell [see sh(1)]. Although permitted, the use of unprintable char-
acters in file names should be avoided.

Path Name and Path Prefix A path name is a null-terminated character string starting with an optional
slash (/), followed by zero or more directory names separated by slashes, optionally followed by a file
name.

If a path name begins with a slash, the path search begins at the root directory. Otherwise, the search
begins from the current working directory. A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a non-existent file.

Directory Directory entries are called links. By convention, a directory contains at least two links, . and
.., referred to as dot and dot-dot respectively. Dot refers to the directory itself and dot-dot refers to its
parent directory.

Root Directory and Current Working Directory Each process has associated with it a concept of a root
directory and a current working directory for the purpose of resolving path name searches. The root
directory of a process need not be the root directory of the root file system.

File Access Permissions Read, write, and execute/search permissions on a file are granted to a process
only if one or more of the following statements are true:

The effective user ID of the process is superuser.

The effective user ID of the process matches the user ID of the owner of the file and the
appropriate access bit of the “owner” portion ('0700°0) of the file mode is set.

The effective user ID of the process does not match the user ID of the owner of the file, and
the effective group ID of the process matches the group of the file and the appropriate access
bit of the “group” portion ('0070°0) of the file mode is set.

The effective user ID of the process does not match the user ID of the owner of the file, and
the effective group ID of the process does not match the group ID of the file, and the appropri-
ate access bit of the “other” portion ("'0007°0) of the file mode is set.

Message Queue Identifier A message queue identifier (insqid) is a unique positive integer created by a
msgget (2F) system call. Each msqid has a message queue and a data structure associated with it. The
data structure is referred to as msqid_ds and contains the following members:

record /ipc_perm/ msg_perm
integer*4 msg_first
integer*4 msg_last
integer*2 msg_cbytes
integer*2 msg_gnum
integer*2 msg_gbytes
integer*2 msg_lspid
integer*2 msg_lrpid
integer*4 msg_stime
integer®4 msg_rtime
integer*4 msg_ctime

INTRO (2F) INTRO(2F)

msg_perm is an ipc_perm structure that specifies the message operation permission (see below). This
structure includes the following members:

integer*2 uid lowner user id
integer*2 gid lowner group id
integer*2 cuid tcreator user id
integer*2 cgid tcreator group id
integer*2 mode laccess permission
integer*2 seq Islot usage sequence
integer*4 key tkey
msg_first is a pointer to the first message on the queue.
msg_last is a pointer to the last message on the queue.
msg_chytes is the current number of bytes on the queue.
msg_qaum is the number of messages currently on the queue.
msg_gbytes is the maximum number of bytes allowed on the queue.
msg_Ispid is the process id of the last process that performed a msgsnd operation.
msg_lrpid is the process id of the last process that performed a msgrey operation.
msg_stime is the time of the last msgsnd operation.
msg_rtime is the time of the last msgrev operation.
msg_ctime is the time of the last msgct/(2F) operation that changed a member of the above
structure.
Message Operation Permissions In the msgop (2F) and msgct! (2F) system call descriptions, the permis-
! sion required for an operation is given as "{token}", where "token" is the type of permission needed,
| interpreted as follows:
| 004000 Read by user
’00200°0 Write by user
| ’00040°0 Read by group
’00020°0 Write by group
’00004°0 Read by others
’00002°0 Write by others
Read and write permissions on a msqid are granted to a process if one or more of the following are
true:

The effective user ID of the process is superuser.

The effective user ID of the process matches msg_perm.cuid or msg_perm.uid in the data
structure associated with msgid and the appropriate bit of the “user” portion ('0600°0) of
msg_perm.mode is sct.

The effective group ID of the process matches msg_perm.cgid or msg _perm.gid and the
appropriate bit of the “group” portion ('060°0) of msg_perm.mode is set.

The appropriate bit of the “other” portion (06°0) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

INTRO(2F) INTRO(2F)

Semaphore Identifier A semaphore identifier (semid) is a unique positive integer created by a
semget (2F) system call. Each semid has a set of semaphores and a data structure associated with it.
The data structure is referred to as semid_ds and contains the following members:

record /ipc_perm/ sem_perm loperation permission struct .
integer*4 sem_base !ptr to first semaphore in set

integer*2 sem_nsems !number of sems in set

integer*4 sem_otime !last operation time

integer*4 sem_ctime tlast change time

{Times measured in secs since
100:00:00 GMT, Jan. 1, 1970

sem_perm is an ipc_perm structure that specifies the semaphore operation permission (see below).
This structure includes the following members:

integer*2 uid tuser id
integer*2 gid lgroup id
integer*2 cuid Icreator user id

integer*2 cgid Icreator group id

integer*2 mode !r/a permission

integer*2 seq !slot usage sequence number

integer*4 key tkey

sem_nsems is equal to the number of semaphores in the set. Each semaphore in the set is referenced
by a positive integer referred to as a sem_num. Sem_num values run sequentially from 0 to the value
of sem_nsems minus 1.

sem_otime is the time of the last semop (2F) operation.
sem_ctime is the time of the last semct/(2F) operation that changed a member of the above structure. .
A semaphore is a data structure called sem that contains the following members:

integer*2 semval {semaphore value
integer*2 sempid !pid of last operation
integer*2 semncnt !# awaiting semval > cval
integer*2 semzent !# awaiting semval = 0

semval is a non-negative integer which is the actual value of the semphore.

sempid is equal to the process ID of the last process that performed a semaphore operation on this
semaphore.

semncat is a count of the number of processes that are currently suspended awaiting this semaphore’s
semval to become greater than its current value.

semzcent is a count of the number of processes that are currently suspended awaiting this semaphore’s
semval to become zero.

Semaphore Operation Permissions In the semop (2F) and semctl(2F) system call descriptions, the per-
mission required for an operation is given as "{token}", where "token” is the type of permission needed
interpreted as follows:

’00400°0 Read by user
’00200°0 Alter by user
’00040°0 Read by group
’00020°0 Alter by group
*00004°0 Read by others
’00002'0 Alter by others

-10-

INTRO(2F) INTRO(2F)

Read and alter permissions on a semid are granted to a process if one or more of the following are
true:

The effective user ID of the process is superuser.

The effective user ID of the process matches sem_perm.cuid or sem_perm.uid in the data
structure associated with semid and the appropriate bit of the “user” portion (°0600°0) of
sem_perm.mode is set.

The effective group ID of the process matches sem_perm.cgid or sem perm.gid and the
appropriate bit of the “group” portion ("060°0) of sem_perm.mode is sct.
The appropriate bit of the “other” portion ('006°0) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier A shared memory identifier (shmid) is a unique positive integer created by
a shmget (2F) system call. Each shmid has a segment of memory (referred to as a shared memory seg-
ment) and a data structure associated with it. (Note that these shared memory segments must be expli-
citly removed by the user after the last reference to them is removed.) The data structure is referred to
as shmid_ds and contains the following members:

record /ipc_perm/ shm perm !operation permission struct
integer*4 shm_segsz Isize of segment

integer*4 shm_reg Iptr to region structure
integer*4 shm_paddr !physical address

integer*2 shm_lpid !pid of last operation
integer*2 shm_cpid Icreator pid

integer*2 shm_nattch {number of current attaches
integer*2 shm_cnattch lused only for shminfo
integer*4 shm_atime tlast attach time

integer*4 shm_dtime tlast detach time

integer*4 shm_ctime !last change time

ITimes measured in secs since
100:00:00 GMT, Jan. 1, 1970

shm_perm is an ipc_perm structure that specifies the shared memory operation permission (see
below). This structure includes the following members:

integer*2 cuid tcreator user id
integer*2 cgid lereator group id
integer*2 uid tuser id

integer*2 gid tgroup id

integer*2 mode !r/w permission
integer*2 seq Islot usage sequence #

integer*4 key tkey

shm_segsz specifies the size of the shared memory segment in bytes.

shm_cpid is the process id of the process that created the shared memory identifier.
shm_lpid is the process id of the last process that performed a shmop (2F) operation.
shm_nattch is the number of processes that currently have this segment attached.
shm_atime is the time of the last shmat(2F) operation.

shm_dtime is the time of the last shmdt(2F) operation.

shm_ctime is the time of the last shmct/(2F) operation that changed one of the members of the above
structure.

-11-

INTRO (2F) INTRO (2F)

Shared Memory Operation Permissions In the shmop (2F) and shmctl (2F) system call descriptions, the
permission required for an operation is given as "{token}", where "token" is the type of permission
needed interpreted as follows:

’00400°0 Read by user
’00200°0 Write by user
’00040°0 Read by group
’00020°0 Write by group
’00004°0 Read by others
’00002°0 Write by others
Read and write permissions on a shmid are granted to a process if one or more of the following are

true:
The effective user ID of the process is superuser.

The effective user ID of the process matches shm_perm.cuid or shm_perm.uid in the data
structure associated with shmid and the appropriate bit of the “user” portion ('0600°0) of
shm_perm.mode is set.

The effective group ID of the process matches shm_perm.cgid or shm perm.gid and the
appropriate bit of the “group” portion ("'060°0) of shm_perm.mode is sct.

The appropriate bit of the “other” portion (*06’0) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

STREAMS A set of kernel mechanisms that support the development of network services and data com-
munication drivers. It defines interface standards for character input/output within the kernel and
between the kernel and user level processes. The STREAMS mechanism is composed of utility rou-
tines, kernel facilities and a set of data structures.

Stream A stream is a full-duplex data path withia the kernel between a user process and driver rou-
tines. The primary components are a streamn head, a driver and zero or more modules between the
stream head and driver. A stream is analogous to a Shell pipeline except that data flow and processing
are bidirectional.

Stream Head In a strearn, the stream head is the end of the stream that provides the interface between
the strearn and a user process. The principle functions of the stream head are processing STREAMS-
related system calls, and passing data and information between a user process and the stream.

Driver In a stream, the driver provides the interface between peripheral hardware and the stream. A
driver can also be a pseudo-driver, such as a multiplexer or log driver [see log(7)], which is not associated
with a hardware device.

Meodule A module is an entity containing processing routines for input and output data. It always exists
in the middle of a streamn, between the stream’s head and a driver. A module is the STREAMS counter-
part to the commands in a Shell pipeline except that a module contains a pair of functions which allow
independent bidirectional (downstream and upstream) data flow and processing.

-12-

INTRO(2F) INTRO(2F)

Downstream In a stream, the direction from stream head to driver.
Upstream In a stream, the direction from driver to streamn head.

Message In a stream, one or more blocks of data or information, with associated STREAMS control
structures. Messages can be of several defined types, which identify the message contents. Messages
are the only means of transferring data and communicating within a stream.

Message Queue In a stream, a linked list of messages awaiting processing by a module or driver.

Read Queue In a stream, the message queue in a module or driver containing messages moving
upstream.

Write Queue In a stream, the message queue in a module or driver containing messages moving down-
stream.

Multiplexor A multiplexcr is a driver that allows streams associated with several user processes to be
connected to a single driver, or several drivers to be connected to a single user process. STREAMS does
not provide a general multiplexing driver, but does provide the facilities for constructing them, and for
connecting multiplexed configurations of streams.

SEE ALSO

intro(3).

-13-

ABSINTERVAL(2F) , ABSINTER VAL (2F)

NAME

absinterval, incinterval - set the expiration time of a process interval timer

SYNOPSIS

include <sysf/time.i>
integer*4 absinterval,timerid
record /itimerstruc/ value, ovalue
iretval = absinterval (timerid, value, ovalue)
integer*4 incinterval, timerid
record /itimerstruc/ value, ovalue
iretval = incinterval (timerid, value, ovalue)

DESCRIPTION

absinterval sets the expiration time of the process interval timer, described by timerid, (sec
gettimerid (2F)) to an absolute time value.

incinterval sets the expiration time of the process interval timer, described by tmerid, (see
gettimerid (2F)) to a time value relative to the current timer value.

If the time value in the itimerstruc structure element it_value is pointed to by a value other than zero,
then it_value indicates the time to the next expiration. In the case of an incinterval system call, it_value
represents an offset from the current timer value. In the case of an absinterval system call, it_value
represents an absolute time. If the specified expiration time value has passed, then the system call
succeeds and the timer event is delivered.

If the time value in the itimerstruc element it value is pointed to by value zero, then the process inter-
val timer associated with timerid is removed from the timer expiration queue and no event is sent.

If the time value in the itimerstruc structure element it_interval is pointed to by a value other than
zero, then it_interval indicates a time value to be used in reloading it_value when the process interval
timer associated with timerid expires. For both absinterval and incinterval, it_interval represents an
offset from the current expiration time.

If the time value in the itimerstruc structure element it_interval is pointed to by value zero, then the
process interval timer associated with timerid is stopped after its next expiration (unless it_value is
Zero).

On return, the value in the it_value structure of ovalue is set to the amount of time left before the timer
associated with timerid would have expired. The value in the it_interval structure of ovalue is set to the
time value being used on timer expiration reloads.

ABSINTERVAL(2F) ABSINTERVAL(2F)

EXAMPLE
program absinter
include <sysf/time.i>
include <sysf/lock.i>
include <sysf/evt.i>

. integer*4 absinterval, incinterval, timerid, iretval

record /itimerstruc/ value, ovalue

integer*4 evget, eid, gettimerid, reltimerid
integer*4 sec, nsec, isec, insec

¢ Use setrt to set realtime mode

¢ Use setpri to set new priority if necessary

¢ Use plock to lock process in memory

¢ Use resident to keep locked segements in memory

¢ Use evget to get unique event id for this process
eid = evget (EVT_QUEUE, 10, 0, %val(0))

¢ Use gettimerid to get unique timer id for this process using event id

timerid = gettimerid (TIMEOFDAY, MODCOMP_EVENTS, eid)
if (timerid .It. 0) write (*,*) *gettimerid error?’, timerid

¢ Set up time for incinterval (offset if incinterval, otherwise absolute)
¢ Ssec
. sec=0
nsec = 500000000
¢ Set up re-initialize interval time offset (0 = oneshot)

isec=0
insec = 0

c Set up timer structure and make the call
value.it value.tv_sec = sec
value.it value.tv_nsec = nsec
value.it_interval.tv_sec = isec

value.it_interval.tv_nsec = insec

iretval = incinterval (timerid, value, ovalue)
if (iretval .It. 0) write (*,*) ’incinterval error?, iretval

¢ Release timer

iretval = reltimerid (timerid)
if (iretval .Jt. 0) write (*,*) ’reltimerid error?’, iretval

end

ABSINTERVAL(2F) ABSINTERVAL(2F)

ERROR CODES
If absinterval or incinterval is not successful, a negative value is returned with one of the following error

codes.
[EFAULT] value or ovalue points outside the allocated address space of the process.
[EINVAL] The timerid argument does not correspond to an ID returned by gettimerid (2F) or it
has previously been released with a reltimerid (2F) call.
SEE ALSO

getinterval(2F), gettimerid(2F), reltimerid(2F), resabs(2F), resinc(2F), itimerstruc(4), timestruc(4).

ACANCEL(2F) ACANCEL (2F)

NAME
acancel - cancel one or more asynchronous I/0 requests

SYNOPSIS
include <sysf/evt.i>

include <sysf/aio.i>
. # include <sysf/types.i>
integer*4 acancel, fildes

record /aioch_t/ aioch
iretval = acancel (fildes, aioch)

DESCRIPTION
acancel cancels one or more asynchronous I/0 requests currently outstanding against the file descrip-
tor fildes. The aioch argument points to the gioch(4) structure for a specific request that is to be can-
celied. If the gioch argument is NULL (i.e. %val(0)), then all outstanding asynchronous I/O requests
against fildes are canceled.

EXAMPLE

program acancel

include <sysf/types.i>
include <sysf/evt.i>
include <sysf/aio.i>
include <sysf/fentli>
integer*4 acancel, fildes
record /aiocb_t/ aiocb (64)
integer*4 iretval

W H W%

[¢]

See arcad(2F) or awrite(2F)
Assume already have an open file with async 1/0 pending

o

Cancel I/O pending associated with aiocb (30)

[¢]

iretval = acancel (fildes, aiocb(30))

[£]

Cancel all I/0O pending

iretval = acancel (fildes, %val (0))
end

ERROR CODES
[EBADF] fildes is not a valid file descriptor.

SEE ALSO
arwfree(2F), aread(2F), arinit(2F), awinit(2F), awrite(2F), creat(2F), dup(2F), featl(2F), ioctl(2F),
intro(2F), open(2F), pipe(2F), aiocb(4).
aio(D2X), comp_aio(D3X), comp_cancel_aio(D3X), areq(D4X) in the Kernel Programming Reference
Manual.

DIAGNOSTICS
acancel returns one of the following:
0 The requested operation(s) were cancelled.

. 1 Atleast one of the requested operations are in progress and cannot be cancelled.

2 The operation is not queued and not in progress.
Otherwise, a negative value indicating the error is returned.

ACCEPT (2F) ACCEPT (2F)

NAME
accept - accepts a connection on a socket

SYNOPSIS
#include <sysf/types.i>
#include <sysf/socket.i>

integer*4 accept,s,addrlen
record/sockaddr/addr
ns = accept(s, addr, addrlen)

DESCRIPTION

The argument s is a socket which has been created with socket(2F), bound to an address with bind(2F),
and is listening for connections after a listen(2F). accept extracts the first connection on the queue of
pending connections, creates a new socket with the same properties as s and allocates a new file
descriptor, ns, for the socket. If no pending connections are present on the queue, and the socket is not
marked as nonblocking, accept blocks the caller until a connection is present. If the socket is marked
nonblocking and no pending connections are present on the queue, accept returns an error as described
below. The accepted socket, ns, may not be used to accept more connections. The original socket, s,
remains open.

The argument addr is a result parameter which is filled in with the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is determined by the
domain in which the communication is occurring, Consult the manual entries in Sections 4 and 7 for
detailed information. The addrien is a value-tesult parameter; it should initially contain the amount of
space pointed to by addr; on return, it will contain the actual length (in bytes) of the address returned.
This call is used with connection-based socket types, currently with SOCK_STREAM.

RETURN VALUE
The call returns -1 on error. If it succeeds, it returns a non-negative integer which is a descriptor for

the accepted socket.
ERRORS
The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSQCK] The descriptor references a file, not a socket.
[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.
[EFAULT] The addr parameter is not in a writable part of the user address space.
[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to be
accepted.
SEE ALSO

bind(2F), connect(2F), listen(2F), socket(2F)

ACCESS(2F) ACCESS (2F)

NAME
access - determine accessibility of a file

SYNOPSIS
integer*4 access, amode
character*SIZE path
iretval = access (path, amode)

DESCRIPTION
access checks the named file for accessibility according to the bit pattern contained in amode. access
uses the real user ID in place of the effective user ID and the real group ID in place of the effective
group ID. SIZE is the maximum number of characters ever expected to be assigned to path. The max-
imum is currently 128 characters. path points to a path name naming a file. The bit pattern contained
in amode is constructed as follows:

04 read
02 write
01 execute (search)

00 check existence of file
Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] Read, write, or execute (search) permission is
requested for a null path name.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the
path prefix.

[EROFS] Write access is requested for a file on a read-only
file system.

[ETXTBSY] Write access is requested for a pure procedure
(shared text) file that is being executed.

[EACCES] Permission bits of the file mode do not permit
the requested access.

[EFAULT] Path points outside the allocated address
space for the process.

[EINTR] A signal was caught during the access
system call.

[ENOLINK] Path points to a remote machine and the link

to that machine is no longer active.
[EMULTIHOP] Components of path require hopping to multiple
remote machines.

The owner of a file has permission checked with respect to the “owner” read, write, and execute mode
bits. Members of the file’s group other than the owner have permissions checked with respect to the
“group” mode bits, and all others have permissions checked with respect to the “other” mode bits.

ACCESS(2F) ACCESS(2F)

EXAMPLE
program access
include <sysf/errno.i>

integer*4 access, amode
character*40 path .
integer*4 1, j, iretval

¢ check if source file is readable and writable

path = .. /example/access.F°

amode = 4 .or. 2

iretval = access (path, amode)

if (iretval .ne. 0) write (*,*) *access error:’, iretval

¢ check if executable file is readable and writable

iretval = access (’../example/access’, amode)
if (iretval .eq. ETXTBSY) write (*,*) ’ no access... executing’
if (iretval .ne. ETXTBSY .and. iretval .lt. 0) then
write (*,*) "access error?’, iretval
endif
end

SEE ALSO
chmod(2F), stat(2F).
DIAGNOSTICS .

If the requested access is permitted, a value of 0 is returned. Otherwise, a negative value indicating the
error is returned.

ACCT(2F) ACCT(2F)

NAME

acct - enable or disable process accounting
SYNOPSIS

integer®*4 acct

character*SIZE path

iretval = acct (path)

DESCRIPTION
SIZE can be any number between and including 1 through 128. acct is used to enable or disable the
system process accounting routine. If the routine is enabled, an accounting record will be written on an
accounting file for each process that terminates. Termination can be caused by one of two things: an
exit call or a signal [see exif (2F) and signal(2F)]. The effective user ID of the calling process must be
super-user to use this call.

path points to a pathname naming the accounting file. The accounting file format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during the system call. It is
disabled if path is %val(0) or of null size and no errors occur during the system call.

acct will fail if one or more of the following are true:

[EPERM] The effective user of the calling process is not super-user.
[EBUSY] An attempt is being made to enable accounting when it is already enabled.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] One or more components of the accounting file path name do not exist.
[EACCES] The file named by path is not an ordinary file.
[EROFS] The named file resides on a read-only file system.
[EFAULT] path points to an illegal address.
EXAMPLE
program acct
integer*4 acct
character*40 path
integer*4 iretval
path = ’./acct.fi

¢ Enable accounting

iretval = acct (path)
if (iretval .It. 0) write (*,*) "acct enable error?, iretval

¢ Disable accounting

iretval = acct ()
if (iretval .It. 0) write (*,*) ’acct disable error?’, iretval
end
SEE ALSO
exit(2F), signal(2F), acct(4).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error is
returned.

ALARM(2F) ALARM(2F)

NAME
alarm - set a process alarm clock

SYNOPSIS
integer*4 alarm, sec
iretval = alarm (sec)
DESCRIPTION

alarm instructs the alarm clock of the calling process to send the signal SIGALRM to the calling process
after the number of real time seconds specified by sec have elapsed [see signal(2F)).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.
If sec is 0, any previously made alarm request is canceled.

EXAMPLE
program alarm
include <sysf/errno.i>
include <sysf/signali>

integer*4 alarm, sec

integer*4 prev_time
integer*4 pause, iretval

¢ Set alarm for 5 seconds, pause until alarm expires.
¢ Expect the process to be killed, since the alarm signal
¢ was not caught [see signal(2F)].

sec=35

prev_time = alarm (sec)

if (prev_time .It. 0) write (*,*) "alarm error:’, prev_time
iretval = pause ()

write (*,*) *Error, should not get here’

end

SEE ALSO
pause(2F), signal(2F), sigpause(2F), sigset(2F).
DIAGNOSTICS
alarm returns the amount of time previously remaining in the alarm clock of the calling process.

AREAD (2F) AREAD(2F)

NAME
aread - read from file in an asynchronous manner

SYNOPSIS

include <sysf/types.i>
include <sysf/evt.i>
include <sysf/aio.i>

integer*4 aread, fildes, nbyte

integer*1 buf(SIZE)

record /aiocb_t/ aioch

iretval = aread (fildes, buf, nbyte, aioch)

DESCRIPTION

aread attempts to read nbyte bytes from the file associated with fildes, into the buffer pointed to by buf.
fildes is a file descriptor obtained from a creat (2F), open (2F), dup (2F), fcntl(2F), or pipe (2F) system
call. The aioch argument points to an aiocb(4) control block. SIZE is the number of bytes in the
buffer.
aread returns when the read request has been queued to the file or device (even when the data cannot
be delivered until later). If an error condition is encountered, aread returns without having queued the
request. If gioch is NULL (i.e. %val (0)), then no status is returned and the read operation begins
from the current file pointer; no event notification is given upon completion of the read.
The whence and offset fields of the aioch request an implicit Iseek(2F) operation. The seek implied by
these fields plus the nbyte parameter updates the file pointer when the function call returns without
error.

INTERACTION WITH OTHER SERVICES

close(2F) Cancelable operations and queued operations for that file descriptor are deleted. Noncan-
celable operations are waited on.

exit(2F) and exec(2F)
Cancelable operations and queued operations for all file descriptors are deleted. Noncan-
celable operations are waited on.

open(2F) with O_TRUNC flag set and creat(2F)
Outstanding asynchronous I/O operations are not canceled.

fork(2F) No asynchronous I/O is inherited.

fentl(2F) Used to set or check the bypass-buffer-cache flag before issuing the aread request. In this
release, asynchronous I/O operations require this flag to be set.

arinit(2F) Can be called during process initialization, before the first aread call. This will improve the
speed of all aread operations, especially the first one. The values of the aread arguments
must match exactly with the values given to arinit.

AREAD(2F) AREAD (2F)

EXAMPLE

program aread

include <sysf/types.i>

include <sysf/evt.i>

include <sysf/aio.i>

include <sysf/fentli> .
integer*4 arinit, aread, fildes, nbyte, iretval, i

integer*4 error, buf (64), open, trunc

record /aiocb_t/ aiocb (64)

LR R

¢ Open afile

fildes = open ('../example/aio.tst’, O_RDWR)
if (fildes .It. 0) write (*,*) "open error?’, fildes

¢ Initialize for asynchronous reading

error = 0

do100i =1, 64

aiocb (i).offset = (i-1) * 4
aiocb (i).whence = 0
aiocb (i).rt_errno = -1
aiocb (i).nobytes = 0
aiocb (i).aioflag = 0

aiocb (i).eid = 0

nbyte = 4

buf (i) = 64-i

iretval = arinit (fildes, buf (i), nbyte, aiocb (i))

if (iretval .It. 0 .and. error .eq. 0) error = iretval
100 continue

if (error .ne. 0) write (*,*) *arinit error?’, error

¢ Perform some asynchronous reading
do200i=164 ‘
iretval = aread (fildes, buf (i), nbyte, aiocb (i)) |
if (iretval It. 0) write (*,*) ’aread error?’, iretval |
200 continue I

¢ Wait until i/o complete or error

do300i =1,64
310 continue

if (aiocb (i).rt_errno .It. 0) goto 310
300 continue

c¢ Print buffers

write (*,9000) (buf (i), i = 1, 64) .
9000 format (’°, 8 (i8, X))

end

AREAD(2F) AREAD (2F)

NOTES
When an aread operation is not emulated by a synchronous operation, aread does not attempt to
enforce mandatory file/record locking (see chmod (2F)).

SEE ALSO
acancel(2F), arwfree(2F), arinit(2F), awrite(2F), creat(2F), dup(2F), fcntl(2F), ioctl(2F), intro(2F),
open(2F), pipe(2F), aiocb(4).
aio(D2X), comp_aio(D3X), comp_cancel_aio(D3X), areq(D4X) in the Kernel Programming Reference
Manual.

DIAGNOSTICS
aread will fail if one or more of the following are true:

[EAGAIN] Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of control blocks allocated, system wide, for asynchronous 1/O opera-
tions would be exceeded.

[EAGAIN] Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of control blocks allocated for asynchronous I/O operations per pro-
cess would be exceeded.

[EAGAIN] Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of processes using the asynchronous 1/0 facility, system wide, would
be exceeded.

[EAGAIN] Insufficient system memory to lock down specified buffer areas, probably a transient
condition.

[EAGAIN] Insufficient system memory to set up mapping.

[EBADF] fildes is not a valid file descriptor open for reading.

[EBUSY] Cannot read from a file when the bypass-buffer-cache flag is being changed or the file is
being truncated.

[EFAULT] Data cannot be read into the specified area.

[EFAULT] buf points outside the allocated address space.

[EFAULT] aioch points outside the allocated address space.

[EINVAL] The whence element of the aiocb is not a proper value, or the resulting file pointer
would be invalid.

[EINVAL] The flags element of the aiocb is not set to O or EVT_POST.

[EINVAL] The flags element of the aioch is set to EVT_POST and the eid element of the agioch
structure is not a valid event identifier.

[EINVAL] nbyte is less than 0.

[EPERM] Process has neither realtime nor superuser privileges.

Upon successful completion, the value zero is returned. Errors that are detected before the request is

passed to the driver will result in a negative returned value in iretval indicating the error. Errors that

occur after the request is passed to the driver are reported in the rt_errno member of the gioch struc-

ture. This field is set to EINPROG before the operation is queued and to zero when the queued opera-
tion completes without error.

-3-
ARINIT (2F) ARINIT (2F)
NAME
arinit - initialize structures before requesting an asynchronous read
SYNOPSIS

include <sysf/evti>
include <sysf/aio.i>
include <sysf/types.i>

integer*4 arinit, fildes, nbyte

integer*1 buf (SIZE)

record /aioch_t/aioch

iretval = arinit (fildes, buf, nbyte, aiocb)

DESCRIPTION

arinit can be called during process initialization to initialize structures used by asynchronous read
operations. Using arinit significantly improves the speed of asynchronous read operations, especially
the first one executed, although aread(2F) will execute correctly if arinit is not called first. It also
guarantees that the necessary resources have been allocated to perform an aread with parameters that

match those specified for arinit.

The arguments to arinit are:

fildes File descriptor obtained from a creat(2F), open (2F), dup (2F), fentl (2F), or pipe(2F) system
call.

buf Points to the buffer where data for subsequent aread calls is to be found. SIZE is the number
of bytes in the buffer.

nbyte The byte count used in aread calls using the resources allocated and initialized by arinit.

aiocb Points to an aiocb(4) control block.

An arinit call gives a performance benefit to subsequent aread calls whose parameters meet the follow-
ing conditions:

fildes As per arinit.

buf As per arninit.

nbytes As per arinit.

aioch At the same address as the aiocb used in the arinit.

aioch fields:

offset No restriction, to allow for positioning within the file.

whence No restriction, to allow for positioning within the file.

nt_ermo Unused (return parameter).

nobytes ~ Unused (return parameter).

rt_aio_pri Unused (reserved).

aioflag As per arinit.

eid As per arinit if aioflag is EVT_POST, otherwise ignored.

Note that an arinit allocates resources behind the scenes and these resources remain allocated until
explicitly freed via arwfree or until asynchronous I/O operations on the file are curtailed by a close(2F),
exit (2F), or exec(2F) system call.

arinit returns when the structures have been initialized.

If gioch is NULL (i.c. %val(0)), then the arinit call initializes for aread calls that do not use an gioch
structure to return status information.

AREAD(2F)

AREAD(2F)

Errors that are reported via the rt_errno field are as follows:

[EAGAIN]
[ENODEV]
[ENODEV]

(EIO]
[ENXIO]

Shortage of system resources prevented operation from being carried out.
Asynchronous 1/0 is not supported for this fildes and emulation has not been requested.

Asynchronous I/0 is supported for this fildes but not for the transfer specified by the
parameters to the aread. Reasons include:

The file pointer is not aligned on suitable boundary.

The number of bytes to transfer is too small or too large.

The number of bytes to transfer is not a multiple of the block size.
The buffer is not suitably aligned.

See the F_GETAIOREQ option in fcnt!(2F) for further details. Note that ENODEV is
returned only if synchronous emulation is not allowed. See the F SETAIOEMUL option
in fentl(2F). If emulation is allowed the operation will be attempted in synchronous
mode.

Some physical I/O error occurred.

1/0 operation could not be started (e.g., tape not on-line).

If the asynchronous I/O operation is emulated by a synchronous operation, then, should the synchro-
nous operation fail, the error code is reported in the rt_errmo.

ARINIT(2F)

EXAMPLE

ARINIT(2F)

See aread(2F) for an example.

SEE ALSO

acancel(2F), arwfree(2F), aread(2F), awinit(2F), awrite(2F), creat(2F), dup(2F), fcntl(2F), ioctl(2F),
intro(2F), open(2F), pipe(2F), aiocb(4).
aio(D2X), comp_aio(D3X), comp_cancel_aio(D3X), areq(D4X) in the Kernel Programming Reference

Manual,
DIAGNOSTICS

Upon successful completion, the value zero is returned. Otherwise, a negative value indicating the
error is returned.

[EAGAIN]

[EAGAIN]

[EAGAIN]

[EAGAIN]

[EAGAIN]
[EBADF]

[EFAULT]
[EFAULT]
[EINVAL]
[BINVAL]

[EINVAL]
(EINVAL]

[ENODEV]
[EPERM]

Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of control blocks allocated, system wide, for asynchronous I/0 opera-
tions would be exceeded.

Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of control blocks allocated for asynchronous 1/0 operations per pro-
cess would be exceeded.

Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of processes using the asynchronous 1/0 facility, system wide, would
be exceeded.

Insufficient system memory to lock down specified buffer areas, probably a transient
condition.

Insufficient system memory to set up mapping.

fildes is not a valid file descriptor open for reading.

buf points outside the allocated address space.

aioch points outside the allocated address space.

The flags clement of the aioch is not set to 0 or EVT_POST.

The flags element of the aioch is set to EVT_POST, and the eid element of the gioch
structure is not a valid event identifier.

nbyte is less than 0.

nbyte is equal to zero. Zero is a legal value for the nbyte parameter to aread but not for
the nbyte parameter to arinit.

Asynchronous 1/0 is not supported for this fildes.

Process has neither realtime nor superuser privileges.

ARWFREE(2F) ARWFREE(2F)

NAME
arwfree - free internal resources for asynchronous 1/0 from the process

SYNOPSIS
include <sysf/types.i>
include <sysf/evti>
include <sysf/aio.i>

integer®4 arwiree, fildes

record /aioch_t/ aioch

iretval = arwfree (fildes, aioch)

DESCRIPTION

arwfree frees internal resources associated with the aioch(4) structure from the process. If arwfree is
not issued, the internal resources remain mapped into the process until the process exits or executes.
The aiocb argument points to the aioch(4) structure for a specific request that is to be freed. If the
aioch argument is NULL (i.e. %val(0)), then all resources for giocbs associated with fildes are freed.

EXAMPLE

program arwirce

include <sysf/types.i>
include <sysf/evt.i>
include <sysf/aio.i>
include <sysf/fentli>
integer*4 arwiree, fildes
record /aiocb_t/ aioch (64)
integer*4 iretval

%% %

¢ See aread(2F) or awrite(2F)
¢ Assume already have an open file with async I/O complete

¢ Free aiocb (30)

iretval = arwiree (fildes, aiocb(30))
¢ Free all aiocb’s

iretval = arwfree (fildes, %val (0))

end

ERROR CODES
[EBADF] fildes is not a valid file descriptor.

SEE ALSO
acancel(2F), aread(2F), arinit(2F), awinit(2F), awrite(2F), creat(2F), dup(2F), fentl(2F), ioctl(2F),
intro(2F), open(2F), pipe(2F), aioch(d).

aio(D2X), comp_aio(D3X), comp_cancel_aio(D3X), areq(D4X) in the Kemel Programming Reference
Manual.

DIAGNOSTICS
arwfree returns one of the following:

0 The requested resources(s) were freed.
1 An operation that uses the resources is in progress; mo resources were freed.
2 No internal resources are associated with the specified fildes and aioch parameters.

AWINIT(2F) AWINIT(2F)

NAME
awinit - initialize structures before requesting an asynchronous write

SYNOPSIS
include <sysf/evt.i>
include <sysf/aiod>
include <sysf/types.i>

integer*4 awinit, fildes, nbyte

integer*1 buf (SIZE)

record /aioch_t/ aioch

iretval = awinit (fildes, buf, nbyte, aioch)

DESCRIPTION
awinit can be called during process initialization to initialize structures used by asynchronous write
operations. Using awinit significantly improves the speed of asynchronous write operations, especially
the first one executed, although awrite (2F) will execute correctly if awinit is not called first. It also
guarantees that the necessary resources have been allocated to perform an awrite with parameters that
match those specified for awinit.

The arguments to awinit are:

fildes A file descriptor obtained from a creat (2F), open (2F), dup (2F), fentl(2F), or pipe (2F) system
call.

buf Points to the buffer area where data for subsequent awrife operations is to be found. SIZE is
the number of bytes in the buffer.

nbyte The byte count used in awrife operations using the resources allocated and initialized by
awinit.

aiocb Points to an aiocb(4) control block.

An awinit call gives a performance benefit to subsequent awrite calls whose parameters meet the fol-

lowing conditions:

fildes As per awinit.

buf As per awinit.

nbytes As per awinit.

giocb At the same address as the aioch used in the awinit.

aiocb fields:

offset No restriction, to allow for positioning within the file.

whence No restriction, to allow for positioning within the file.

nt_ermo Unused (return parameter).

nobytes Unused (return parameter).

nt_agio_pri Unused (reserved).

aioflag As per awinit.

eid As per awinit if aioflag is EVT_POST, otherwise ignored.

Note that an awinit allocates resources behind the scenes and these resources remain until explicitly
freed via arwfree or until asynchronous I/O operations on the file are curtailed by a close (2F), exit (2F),
or exec(2F) system call.

awinit returns when the structures have been initialized.

If aioch is NULL (i.e. %val (0)), then the awinit call initializes for awrite calls that do not use an
aiocb(4) structure to return status information.

AWINIT(2F) AWINIT(2F)

EXAMPLE
See awrite(2F) for an example.

SEE ALSO
acancel(2F), arwiree(2F), aread(2F), arinit(2F), awrite(2F), creat(2F), dup(2F), fcntl(2F), ioctl(2F),
intro(2F), open(2F), pipe(2F), aiocb(4).
aio(D2X), comp_aio(D3X), comp_cancel_aio(D3X), areq(D4X) in the Kemel Programming Reference
Manual.

DIAGNOSTICS
Upon successful completion, the value zero is returned. Otherwise, a negative value indicating the
error is returned.

[EAGAIN] Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of control blocks allocated, system wide, for asynchronous 1/O opera-
tions would be exceeded.

[EAGAIN] Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of control blocks allocated for asynchronous I/O operations per pro-
cess would be exceeded.

[EAGAIN] Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of processes using the asynchronous I/0 facility, system wide, would
be exceeded.

[EAGAIN] Insufficient system memory to lock down specified buffer areas, probably a transient
condition.

[EAGAIN] Insufficient system memory to set up mapping.

[EBADF] fildes is not a valid file descriptor open for writing.
[EBUSY] Cannot do an asynchronous write operation to a text file.
[EFAULT] buf points outside the allocated address space.

[EFAULT] aioch points outside the allocated address space.

[EINVAL] The flags element of the aiocb is not set to 0 or EVT_POST.

[EINVAL]} The flags element of the aioch is set to EVT_POST, and the eid element of the aioch
structure is not a valid event identifier.

[EINVAL] nbyte is less than 0.

[EINVAL] nbyte is equal to zero. Zero is a legal value for the nbyte parameter to awrite but not for
the nbyte parameter to awinit.

[ENODEV] Asynchronous I/O is not supported for this fildes.
[EPERM] Process has neither realtime nor superuser privileges.

AWRITE(2F) AWRITE (2F)

NAME

awrite - write to file in an asynchronous manner

SYNOPSIS

include <sysf/types.i>
include <sysf/evti>
include <sysf/aio.i>
integer*®*4 awrite, fildes, nbyte
integer*1 buf(SIZE)
record /aioch_t/ aioch
iretval = awrite (fildes, buf, nbyte, aioch)

DESCRIPTION

awrite attempts to write nbyte bytes to the file associated with fildes, from the buffer pointed to by buf,
whose size is SIZE bytes. fildes is a file descriptor obtained from a creat(2F), open (2F), dup(2F),
fentl (2F), or pipe (2F) system call. The gioch argument points to an aioch(4) control block.

awrite returns when the write request has been queued to the file or device (even when the data cannot
be delivered until later). If an error condition is encountered, @write returns without having queued the
request. If aioch is NULL (ie. %val(0)), then no status is returned and the write operation begins
from the current file pointer; no event notification is given upon completion of the write.

The whence and offset fields of the aioch request an implicit Iseek(2F) operation. The seek implied by
these fields plus the nbyte parameter updates the file pointer when the function call returns without
error.

INTERACTION WITH OTHER SERVICES

close(2F) Cancelable operations and queued operations for that file descriptor are deleted. Noncan-
celable operations are waited on.

exit(2F) and exec(2F)
Cancelable operations and queued operations for all file descriptors are deleted. Noncan-
celable operations are waited on.

open(2F) with O_TRUNC flag set and creat(2F)
Outstanding asynchronous I/O operations are not canceled.

fork(2F) No asynchronous I/O is inherited.

fentl(2F) Used to set or check the bypass-buffer-cache flag and the asynchronous-emulation flag
before issuing the awrite request, as well as to obtain information about specifications for
an asynchronous 1/O operation (such as buffer alignment and maximum transfer size).

awinit(2F) Can be called during process initialization, before the first awrite call. This will improve
the speed of all awrite operations, especially the first one.

AWRITE(2F)

EXAMPLE

#* %%

program awrite

include <sysf/types.i>

include <sysf/evt.i>

include <sysf/aio.i>

include <sysf/fentli>

integer*4 awinit, awrite, fildes, nbyte, iretval, i
integer*4 error, buf (64), open, trunc

record /aiocb_t/ aiocb (64)

¢ Open a file and size it to 256 bytes

&

fildes = open ("../example/aio.tst’, O_RDWR .or.

O_CREAT .or. O_TRUNG, *7770)
if (fildes .lt. 0) write (*,*) open error?, fildes
iretval = trunc (fildes, 256, 0)
if (iretval .It. 0) write (*,*) ’trunc error?’, iretval

¢ Initialize for asynchronous writing

100

error = 0

do100i = 1,64

aiocb (i).offset = (i-1) * 4

aiocb (i).whence = 0

aiocb (i).rt_errno = -1

aiocb (i).nobytes = 0

aiocb (i).aioflag = 0

aiocb (i).eid = 0

nbyte = 4

buf (i) = 64 - i

iretval = awinit (fildes, buf (i), nbyte, aiocb (1))
if (iretval .It. 0 .and. error .eq. 0) error = iretval
continue

if (error .ne. 0) write (*,*) *awinit error?’, error

¢ Perform some asynchronous writing

200

do200i =1,64

iretval = awrite (fildes, buf (i), nbyte, aiocb (i))
if (iretval It. 0) write (*,*) awrite error?’, iretval
continue

¢ Wait until i/o complete or error

310

300

do300i=1,64

continue

if (aioch (i).rt_errno Jt. 0) goto 310
continue

end

AWRITE(2F)

AWRITE(2F)

NOTES

AWRITE (2F)

When an awrite operation is not emulated by a synchronous operation, awrite does not attempt to
enforce mandatory file/record locking (see chmod (2F)).

SEE ALSO

acancel(2F), arwfree(2F), arinit(2F), awrite(2F), creat(2F), dup(2F), fentl(2F), ioctl(2F), intro(2F),
open(2F), pipe(2F), aiocb(4).
aio(D2X), comp_aio(D3X), comp cancel _aio(D3X), areq(D4X) in the Kemel Programming Reference

Manual.
DIAGNOSTICS

Upon successful completion, the value zero is returned. Otherwise, a negative value indicating the
error is returned.

[EAGAIN]

{EAGAIN]

[EAGAIN]

[EAGAIN]

[EAGAIN]
[EBADF]
[EBUSY]

{EFAULT]
[EFAULT]
[EINVAL)

[EINVAL)
[BINVAL]

[EINVAL)
[EPERM]

Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of control blocks allocated, system wide, for asynchronous I/O opera-
tions would be exceeded.

Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of control blocks allocated for asynchronous I/0 operations per pro-
cess would be exceeded.

Internal control blocks could not be allocated because a system-imposed limit on the
maximum number of processes using the asynchronous I/0 facility, system wide, would
be exceeded.

Insufficient system memory to lock down specified buffer areas, probably a transient
condition.

Insufficient system memory to set up mapping.
fildes is not a valid file descriptor open for writing.

Cannot write to a file when it is being truncated or when the bypass-buffer-cache flag is
being changed.

buf points outside the allocated address space.
aiocb points outside the allocated address space.

The whence element of the aioch is not a proper value, or the resulting file pointer
would be invalid.

The flags element of the aioch is not set to 0 or EVT_POST.

The flags element of the aioch is set to EVT_POST and the eid element of the aioch
structure is not a valid event identifier.

nbyte is less than 0.

Process has neither realtime nor superuser privileges.

Upon successful completion, the value zero is returned. Errors that are detected before the request is
passed to the driver will result in a negative returned value indicating the error. Errors that occur after
the request is passed to the driver are reported in the rt_errno member of the aioch structure. This
field is set to EINPROG before the operation is quened and to zero when the queued operation com-
pletes without error.

AWRITE(2F)

AWRITE(2F)

Errors that are reported via the rt_errno ficld are as follows:

[EAGAIN]
{ENODEV]
[ENODEV]

[EFBIG]
[EIO}
[ENXIO]

Shortage of system resources prevented operation from being carried out.
Asynchronous I/0 is not supported for this fildes and emulation has not been requested.

Asynchronous 1/0 is supported for this fildes but not for the transfer specified by the
parameters to the areed. Reasons include:

The file pointer is not aligned on suitable boundary.

The number of bytes to transfer is too small or too large.

The number of bytes to transfer is not a multiple of the block size.
The buffer is not suitably aligned.

See the F GETAIOREQ option in fent/(2F) for further details. Note that ENODEV is
returned only if synchronous emulation is not allowed. See the F_SETAIOEMUL option
in fentd(2F). If emulation is allowed the operation will be attempted in synchronous
mode.

Attempt to write past the end-of-file.
Some physical I/0 error occurred.
1/0 operation could not be started (e.g., tape not on-line).

If the asynchronous I/O operation is emulated by a synchronous operation, then, should the synchro-
nous operation fail, the error code is reported in the rt_errno.

BIND (2F) BIND (2F)

NAME

bind - binds a name to a socket

SYNOPSIS

#include <sysf/types.i>
#include <sysf/socket.i>

integer*4 bind,s,namelen
record/sockaddr/name
iretval= bind(s, name, namelen)

DESCRIPTION

NOTES

bind assigns a name to an unnamed socket. When a socket is created with socket(2F) it exists in a
name space (address family) but has no name assigned; bind requests the name be assigned to the
socket.

The rules used in name binding vary between communication domains. Consult the Reference manual
entries in Sections 4 and 7 for detailed information.

RETURN VALUE

If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which is further
specified in the global errno.

ERRORS
The bind call will fail if:
[EBADF] s is not a valid descriptor.
[ENOTSOCK] s is not a socket.

[EADDRNOTAVAIL] The specified address is not available from the local machine.
[EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an address.
[EACCESS] The requested address is protected, and the current user has inadequate per-
mission to access it.
[EFAULT] The name parameter is not in a valid part of the user address space.
SEE ALSO

connect(2F), listen(2F), socket(2F), getsockname(2F)

BRK(2F) BRK(2F)

NAME
brk, sbrk - change data segment space allocation
SYNOPSIS

integer*4 brk, endds
integer*4 sbrk, incr

iretval = brk (endds)
iretval = sbrk (incr)
DESCRIPTION

brk and sbrk are used to change dynamically the amount of space allocated for the calling process’s
data segment [see exec (2F)]. The change is made by resetting the process’s break value and allocating
the appropriate amount of space. The break value is the address of the first location beyond the end of
the data segment. The amount of allocated space increases as the break value increases. Newly allo-
cated space is set to zero. If, however, the same memory space is reallocated to the same process its
contents are undefined.

brk sets the break value to endds and changes the allocated space accordingly.

sbrk adds incr bytes to the break value and changes the allocated space accordingly. incr can be nega-
tive, in which case the amount of allocated space is decreased.

brk and sbrk will fail without making any change in the allocated space if one or more of the following
are true:

[EAGAIN] Total amount of system memory available for a read during physical 1/0 is temporarily
insufficient [see shmop(2F)). This may occur even though the space requested was less
than the system-imposed maximum process size [see ulimit(2F)).

[EAGAIN] The data segment is locked resulting in more resident pages being allocated than are
currently available.

[EBUSY] Such a change would deallocate space that is still in use for asynchronous 1/0 or con-
nected interrupts.

[ENOMEM] Such a change would result in more space being allocated than is allowed by the
system-imposed maximum process size [see ulimit (2F)].

BRK(2F) BRK(2F)

EXAMPLE
program brk
include <sysf/ermo.i>
integer*4 brk, endds
integer*4 sbrk, incr
integer*4 data_segment .
integer*4 iretval

¢ increment current data segment by 512 bytes

incr = 512
data_segment = sbrk (incr)
if (data_segment .It. 0) then
write (*,*) ’sbrk error?’, data_segment
else
write (*,*) "old data segment?’, data_segment

¢ increment new data segment by another 512 bytes

endds = data_segment + 512

iretval = brk (endds)

if (iretval It. 0) write (*,*) 'brk error?’, iretval
endif

end

SEE ALSO
aread(2F), exec(2F), resident(2F), shmop(2F), ulimit(2F), end(3C), cintrio(7). .

DIAGNOSTICS
Upon successful completion, brk returns a value of 0 and sbrk returns the old break value. Otherwise,
a negative value indicating the error is returned.

BSFREE(2F) BSFREE(2F)

NAME
bsfree - free a binary semaphore

SYNOPSIS
include <sysf/types.i>
include <sysf/ipci>
include <sys/binsem.i>
integer*4 bsfree, bid
iretval = bsfree (bid)
DESCRIPTION
bid is a binary semaphore identifier obtained from a bsget system call. bsfree frees (releases) the binary
semaphore identifier indicated by bid. bsfree does not unlock the binary semaphore.
[EINVAL] bsfree will fail if bid is not a valid binary semaphore identifier.
EXAMPLE
program bsfree
include <sysf/types.i>
include <sysf/ipc.i>
include <sysf/binsem.i>
integer*4 bsfree, bid, bsget, bsem, bslk, bsunlk, bslke, iretval

¢ Get a binary semaphore using agreed-upon key value

bid = bsget (1234, bsem, *777°0 .or. IPC_CREAT)
if (bid .1t. 0) write (*,*) *bsget error?’, bid

¢ Take the semaphore using bslk or bslke (both shown as example)
iretval = bslk (bsem, bid)

iretval = bslkc (bsem)
if (iretval .ne. 0) then
write (*,*) "bslkc locked the semaphore’
else
write (*,*) *bslkc could not lock the semaphore’
endif

¢ Perform critical code here:
¢ Now give up the semaphore

iretval = bsunlk (bsem, bid)
¢ Free up the semaphore
iretval = bsfree (bid)
if (iretval It. 0) write (*;*) *bsfree error?’, iretval
end
SEE ALSO
beget(ZF), bstk(3€), bsikc(3C), bsunlk(3C).
DIAGNOSTICS
‘Upon successhiil compleiion, a vahte of 0 is:returned. Otherwise, a negativeswalues indicating. the. errer
is returned.

BSGET(2F)

NAME

BSGET(2F)

bsget - get a binary semaphore

SYNOPSIS

include <sysf/types.i>

include <sysf/ipc.i>

include <sysf/binsem.i>
integer*4 bsget, key, bsem, bsemflg
iretval = bsget (key, bsem, bsemflg)

DESCRIPTION

bsget creates and initializes the user-supplied binary semaphore associated with key. The caller must
be superuser or have realtime privileges.

A binary semaphore identifier and associated data structure are created for key if one of the following

are true:

key is equal to IPC_PRIVATE.

key does not already have a binary semaphore identifier associated with it and (bsemfly &
IPC_CREAT) is “true.”

bsem contains a pointer to the binary semaphore itself. Upon creation, the binary semaphore is initial-
ized to an unlocked condition. bsget will fail if one or more of the following are true:

[EAGAIN] Insufficient system memory to lock down specified buffer areas.
[EAGAIN] Insufficient system memory to set up mapping.
[EEXIST] A binary semaphore identifier exists for key but ((bsemflg & IPC_CREAT) & (bsemflg &
IPC_EXCL)) is “true.”
[EFAULT] The locations containing the binary semaphore may not be written by the caller.
[EFAULT] The bsem parameter points outside the allocated address space.
[ENOENT] A binary semaphore identifier does not exist for key and (bsemfly & IPC_CREAT) is
“false.”
[ENOSPC] A binary semaphore ideatifier is to be created but the system-imposed limit on the max-
imum number of allowed binary semaphore identifiers system wide would be exceeded.
[ENOSPC] A binary semaphore identifier is to be created but the system-imposed limit on the max-
imum number of processes using binary semaphore identifiers system wide would be
exceeded.
[ENOSPC] A binary semaphore identifier is to be created but the system-imposed limit on the max-
imum number of allowed binary semaphore identifiers for a process would be exceeded.
[EPERM] The sending process does not have realtime privileges and its user ID is not superuser.
EXAMPLE
See bsfree(2F) for an example.
SEE ALSO

bsfree(2F), bslk(3C), bslke(3C), bsunltk(3C).

DIAGNOSTICS

Upon successful completion, a non-negative integer, namely a binary semaphore identifier, is returned.
Otherwise, a negative value indicating the error is returned.

CHDIR (2F) CHDIR (2F)

NAME
chdir - change working directory
SYNOPSIS
integer®*4 chdir
character*SIZE path
iretval = chdir (path)
DESCRIPTION
SIZE can be any number between and including 1 through 128. path points to the path name of a
directory. chdir causes the named directory to become the current working directory, the starting point
for path searches for path names not beginning with /.

chdir will fail and the current working directory will be unchanged if one or more of the following are

true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.
[EFAULT] path points outside the allocated address space of the process.
[EINTR] A signal was caught during the chdir system call.

[ENOLINK] Path points to a remote machine and the link to that machine is no longer active.
[EMULTIHOP] Components of path require hopping to multiple remote machines.

EXAMPLE
program chdir
include <sysf/fentli>
integer*4 chdir
charactes*40 path

integer*4 iretval
integer*4 open, fildes

¢ The current directory is ’example’. Change to the
¢ previous directory and then open ’example’.

path =0
iretval = chdir (path)
fildes = open ("example’, O_RDONLY)
if (fildes .It. 0) write (*,*) "error?’, fildes
end
SEE ALSO
chroot(2F).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

1.

CHMOD (2F) CHMOD (2F)

NAME
chmod - change mode of file

SYNOPSIS
integer*4 chmod, mode
character*SIZE path
iretval = chmod (path, mode)

DESCRIPTION
SIZE can be any number between and including 1 through 128. path points to a path name paming a
file. chmod sets the access permission portion of the named file’s mode according to the bit pattern
contained in mode.

Access permission bits are interpreted as follows:

040000 Set user ID on execution.
’020#0°0 Set group ID on execution if # is 7, 5,3, or 1
Enable mandatory file /record locking if # is 6, 4, 2, or 0
010000 Save text image after execution.
004000 Read by owner.
’00200°'0 Write by owner.
’00100°0 Execute (search if a directory) by owner.
000700 Read, write, execute (search) by group.
000070 Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be super-user to change the
mode of a file; If the effective user ID of the process is not super-user, mode bit “01000°0 (save text
image on execution) is cleared.

If the effective user ID of the process is not super-user and the effective group ID of the process does
not match the group ID of the file, mode bit 02000°0 (set group ID on execution) is cleared.

If a *410°0 executable file has the sticky bit (mode bit *01000°0) set, the operating system will not
delete the program text from the swap area when the last user process terminates. If a 413’0 execut-
able file has the sticky bit set, the operating system will not delete the program text from memory when
the last user process terminates. In either case, if the sticky bit is set the text will already be available
(either in a swap area or in memory) when the next user of the file executes it, thus making execution
faster.

If the mode bit '02000°0 (set group ID on execution) is set and the mode bit ’00010°0 (execute or
search by group) is not set, mandatory file/record locking will exist on a regular file. This may effect
future calls to open(2F), creat(2F), read(2F), and write(2F) on this file.

chmod will fail and the file mode will be unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective user ID is
not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the allocated address space of the process.

[EINTR] A signal was caught during the chmod system call.

[ENOLINK] Path points to a remote machine and the link to that machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote machines.

CHMOD (2F) CHMOD (2F)

EXAMPLE
program chmod
integer*4 chmod, mode
character*40 path

integer*4 irctval

¢ Change access permissions to read/write for owner, read only for
¢ group and others

path =../example/chmod F’
mode = 400’0 .or. "200°0 .or. 40’0 .or. 40
iretval = chmod (path, mode)
if (iretval .It. 0) write (*,*) ’chmod error?’, iretval
end
SEE ALSO
chmod(1), chown(2F), creat(2F), fentl(2F), mknod(2F), open(2F), read(2F), write(2F).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

CHOWN(2F) CHOWN(2F)

NAME
chown - change owner and group of a file

SYNOPSIS
integer*4 chown, owner, group
character*SIZE path
iretval = chown (path, owner, group)

DESCRIPTION
SIZE can be any number between and including 1 through 128. path points to a path name naming a
file. The owner ID and group ID of the named file are set to the numeric values contained in owner
and group respectively.
Only processes with effective user ID equal to the file owner or super-user may change the ownership
of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-group-ID bits of the file
mode, *04000’0 and *02000°0 respectively, will be cleared.

chown will fail and the owner and group of the named file will remain unchanged if one or more of the
following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective user ID is
not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path points outside the allocated address space of the process.

[EINTR] A signal was caught during the chown system call.

[ENOLINK] path points to a remote machine and the link to that machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote machines.

EXAMPLE
program chown
integer*4 chown, owner, group
character*40 path

integer*4 iretval
integer*4 getuid, getgid

¢ Get current owner and group id’s

owner = getuid ()
group = getgid ()

¢ Make new group owner for file

group = group - 1

path = ’../example/chown.F’

iretval = chown (path, owner, group)

if (iretval .It. 0) write (*,*) chown error?’, iretval
end

CHOWN(2F) CHOWN(2F)

SEE ALSO
chown(1), chmod(2F).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the ersor
is returned.

CHROOT(2F) CHROOT((2F)

NAME
chroot - change root directory

SYNOPSIS
integer®*4 chroot
character*SIZE path
iretval = chroot (path)

DESCRIPTION
SIZE can be any number between and including 1 through 128. path points to a path name naming a
directory. chroot causes the named directory to become the root directory, the starting point for path
searches for path names beginning with /. The user’s working directory is unaffected by the chroot sys-
tem call.

The effective user ID of the process must be super-user to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself. Thus, .. cannot be
used to access files outside the subtree rooted at the root directory.

chroot will fail and the root directory will remain unchanged if one or more of the following are true:
{ENOTDIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EPERM] The effective user ID is not super-user.

[EFAULT] path points outside the allocated address space of the process.

[EINTR] A signal was caught during the chroot system call,

[ENOLINK] path points to a remote machine and the link to that machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote machines.

EXAMPLE
program chroot
integer*4 chroot
character*40 path
integer*4 iretval

¢ Change root to itself

path =’/
iretval = chroot (path)
if (iretval .It. 0) write (*,*) *chroot error?’, iretval
end
SEE ALSO
chdir(2F).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

CISEMA (2F) CISEMA (2F)

NAME
cisema - wait for a connected interrupt

SYNOPSIS
integer*4 cisema, cid

iretval = cisema(cid)
. DESCRIPTION

The cisema system call waits for an interrupt associated with the connected interrupt identifier
specified by cid. cid is returned by a previous CI_CONNECT ioct!(2F) command (see cintrio(7)).
The cisema system call will fail if one or more of the following are true:
[EINVAL] cid is invalid.
[EINVAL] The connected interrupt associated with cid is not connected to the calling process.
[EINVAL] The delivery method is not CINTR_SEMA.
EXAMPLE
program ciscma
include <sysf/typesi>
include <sysf/cintrio.i>
include <sysf/evt.i>
integer*4 cisema, cid
integer*4 ioctl, fildes, iretval
integer*4 eid
record /cintrio/ arg

¢ Initialize structure assuming posting events (see evpost)

arg.ci method = CINTR_EVENTS
arg.ci_id = eid

arg.ci_polloc = 0
arg.ci_flags = 0

¢ Connect the interrupt to an already opened fildes

cid = ioctl (fildes, CI_CONNECT, arg)
if (cid .It. 0) write (*,") “ioct] error?, cid

¢ Wait for connected interrupt to happen

iretval = cisema (cid)
if (iretval .It. 0) write (*,*) *cisema error?’, iretval
end
SEE ALSO
cintrio(7).
DIAGNOSTICS
A 0 value is returned if the ciserma system call is successful. Otherwise, a negative value indicating.the
error is returned.

CLOSE(2F) CLOSE(2F)

NAME
close - close a file descriptor

SYNOPSIS
integer*4 close, fildes
iretval = close (fildes)

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe system call. close closes the
file descriptor indicated by fildes. All outstanding record locks owned by the process (on the file indi-
cated by fildes) are removed.

If a STREAMS [see intro(2F)] file is closed, and the calling process had previously registered to receive
a SIGPOLL signal [see signal(2F) and sigset(2F)] for events associated with that file [see I SETSIG in
streamio(7)], the calling process will be unregistered for events associated with the file. The last close
for a stream causes the stream associated with fildes to be dismantled. If O NDELAY is not set and
there have been no signals posted for the stream, close waits up to 15 seconds, for each module and
driver, for any output to drain before dismantling the strearn. If the O NDELAY flag is set or if there
are any pending signals, close does not wait for output to drain, and dismantles the stream immediately.

When close is issued against a fildes with which asynchronous I/O requests are associated, close waits
for noncancelable I/O operations and cancels all cancelable and queued operations.

EXAMPLE
program close
include <sysf/fentli>
integer*4 close, fildes
integer*4 open, iretval

¢ Open a file, then close it

fildes = open ('../example/close.F’, O_RDONLY)
if (fildes .It. 0) write (*,*) ’open error?, fildes
iretval = close (fildes)

if (iretval .It. 0) write (*,*) ’close error?’, iretval

end
DIAGNOSTICS
The named file is closed unless one or more of the following are true:
[EBADF] fildes is not a valid open file descriptor.
[EINTR} A signal was caught during the close system call.
[ENOLINK] fildes is on a remote machine and the link to that machine is no longer active.

SEE ALSO
acanccl(2F), aread(2F), awrite(2F), creat(2F), dup(2F), exec(2F), fentl(2F), intro(2F), open(2F),
pipe(2F), signal(2F), sigset(2F), streamio(7).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

CONNECT(2F) CONNECT(2F)

NAME
connect - initiates a connection on a socket

SYNOPSIS
#include <sysf/types.i>
#include <sysf/socket.i>

integer*4 conmect,s,namelen
record/sockaddr/name
iretval =connect(s, name, namelen)

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, then this call permanently specifies the
peer to which datagrams are to be sent; if it is of type SOCK_STREAM, then this call attempts to
make a connection to another socket. The other socket is specified by a name which is an address in
the communications space of the socket. Each communications space interprets the name parameter
in its own way. Consult the Reference manual entries in Sections 4 and 7 for detailed information.

Generally, STREAM sockets may connect only once; datagram sockets may use connect multiple times
to change their association. Datagram sockets may dissolve their association by connecting to an
invalid address, such as a null address.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned, and a more
specific error code is stored in errno.

ERRORS
The call fails if:
[EBADF] s is not a valid descriptor.
[ENOTSOCK] s is a descriptor for a file, not a socket.

{EADDRNOTAVAIL] The specified address is not available on this machine.
[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.
[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without establishing a connection.
[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH] The network is not reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] The name parameter specifies an area outside the process address space.
[EWOULDBLOCK] The socket is non-blocking and the connection cannot be completed immedi-
ately.
SEE ALSO

accept(2F), socket(2F), getsockname(2F)

CREAT(2F) CREAT(2F)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
integer*4 creat, mode
character*SIZE path
iretval = creat (path, mode)

DESCRIPTION
SIZE can be any number between and including 1 through 128. creat creates a new ordinary file or
prepares to rewrite an existing file named by the path name pointed to by path. If the file exists, the
length is truncated to 0 and the mode and owner are unchanged. Otherwise, the file’s owner ID is set
to the effective user ID, of the process the group ID of the process is set to the effective group ID, of the
process and the low-order 12 bits of the file mode are set to the value of mode modified as follows:

All bits set in the process’s file mode creation mask are cleared {see umask(2F)].
The “save text image after execution bit” of the mode is cleared [see chmod (2F)].

Upon successful completion, a write-only file descriptor is returned and the file is open for writing,
even if the mode does not permit writing. The file pointer is set to the beginning of the file. The file
descriptor is set to remain open across exec system calls [see fontl (2F)]. A new file may be created
with a mode that forbids writing.

creat fails if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[ENOENT] The path name is null.

[EACCES] The file does not exist and the directory in which the file is to be created does not per-
mit writing,

[EROFS] The named file resides or would reside on a read-only file system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EACCES] The file exists and write permission is denied.

[EISDIR] The named file is an existing directory.

[EMFILE} NOFILES file descriptors are currently open.

[EFAULT] path points outside the allocated address space of the process.

[ENFILE] The system file table is full.

[EAGAIN] The file exists, mandatory file /record locking is set, and there are outstanding record
locks on the file [see chmod(2F)].)

[EINTR] A signal was caught during the creat system call.

[ENOLINK] path points to a remote machine and the link to that machine is no longer active.
[EMULTIHOP] Components of path require hopping to multiple remote machines.
[ENOSPC] The file system is out of inodes.

CREAT (2F) CREAT (2F)

EXAMPLE
program creat
integer*4 creat, mode
character*40 path
integer*4 fildes

¢ Create a file and open for writing

path = .. /example/tstx’
mode = ’600’0
fildes = creat (path, mode)
if (fildes .It. 0) write (*,*) ’creat error?, fildes
end
SEE ALSO
chmod(2F), close(2F), dup(2F), featl(2F), Iseek(2F), open(2F), read(2F), umask(2F), write(2F).
DIAGNOSTICS
Upon successful completion, a non-negative file descriptor, is returned. Otherwise, a negative value
indicating the error is returned.

DUP(2F) DUP(2F)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
integer®4 dup, fildes
iretval = dup (fildes)

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call. dup returns a new
file descriptor having the following in common with the original:

Same open file (or pipe).

Same file pointer (i.c., both file descriptors share one file pointer).

Same access mode (read, write or read/write).
The new file descriptor is set to remain open across exec system calls [see fentl (2F)].
The file descriptor returned is the lowest one available.

dup will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.
[EINTR] A signal was caught during the dup system call.
{EMFILE] NOFILES file descriptors are currently open.
[ENOLINK] Fildes is on a remote machine and the link to that machine is no longer active.
EXAMPLE
program dup

integer*4 dup, fildes
integer*4 iretval, new _fildes, creat, close

¢ Redirect standard output to a file

fildes = creat (’../example/std.out’, *600’0)
iretval = close (1)
new_fildes = dup (fildes)
if (new_fildes .It. 0) write (*,*) ’error?’, new fildes
write (*,*) "this message should be in the file’
end
SEE ALSO
close(2F), creat(2F), exec(2F), fentl(2F), open(2F), pipe(2F), lockf(3C).
DIAGNOSTICS
Upon successful completion a non-negative integer, namely the file descriptor, is returned. Otherwise,
a negative value indicating the error is returned.

ESTAT(2F) ESTAT (2F)

NAME
estat, efstat - get extended file status

SYNOPSIS
include <sysf/types.i>
include <sysf/stati>

integer*4 estat

character*SIZE path

record festat/ buf

iretval = estat (path, buf)

integer*4 efstat, fildes

record /estat/buf

iretval = efstat (fildes, buf)

DESCRIPTION

SIZE can be any number between and including 1 through 128. path points to a path name where a file
is located. Read, write, or execute permission of the named file is not required, but all directories
listed in the path name leading to the file must be searchable. estat obtains information about the
named file.
The information returned by estat, in a remote file sharing environment, depends upon the user/group
mapping set up between the local and remote computers (see idload (1M)).
¢fstat gets information about an open file from the file descriptor fildes, obtained from a successful
open, creat, dup, fentl, or pipe system call.
buf is a pointer to an estaf structure where information is placed concerning the file. The following
members are included in the contents of the structure:

integer*2 st_mode !File mode (see mknod(2F))

integer*2 st_ino Inode number
integer*2 st_dev ! ID of device containing

! a directory entry for this file
integer*2 st_rdev 1 ID of device

! This entry is defined only for

! character special/block special files
integer*2 st_nlink ! Number of links
integer*2 st_uid ! User ID of the file’s owner
integer*2 st_gid ! Group ID of the file’s group
integer*4 st_size ! File size in bytes
integer*4 st_atime ! Time of last access
integer*4 st_mtime ! Time of last data modification
integer*4 st_ctime ! Time of last file status change

! Times measured in seconds since
1 00:00:00 GMT, Jan. 1, 1970
record /extent_t/ st_extents(NFSEXT) ! Contiguous extent list
integer®4 st_lastw ! Byte offset of last block written to
integer*4 st_flags ! File characteristics (see fenti(5))
st mode The mode of the file as described in the mknod(2F) system call.

st_ino This field uniquely identifies the file in a given file system. The pair st_ino and st_dev
uniquely identifies regular files.

st_dev This field uniquely identifies the file system that contains the file. It’s value can be used as
input to the ustat(2F) system call to determine more information about the file system. No
other meaning is associated with this value.

ESTAT(2F)

st_rdev

st_nlink
st_uid
st_gid
st_size
st_atime
st_mtime

st_ctime

st_extents

st_lastw
st_flags

ESTAT(2F)

This field should be used only by administrative commands. It is valid only for block spe-
cial or character special files and only has meaning on the system where the file was
configured.

This field should be used only by administrative commands.
The user ID of the file’s owner.
The group ID of the file’s group.

For regular files, this is the address of the end of the file. For pipes or fifos, this is the
count of the data currently in the file. For block special or character special, this is not
defined.

Time when file data was last accessed. Changed by the following system calls: creat(2F),
mbknod (2F), pipe (2F), prealloc (2F), read (2F), and utime(2F).
Time when data was last modified. Changed by the following system calls: creat(2F),
mbknod (2F), pipe (2F), prealloc (2F), utime (2F), and write (2F).

Time when file status was last changed. Changed by the following system calls:
chmod(2F), chown(2F), creat(2F), link(2F), minod(2F), pipe(2F), prealloc(2F),
unlink (2F), utime (2F), and write (2F).

Array of contiguous file extent structures. Each structure contains the byte offset of the
extent in the file system and the sum of that extent plus all previous extents.

The byte offset in the file system of the last block written to this file.

Contains bit flags that describe certain characteristics of this file. For example, does this

file have contiguous extents, will the physical space be removed on a truncate, will this file
automatically grow, etc. See fentl(5) for more information.

estat will fail if one or more of the following are true:

[ENOTDIR]
[ENOENT]
[EACCES]
[EFAULT]
[EINTR]
[ENOLINK]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the path prefix.
buf or path points to an invalid address.

A signal was caught during the estat system call.

path points to a remote machine and the link to that machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote machines.

efstat will fail if one or more of the following are true:

[EBADF]
[EFAULT]
[ENOLINK]

fildes is not a valid open file descriptor.
buf points to an invalid address.
fildes points to a remote machine and the link to that machine is no Jonger active.

ESTAT(2F) ESTAT (2F)

EXAMPLE
program estat
include <sysf/types.i>
include <sysf/stat.i>
include <sysf/fentli>

integer*4 estat, efstat, fildes
character*40 path

record /estat/ buf_path, buf file
integer*4 open, iretval

¢ Get extended status of file using pathname

path = ’../example /estat.F’
iretval = estat (path, buf_path)
if (iretval .It. 0) write (*,*) ’estat error?’, iretval

¢ Get extended status of file from file descriptor

fildes = open (path, O_ RDONLY)

if (fildes .lt. 0) write (*,*) ’open error?’, fildes
iretval = efstat (fildes, buf_file)

if (iretval .It. 0) write (*,*) ’efstat error?’, iretval

¢ Print some of the information from both structures

write (*,9000) buf_path.st_ino, buf_path.st_size, buf path.st_flags
write (*,9000) buf file.st_ino, buf_file.st_size, buf file.st_flags

9000 format (’ Inode?’, IS,”, Size in bytes:’,I19,’, Flags:’,z8)
end
SEE ALSO
chmod(2F), chown(2F), creat(2F), link(2F), mknod(2F), pipe(2F), prealloc(2F), read(2F), stat(2F),
time(2F), unlink(2F), utime(2F), write(2F).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

EVCTL(2F) EVCTL(2F)

NAME
evctl - event control operations
SYNOPSIS
include <sysf/evt.i>
integer*4 evctl, eid, cmd .
iretval = evctl (eid, cmd)
DESCRIPTION
evctl provides a variety of event control operations as specified by cmd. The following cmds are avail-
able:
EV IGN Mark the event identifier eid as being ignored. Note that when an event identifier is
first created (via the evget system call), the event identifier is not ignored.
EV_NOIGN Mark the event identifier eid as not being ignored.
evctl will fail if one or more of the following are true:
[EINVAL] eid is not a valid event identifier.
[EINVAL]} cmd is not a valid command.
EXAMPLE

program evctl

include <sysf/evt.i>
integer*4 evctl, eid
integer*4 evget, iretval

¢ Use evget call to get an event identifier

eid = evget (EVT_QUEUE, 10, 0, 0) .

¢ Now ignore events posted to this event id

iretval = evetl (eid, EV_IGN)
if (iretval .It. 0) write (*,*) *evctl error?’, iretval
end
SEE ALSO
evget(2F), evpost(2F), evrcv(2F), evrevl(2F), evrel(2F), signal(2F), sigset(2F).
DIAGNOSTICS
Upon successful completion, a non-negative integer, namely an event identifier, is returned. Other-
wise, a negative value indicating the error is returned.

EVGET(2F) EVGET(2F)

NAME
evget - get an event identifier

SYNOPSIS
include <sysf/signal.i>
include <sysf/evti>

integer*4 evget, method, quecnt, signo

external func
iretval = evget (method, quecnt, signo, func)
DESCRIPTION

evget creates an event identifier and defines the action that should be performed when the event is
posted. The created event identifier is the lowest-numbered non-negative event identifier which was
not in use by the process.

method specifies how to handle events posted to the event identifier.

If method is specified as EVT_SIGNAL, then posted events will result in a signal being delivered to the
process. If method is specified as EVT_QUEUE, then posted events will be queued for the process.
Posted events which are queued for the process may be read via the evrev and evrev! system calls.

quecnt specifies the number of internal system blocks to allocate the event identifier for queuing posted
events or pending signals. When it is specified as zero, no internal blocks will be allocated for the
event identifier (instead, internal system blocks will be allocated, from a per-process pool of internal
system blocks, when the event is posted).

When method is specified as EVT_SIGNAL, and guecnt is specified as non-zero, then quecnt specifies
the maximum number of signals which may be queued to the process for the event identifier at any
time. When method is specified as EVT_QUEUE, and quecnt is specified as non-zero, then quecnt
specifies the maximum number of posted events which may be queued to the process for the event
identifier at any time.

If quecnt is specified as zero, then the only limit to the number of posted events or signals which may
be queued to the process for the event identifier is the availability of internal system blocks (from a
per-process pool of internal system blocks) when the event is posted.

If method is specified as EVT_SIGNAL, then signo is the signal number to deliver when the event is
posted, and func is the signal-catching function to invoke. If func is specified as %val (0) then the
default signal-catching function for signo (specified via the signal or sigset system service) will be
invoked when the event is posted.

Signals delivered as a result of a posted event differ from signals sent for other reasons as follows:

Signals delivered because of a posted event are queued. That is, if, for a given signal number,
there are multiple signals to deliver to the process, they will all be delivered, and they will be
delivered in the order that they were posted.

Signal-catching functions may determine the event information for the event which caused the signal to
be delivered, since the third argument to a signal-catching function contains the event information.
The first argument to a signal-catching function is an integer which is the signal number. The second
argument is an integer whose value is defined by the signal number. The third argument is an event
structure (of type event_t) defining the event information. If a signal-catching function is not invoked
as a result of an event being delivered, then the event identifier field of the event structure will contain
a-1.

EVGET(2F)

EVGET(2F)

If the same signal number is used by both the event mechanism and the standard Unix signal mechan-
ism, there is a potential for the standard Unix signal sending mechanism to not deliver sent signals.
Thus, it is suggested that the same signal number not be used for handling signals which result from
events being posted and for handling signals which result from other sources.

It is suggested that the signal handling for signals resulting from posted events be defined via the sigset
system service (and not via the signal system service).

evget will fail if one or more of the following are true:

[EINVAL]
[EINVAL)
[ENOSPC]

{ENOSPC]

[ENOSPC]

EXAMPLE

method is not a valid method of handling posted events.
method is EVT_SIGNAL, and signo is an illegal signal number, including SIGKILL.

An event identifier is to be created but the system-imposed limit on the maximum
number of processes using event identifiers system wide would be exceeded.

An event identifier is to be created but the system-imposed limit on the maximum
number of allowed event identifiers for a process would be exceeded.

An event identifier is to be created and internal event blocks for it are to be preallo-
cated, but the system-imposed limit on the maximum number of allowed internal event
blocks for a process would be exceeded.

See evpost(2F) for an example.

SEE ALSO

evctl(2F), evpost(2F), evrcv(2F), evrevl(2F), evrel(2F), signal(2F), sigset(2F).

DIAGNOSTICS

Upon successful completion, a non-negative integer, namely an event identifier, is returned. Other-
wise, a negative value indicating the error is returned.

EVPOST(2F)

NAME

EVPOST(2F)

evpost - post an event to a process

SYNOPSIS

integer*4 evpost, pid, eid, dataitem
iretval = evpost (pid, eid, dataitem)

DESCRIPTION

evpost posts an event to the specified process and event identifier. The process to which the event is
posted is specified by pid. The event identifier to post to is specified by eid. The data item to be
posted is specified by dataitemn (see evrev(2F) and evrevi(2F)).

The real or effective user ID of the sending process must match the real or effective user ID of the
receiving process, unless the effective user ID of the sending process is superuser or the sending pro-
cess has realtime privileges.

evpost will fail if one or more of the following are true:

[EPERM]

{ESRCH]
[EINVAL]

(EAGAIN]

[ENOSPC]

[ENOSPC]

The sending process does not have realtime privileges, its user ID is not superuser,
and its real or effective user ID does not match the real or effective user ID of the
receiving process.

No process can be found corresponding to that specified by pid.

The process specified by pid does not have the event identifier specified by eid.

The event identifier specified by eid, for the process specified by pid, is currently
being ignored.

An event is to be posted but the process-imposed limit (as specified to evget (2F)) on
the maximum number of pending queued events or pending queued signals for the
event identifier would be exceeded.

An.event is to be posted but the systemeimposed. limif: onsthe maximum number of
pendingquenedievents-or-pendingxpeued signals forthepracess would be exceeded.

EVPOST(2F)

EXAMPLE

program evpost
include <sysf/signal.i>
include <sysf/evt.i>

integer*4 evget, func, eid, evpost, pid, dataitem, iretval
integer*4 getpid, sigset
external func

¢ Setup default signal catching function

iretval = sigset (SIGUSR1, func)
if (iretval .It. 0) write (*,*) "sigset error?’, iretval

¢ Get an event identifier handling userl signal

eid = evget (EVT_SIGNAL, 2, SIGUSRI, func)
if (eid .It. 0) write (*,*) ’evget error:’, eid

¢ Get process id and post userl events

100

pid = getpid ()

if (pid .1t. 0) write (*,*) ’pid error?’, pid

do 100 dataitem = 1, 10

iretval = evpost (pid, eid, dataitem)

if (iretval .It: 0) write (*,*) *evpost error?’, iretval
continue

end

¢ Subroutine to catch the event

¢ The event structure contents are passed (not the address
¢ of the event structure).

subroutine func (signo, sigarg, argl, arg2)
integer*4 signo, sigarg, argl, arg2
integer*2 ev_eid, ev_type

integer*4 ev_dataitem

¢ Knowing the order that the event_t structure elements
¢ are defined, get the values for the elements desired.

&

ev_eid = %loc (argl) / "10000’x ! eid in upper half

ev_type = %loc (argl) ! type in lower half

ev_dataitem = %loc (arg2)

write (*,9000) %loc (signo), %loc (sigarg), ev_dataitem,
ev_eid, ev_type

return

9000 format (’ signal:’, i6, ’, unig2sig: ’, i6, ’, dataitem: ’, i6,

&

’, eid:, 16,, type: 7, i6)
end

EVPOST(2F)

EVPOST(2F) EVPOST(2F)

SEE ALSO
evctl(2F), evget(2F), evrcv(2F), evrcvl(2F), evrel(2F), setrt(2F), signal(2F), sigset(2F).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

EVRCV(2F) EVRCV(2F)

NAME
evrev - receive any queued event

SYNOPSIS
include <sysf/evt.i>

integer*4 evrcv, waitflg
record /event t/ event
iretval = evrcv (waitflg, event)

DESCRIPTION
evrev teceives the first posted event which is queued to the process. The received event is dequeued.

If event is not %val(0), then the posted event information is stored in the location pointed to by event.

waitflg specifies the action to be taken if an event is not currently queued to the process. These are as
follows:

If waitflg is specified as zero, the calling process will return immediately with a return value of
EAGAIN.

Otherwise, the calling process will suspend execution until one of the following occurs:

Any event is queued to the process.

The calling process receives a signal that is to be caught. In this case an event has
not been queuved to the process, and the calling process resumes execution in the
manner prescribed in signal (2F)).

evrev will fail if one or more of the following are true:

[EINVAL] Of the event identifiers for the process which are not currently being ignored, none
are defined to have an event queued to the process when the event is posted (i.e., the
method parameter to evget(2F) was not specified as EVT_QUEUE for any event
identifier which is currently valid and not ignored for the process).

[EAGAIN] No events are queuned for the process, and waitflg was specified as zero.

[EINTR] A signal was caught during the evrcv system call.

EVRCV(2F) EVRCV/(2F)

EXAMPLE
program evrcv
include <sysf/evti>

integer*4 evrcv, waitflg
integer*4 evget, eid, eid2
. integer*4 evpost, pid, dataitem, iretval
integer*4 getpid
record /event_t/ event

¢ Get two event identifiers

eid = evget (EVT_QUELUE, 10, 0, 0)

if (eid .1t. 0) write (*,*) *evget error (call 1):°, eid
¢id2 = evget (EVT_QUEUE, 10, 0, 0)

if (eid2 .It. 0) write (*,*) ’evget error (call 2): *, eid2

¢ Get process id and post events on the queues

pid = getpid ()

if (pid .1t. 0) write (*,*) ’pid error?’, pid

do 100 dataitem = 1, 10

iretval = evpost (pid, eid, dataitem)

if (iretval .It. 0) write (*,*) *evpost error (call 1)2, iretval
iretval = evpost (pid, eid2, dataitem +100)

if (iretval .It. 0) write (*,*) *evpost error (call 2)?, iretval

. 100 continue
¢ Receive any queued event

waitflg = .not. 0
do 500 dataitem = 1, 20
iretval = evrcv (waitflg, event)
if (iretval .It. 0) then
write (*,*) ’evrcv error?, iretval
else
write (*,6000) event.ev_eid, event.ev_type, event.ev_dataitem
endif
500 continue
6000 format (’ eid:’, i6, * type’, i6, ’ dataitem?’, i6)
end

SEE ALSO
evetl(2F), evget(2F), evpost(2F), evicvl(2F), evrel(2F), signal(2F), sigset(2F).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

EVRCVL(2F) EVRCVL(2F)

NAME
evrevl - receive any queued event from a specified list

SYNOPSIS
include <sysf/evti>

integer*4 evrcvl, evl(64), event, waitflg
record /event t/ event
iretval = evrcvl (evl, event, waitflg, event)

DESCRIPTION
evrevl receives the first posted event, from the specified list, which is queued to the process. The
received event is dequeued.

If event is not %val(0), then the posted event information is stored in the location pointed to by event.

evl points to a list of up to 64 specified event identifiers. evcnt is the number of event identifiers
specified by evl. Only events posted to one of the specified event identifiers may be received by evrevi.

waitflg specifies the action to be taken if an event from the specified list is not currently queued to the
process. These are as follows:

If waitflg is specified as zero, the calling process will return immediately with a return value of
EAGAIN.

Otherwise, the calling process will suspend execution until one of the following occurs:

Any event from the specified list is queued to the process.

The calling process receives a signal that is to be caught. In this case an event from
the specified list has not been queued to the process, and the calling process resumes

execution in the manner prescribed in signal(2F).
evrevl will fail if one or more of the following are true: .
[EFAULT] evl points to an illegal address.
[EINVAL] event is less than 1 or larger than 64.
[EINVAL] At least one of the specified event identifiers is not a valid event identifier.
[EINVAL] At least one of the specified event identifiers is currently being ignored, or is defined

to not have an event queued to the process when the event is posted (i.e., the method
parameter was not specified as EVT_QUEUE for the corresponding evget system

call).
[EAGAIN] No events from the specified list are queued for the process, and waitfly was

specified as zero. |
[EINTR] A signal was caught during the evrevl system call. I

EVRCVL(2F)

EXAMPLE
program evrevl
include <sysf/evt.i>

integer*4 evrcvl, evl (2), event, waitflg
integer*4 evget, eid, eid2, eid3, eid4
integer*4 evpost, pid, dataitem, iretval, getpid
record /event_t/ event

¢ Get four event identifiers

eid = evget (EVT_QUEUE, 5, 0, 0)

if (eid .It. 0) write (*,*) "evget error (call 1):°, eid
eid2 = evget (EVT_QUEUE, 5,0, 0)

if (eid2 .1t. 0) write (*,*) ’evget error (call 2):°, eid2
eid3 = evget (EVT_QUELUE, 5, 0, 0)

if (eid3 .It. 0) write (*,*) ’evget error (call 3):°, eid3
eid4 = evget (EVT_QUEUE, 5, 0, 0)

if (eid4 It. 0) write (*,*) ’evget error (call 4):°, eid4

¢ Get process id and post events on the queues

pid = getpid ()

if (pid .It. 0) write (*,*) ’pid error?’, pid

do 100 dataitem = 1, 5

iretval = evpost (pid, eid, dataitem)

if (iretval .It. 0) write (*,*) *evpost error (call 1), iretval
. iretval = evpost (pid, €id2, dataitem + 100)

if (iretval .Jt. Q) write (*,*) *evpost error (call 2):’, iretval

iretval = evpost (pid, eid3, dataitem +200)

if (iretval .It. 0) write (*,*) ’evpost error (call 3)’, iretval

iretval = evpost (pid, eid4, dataitem +300)

if (iretval .It. 0) write (*,*) *evpost error (call 4)’, iretval

100 continue

¢ Receive subset of queued events

waitflg = .not. 0
evl (1) = eid2
evl (2) = eid4
event = 2

do 500 dataitem = 1, 10
iretval = evrevl (evl, event, waitflg, event)
if (iretval It. 0) then
write (*,*) *evrev error?, iretval
else
write (*,6000) event.ev_eid, event.ev_type, event.ev_dataitem
en

500 continue
6000 format (* eid?’, i6, * type:’, i6, ’ dataitem?’, i6)
end

EVRCVL(2F)

EVRCVL(2F) EVRCVL(2F)

SEE ALSO
evctl(2F), evget(2F), evpost(2F), evrcv(2F), evrel(2F), signal(2F), sigset(2F).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

EVREL(2F) EVREL(2F)

NAME
evrel - release an event identifier
SYNOPSIS
integer®4 evrel, eid
iretval = evrel (eid)
DESCRIPTION
evrel releases (frees) the event identifier indicated by eid.
The argument eid is an event identifier which was obtained via an evget system call.
All queued posted events and queued pending signals for the event identifier are removed.
evrel will fail if the following is true:
[EINVAL]} eid is not a valid event identifier.
[EBUSY] eid is currently in use by another subsystem on behalf of the process.
EXAMPLE
program evrel
include <sysf/evt.i>
integer*4 evrel, eid, iretval
integer*4 evpost, pid, dataitem, getpid, evget

¢ Get event identifier

eid = evget (EVT_QUEUE, 10, 0, 0)
if (eid .It. Q) write (*,*) "evget error?’, eid

¢ Post some events to it

pid = getpid ()

do 100 dataitem = 1, 10

iretval = evpost (pid, eid, dataitem)

if (iretval .It. 0) write (*,*) *evpost error?’, iretval
100 continue

¢ Release event identifier, ignoring posted events

iretval = evrel (eid)
if (iretval .it. 0) write (*,*) ’evrel error?, iretval
end
SEE ALSO
evetl(2F), eveet(2F), cvpost(2F), evrcv(2F), cvrevl(2F), signal(2F), sigset(2F).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

EXEC(2F) EXEC(2F)

NAME

exec: execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS

integer*4 execl
character*SIZE path, arg0, argl,..., argn
iretval = execl (path, arg0, argl,..., argn, %val(0))

integer*4 execv, argv(SIZE)
character*SIZE path
iretval = execv (path, argv)

integer*4 execle, envp(SIZE)

character*SIZE path, arg0, argl,..., argn

iretval = execle (path, arg0, argl,...,, argn, %val(0), envp)
integer®*4 execve, argv(SIZE), envp(SIZE)
character*SIZE path

iretval= execve (path, argv, envp)

integer*4 execlp

character*SIZE file, arg0, argl,..., argn

iretval = execlp (file, arg0, argl,..., argn, %val(0))
integer*4 execvp, argv(SIZE)

character*SIZE file

iretval = execvp (file, argv)

DESCRIPTION

exec in all its forms transforms the calling process into a new process. The new process is constructed
from an ordinary, executable file called the new process file. This file consists of a header [see
a.out(4)], a text segment, and a data segment. The data segment contains an initialized portion and an
uninitialized portion (bss). There can be no return from a successful exec because the calling process is
overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argy, envp)

int arge;

char **argy, **envp;
where arge is the argument count, argv is an array of character pointers to the arguments themselves,
and envp is an array of character pointers to the environment strings. As indicated, arge is convention-
ally at least one and the first member of the array points to a string containing the name of the file.

SIZE can be any number between and including 1 through 128.
path points to a path name that identifies the new process file.

file points to the new process file. The path prefix for this file is obtained by a search of the directories
passed as the environment line "PATH =" [see environ(5)]. The environment is supplied by the shell
[see sh(1)].

arg0, argl, ..., argn are pointers to null-terminated character strings. These strings constitute the argu-
ment list available to the new process. By convention, at least argl must be present and point to a
string that is the same as path (or its last component). The synopsis format is a guideline: arg0, argl,...,
argn do not have to be the length indicated by the synopsis.

argy is an array of character pointers to null-terminated strings. These strings constitute the argument
list available to the new process. By convention, argv must have at least one member, and it must point
to a string that is the same as path (or its last component). To terminate argv, make the next member
of argv zero.

EXEC(2F) EXEC(2F)

envp is an array of character pointers to null-terminated strings. These strings constitute the environ-
ment for the new process. To terminate envp, make the next member of envp zero.

File descriptors open in the calling process remain open in the new process, except for those whose
close-on-exec flag is set; see font(2F). For those file descriptors that remain open, the file pointer is
unchanged,

exec wails on any outstanding, noncancelable asynchronous 1/0 requests; cancelable and queued asyn-
chronous I/0 requests are deleted.

Signals set to terminate the calling process will be set to terminate the new process. Signals set to be
ignored by the calling process will be set to be ignored by the new process. Signals set to be caught by
the calling process will be set to terminate new process; see signal (2F).

For signals set by sigset(2F), exec will ensure that the new process has the same system signal action for
each signal type whose action is SIG_DFL, SIG_IGN, or SIG_HOLD as the calling process. However,
if the action is to catch the signal, then the action will be reset to SIG_DFL, and any pending signal for
this type will be held.

If the set-user-ID mode bit of the new process file is set [see chmod (2F)), exec sets the effective user ID
of the new process to the owner ID of the new process file. Similarly, if the set-group-ID mode bit of
the new process file is set, the effective group ID of the new process is set to the group ID of the new
process file. The real user ID and real group ID of the new process remain the same as those of the

calling process.

If the calling process has a process, text or data lock, an unlock is performed [see plock (2F)).

The shared memory segments attached to the calling process will not be attached to the new process
[see shmop (2F)].

The binary semaphores attached to the calling process will not be attached to the new process [see
bsget (2F)).

The event identifiers attached to the calling process will not be attached to the new process [see
evget (2F)].

The interrupts connected to the calling process will not be connected to the new process [see cin-
trio(7)].

Profiling is disabled for the new process; see profil(2F).

The new process also inherits the following attributes from the calling process:

nice value [see nice (2F)]

process ID

parent process ID

process group ID

semadj values [see semop (2F))

ity group ID [see exit(2F) and signal (2F))

trace flag [see ptrace (2F) request 0]

time left until an alarm clock signal [see alarm (2F))
current working directory

root directory

file mode creation mask [sec umask (2F)]

file size limit {see ulimit(2F)]

utime, stime, cutime, and cstime {sce times (2F))
file-locks [see fentl(2F) and lockf(3C)]

EXEC(2F)

EXEC(2F)

exec will fail and return to the calling process if one or more of the following are true:

[ENOENT]
[ENOTDIR]
[EACCES)

[EACCES]
[EACCES]
{ENOEXEC]

[ETXTBSY]

[ENOMEM]

(E2BIG]

{EFAULT]
[EFAULT]

[EFAULT]
[EAGAIN]
{ELIBACC]
[ELIBEXEC]
[EINTR]
[ENOLINK]
[EMULTIHOP]

One or more components of the new process path name of the file do not exist.
A component of the new process path of the file prefix is not a directory.

Search permission is denied for a directory listed in the mew process file’s path
prefix.

The new process file is not an ordinary file.
The new process file mode denies execution permission.

The exec is not an execlp or execvp, and the new process file has the appropriate
access permission but an invalid magic number in its header.

The new process file is a pure procedure (shared text) file that is currently open for
writing by some process.

The new process requires more memory than is allowed by the system-imposed max-
imum MAXMEM.

The number of bytes in the new process’s argument list is greater than the system-
imposed limit of 5120 bytes.

Required hardware is not present.

An a.out that was compiled with the MAU or 32B flag is running on a machine
without a MAU or 32B.

path, argv, or envp point to an illegal address.

Not enough memory.

Required shared library does not have execute permission.

Trying to exec(2F) a shared library directly.

A signal was caught during the exec system call.

path points to a remote machine and the link to that machine is no longer active.
Components of path require hopping to multiple remote machines.

EXEC(2F) EXEC(2F)

EXAMPLE
program exec
¢ This program assumes that an executable program called hello
¢ exists under ’../example’.

A simple hello program might be:

program hello
integer*4 argc, i, iarge
character*20 argv
arge = iargc ()

if (argc le. 0) goto 500
do100i = 1, argc

call getarg (i, argv)
write (*,*) argv

¢100 continue

¢ if (.true.) stop

¢500 continue

¢ write (*,*) "executed without arguments’
¢ end

000606600000

integer*4 execl, iretval
character*20 path, argl1, arg2
path = .. /example/hello’
argl = ’hello’
arg2 = *world!
iretval = execl (path, path, argl, arg2, *bye now’, %val(0))
. write (*,*) ’execl error?, iretval
end
NOTES
A FORTRAN program may obtain the call line arguments as follows:

character*20 argv(10)
num_args = iargc()
if (num_args.gt.10) num_args = 10
do100i = 1, num_args
call getarg (i, argv(i))
100 continue
An environment variable may be obtained as follows:
character*40 home_dir
call getenv ("HOME?", home_dir)
Entries in argv or envp may be set up using %loc() as follows:
argy (i) = %loc (argl)
SEE ALSO
sh(1), alarm(2F), exit(2F), fentl(2F), fork(2F), nice(2F), plock(2F), ptrace(2F), semop(2F), signal(2F),
sigset(2F), times(2F), ulimit(2F), umask(2F), lockf(3C), a.out(4), environ(5).

DIAGNOSTICS
If exec returns to the calling process an error has occurred; the return value will be a negative value
indicating the error.

EXIT(2F) EXIT (2F)

NAME
exit, _exit - terminate process

SYNOPSIS
integer*4 exit, status
iretval = exit (status)
integer*4 _exit, status
iretval = _exit (status)
DESCRIPTION
exit terminates the calling process with the following consequences:
All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified of the calling process’s ter-
mination and the low order eight bits (i.e., bits *0377°0) of status are made available to it [see
wait (2F)].

If the parent process of the calling process is not executing a wait, the calling process is transformed
into a zombie process. A zombie process is a process that only occupies a slot in the process table. It
has no other space allocated either in user or kernel space. The process table slot that it occupies is
partially overlaid with time accounting information (see <sysf/proc.i>) to be used by times.

The parent process ID of all of the calling processes’ existing child processes and zombie processes is
set to 1. This means the initialization process [see intro(2F)] inherits each of these processes.

Each attached shared memory segment is detached and the value of shm_nattach in the data structure
associated with its shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value [see semop (2F)], that semadj
value is added to the semval of the specified semaphore. .

If the process has a process, text, or data lock, an unlock is performed [see plock (2F)].

exit waits on outstanding, noncancelable asynchronous I/O requests; all cancelable and queued asyn-
chronous I/0 requests are deleted.

An accounting record is written on the accounting file if the system’s accounting routine is enabled [see
acct (2F)).

If the process ID, tty group ID, and process group ID of the calling process are equal, the SIGHUP sig-
nal is sent to each process that has a process group ID equal to that of the calling process.

A death of child signal is sent to the parent.

The C function exit may cause cleanup actions before the process exits. The function _exit circumvents

all cleanup.
EXAMPLE
program exit
integer*4 exit, status, iretval
status = 5

write (*,*) "Type "echo $?" to check exit status of *, status
iretval = exit (status)
end
SEE ALSO
acct(2F), intro(2F), plock(2F), semop(2F), signal(2F), sigset(2F), wait(2F).
WARNING
See WARNING in signal (2F).

DIAGNOSTICS
None. There can be no return from an exif system call.

FCNTL(2F)

NAME
fentl - file control

SYNOPSIS

FCNTL(2F)

include <sysf/fcntli>

integer*4 fentl, fildes, cmd, arg
iretval = fentl (fildes, cmd, arg)
integer®*4 fentl, fildes, cmd

record /flock/ arg2
iretval = fentl (fildes, cmd, arg2)

DESCRIPTION
fentl provides for
dup, fentl, or pipe

control over open files. fildes is an open file descriptor obtained from a creat, open,
system call.

The commands available are:

F_DUPFD

. F_GETFD

F_SETFD

F_GETFL
F_SETFL
F_GETLK

F_SETLK

F_SETLKW

. F_CHKFL

F SETAIOEMUL

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors share one file
pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain open
across exec (2F) system calls.

Get the close-on-exec flag associated with the file descriptor fildes. If the low-order
bit is O the file will remain open across exec, otherwise the file will be closed upon
execution of exec.

Set the close-on-exec flag associated with fildes to the low-order bit of arg (0 or 1 as
above).

Get file status flags.
Set file status flags to arg. Only certain flags can be set [see fent! (5)].

Get the first lock which blocks the lock description given by the structure arg2
defined by record [flock farg2. The information retrieved overwrites the information
passed to fentl in the flock structure. If no lock is found that would prevent this lock
from being created, then the structure is passed back unchanged except for the lock
type which will be set to F_UNLCK.

Set or clear a file segment lock according to the structure arg2 defined by
recordfflock farg2 [see fcntl(5)]. The cmd F SETLK is used to establish read
(F_RDLCK) and write (F_ WRLCK) locks, as well as remove cither type of lock
(F_UNLCK). If a read or write lock cannot be set fent! will return immediately with
an error value of -1.

This cmd is the same as F_SETLK except that if a read or write lock is blocked by
other locks, the process will sleep until the segment is free to be locked.

(check legality of file flag changes)

Set or clear flag controlling the emulation of asynchronons 1/0 for a device that docs
not support asynchronous I/0. If arg 1 (default), an aread(2F) or awrite(2F) cal
emulates an asynchronous 1/0 operation and retorns syachronously. If arg is 0, an

FCNTL(2F) FCNTL(2F)

asynchronous I/O operation on a file or device that does not support asynchronous
I/0O causes an error condition. F_ SETAIOEMUL can be executed only by processes
with realtime or superuser permissions.

F_GETAIOEMUL Get the asynchronous emulation mode for fildes. If the return value is 0, emula-
tion is turned on; if the return value is 1, emulation is turned off.

F_SETBYBCACHE Set the bypass-buffer-cache flag for a regular, directory, or pipe file. Note that,
while this command is issued against a fildes, it is actually set on the inode for the
file, to avoid problems that might result if one file receives both asynchronous and
synchronous I/O. If the return value is O (default), I/O operations on this fildes
will use the buffer cache; if arg 1, 1/O operations on this fildes will bypass the
buffer cache. F_SETBYBCACHE cannot be used with asynchronous 1/0O requests
against a character special device file, only with asynchronous 1/0 requests to reg-
ular files and directories. F_ SETBYBCACHE can be executed only by processes
with realtime or superuser permissions.

If the arg to F_SETBYBCACHE is 0, an aread(2F) or awrite(2F) operation against
the fildes runs in emulation mode; a read(2F) or write(2F) operation runs nor-
mally.

If the arg to F_ SETBYCACHE is 1, an aread(2F) or awrite(2F) operation runs in
non-emulation mode and a read(2F) or write(2F) request issued against fildes will
cause an EBUSY error condition.

F_GETBYBCACHE Get the value of the bypass-buffer-cache flag. If the return value is 0, 1/0 requests
to this fildes will not bypass the buffer cache; if the return value is not 0, I/0
requests to this fildes will bypass-the buffer cache; the return value indicates the
number of fildes for that inode that have bypass permissions set.

F_GETAIOREQ Determine buffer alignment requirements, maximum transfer size, and other
specifications for asynchronous I/O operations. See fent!(5) for more information.

A read lock prevents any process from write locking the protected area. More than one read lock may
exist for a given segment of a file at a given time. The file descriptor on which a read lock is being
placed must have been opened with read access.

A write lock prevents any process from read locking or write locking the protected area. Only one
write lock may exist for a given segment of a file at a given time. The file descriptor on which a write
lock is being placed must have been opened with write access.

The structure flock describes the type (!_type), starting offset (I_whence), relative offset (/_start), size
(I_len), process id (/_pid), and RFS system id (!_sysid) of the segment of the file to be affected. The
process id and system id fields are used only with the F_ GETLK cmd to return the values for a blocking
lock. Locks may start and extend beyond the current end of a file, but may not be negative relative to
the beginning of the file. A lock may be set to always extend to the end of file by setting ! len to zero
(0). If such a lock also has I_whence and /_start set to zero (0), the whole file will be locked. Changing
or unlocking a segment from the middle of a larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by the calling process causes the old lock type to
be removed and the new lock type to take effect. Al locks associated with a file for a given process are
removed when a file descriptor for that file is closed by that process or the process holding that file
descriptor terminates. Locks are not inherited by a child process in a fork(2F) system call.

When mandatory file and record locking is active on a file, [see chmod(2F)), read and write system calls
issued on the file will be affected by the record locks in effect.

fentl will fail if one or more of the following are true:

FCNTL(2F) FCNTL(2F)

[EBADF] fildes is not a valid open file descriptor.

[EINVAL)] cmd is F_ DUPFD. ag is either negative, or greater than or equal to the configured
value for the maximum number of open file descriptors allowed each user.

[EINVAL} cmd is F_GETLK, F_SETLK, or SETLKW and arg2 or the data it points to is not valid.

[EACCES] cmd is F_SETLK the type of lock (/_type) is a read (F_RDLCK) lock and the segment of
a file to be locked is already write locked by another process or the type is a write
(F_WRLCK) lock and the segment of a file to be locked is already read or write locked
by another process.

[ENOLCK] c¢md is F_SETLK or F_SETLKW, the type of lock is a read or write lock, and there are no
more record locks available (too many file segments locked) because the system max-
imum has been exceeded.

[EDEADLK] c¢md is F_SETLKW, the lock is blocked by some lock from another process, and putting
the calling-process to sleep, waiting for that lock to become free, would cause a
deadlock.

[EFAULT] cmd is F_SETLK, arg2 points outside the program address space.

[EINTR] A signal was caught during the fent! system call.

[ENOLINK] fildes is on a remote machine and the link to that machine is no longer active.

[EPERM] The process that tried to set F SETBYBCACHE or F_SETAIOEMUL did not have real-
time or superuser permissions.

EXAMPLE
program fentl

include <sysf/fentli>
integer*4 fentl, fildes, cmd
integer*4 open, iretval
record /flock/ arg2

¢ Open afile

fildes = open ('../example/fcntl ', O RDWR)
if (fildes .It. 0) write (*,*) ’open error?’, fildes

¢ Set read lock for entire file

arg2]_type = F_RDLCK

arg2.l whence = 0

arg2.] start = 0

arg2] len = 0

cmd = F_SETLK

iretval = fentl (fildes, cmd, arg2)

if (iretval .It. 0) write (*,*) "1 fentl error?, iretval

¢ Use the locked file
¢ Remove the lock

arg2 type = F_UNLCK

cmd = F_SETIK

iretval = fend (fildes, cmd, arg2)

if (iretval .It. 0) write (*,*) *2 fentl error?’, iretval

end

FCNTL(2F) FCNTL(2F)

0}

. Als(:lose(2l-"'), creat(2F), dup(2F), exec(2F), fork(2F), open(2F), pipe(2F), fentl(5).
DIAGNOSTICS

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD A new file descriptor. .

F_GETFD Value of flag (only the low-order bit is defined).

F_SETFD Positive value

F_GETFL Value of file flags

F_SETFL Positve value

F_ GETLK Positive value

F_SETLK Positive value

F_SETLKW Positive value

F_CHKFL

F SETAIOEMUL Positive value

F_GETAIOEMUL Value of 0 if emulation flag is turned on, value of 1 (or higher) if emulation flag is
turned off.

F_SETBYBCACHE Positive value
F_GETBYBCACHE Value of 0 if bypass-buffer-cache flag is turned off; value 1 (or higher) if bypass-

buffer-cache flag is turned on.
F_GETAIOREQ
Otherwise, a negative value indicating the error is returned. .
WARNINGS

Because in the future the variable iretval will be set to EAGAIN rather than EACCES when a section of
a file is already locked by another process, portable application programs should expect and test for
either value.

Only I/O operations to devices with drivers that include an @io(D3X) routine and an ioct/(D2X) rou-
tine that defines AIOGETREQ (as defined in sysf/aio.i) can use the F GETAIOREQ command.

FORK(2F) FORK(2F)

NAME
fork - create a new process

SYNOPSIS
integer*4 fork
iretval = fork ()

DESCRIPTION
Jfork causes creation of a new process. The new process (child process) is an exact copy of the calling
process (parent process). This means the child process inherits the following attributes from the
parent process:

environment
close-on-exec flag [see exec (2F)]
signal handling settings (i.c., SIG_DFL, SIG_IGN, SIG_HOLD, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value [see nice (2F)]
all attached shared memory segments [see shmop (2F))
process group ID
tty group ID [see exit (2F)]
current working directory
root directory
file mode creation mask [see umask (2F)]
file size limit [see ulimit (2F)]
The child process differs from the parent process in the following ways:
The child process has a unique process ID.
The child process has a different parent process ID (i.e., the process ID of the parent process).

The child process has its own copy of the parent’s file descriptors. Each of the child’s file
descriptors shares a common file pointer with the corresponding file descriptor of the parent.

All semadj values are cleared [see semop (2F)).

Binary semaphores are not inherited by the child [see bsget (2F)].

Event identifiers are not inherited by the child {see evger (2F)].

Connected interrupts are not inherited by the child [see cintrio (7)].

No asynchronous 1/0 is inherited [see aread (2F) and awrite (2F)].

Process locks, text locks and data locks are not inherited by the child [see plock (2F)).

The child process’s utime, stime, cutime, and cstime are set to 0. The time left until an alarm
clock signal is reset to 0.

fork will fail and no child process will be created if one or more of the following are true:
[EAGAIN] The system-imposed limit on the total number of processes under execution would be
exceeded.

[EAGAIN] The system-imposed limit on the total number of processes under execution by a single
user would be exceeded.

[EAGAIN] Total amount of system memory available when reading via raw I/O is temporarily
insufficient.

FORK(2F) FORK(2F)

EXAMPLE
program fork
integer*4 fork, pid, cpid, getpid

¢ Create a new process

pid = fork ()

if (pid .It. 0) then
write (*,*) *fork error?’, pid
stop

else if (pid .eq. 0) then

¢ Here if child process

cpid = getpid ()
write (*,9000) *Child here.’, "My process id?’, cpid
stop

else
¢ Here if parent (original) process

write (*,9000) "Parent here.’, *Child”s process id’, pid
stop

endif
9000 format (*’, al2, 2x, a20, i6)
end
SEE ALSO
exec(2F), nice(2F), plock(2F), ptrace(2F), semop(2F), shmop(2F), signal(2F), sigset(2F), times(2F),
ulimit(2F), umask(2F), wait(2F).
DIAGNOSTICS
Upon successful completion, fork returns a value of 0 to the child process and returns the process ID of
the child process to the parent process. Otherwise, a negative value indicating the error is returned to
the parent process and no child process is created.

FTIME(2F) FTIME(2F)

NAME
ftime - get time
SYNOPSIS
integer*4 ftime, tloc
iretval = ftime (tloc)

DESCRIPTION
ftime returns the value of time in seconds since 00:00:00 GMT, January 1, 1970. This function is
equivalent to the system call time(2).

If tloc is not %val(0), the return value is also stored in the location to which #oc points.

EXAMPLE
program ftime

¢ Print current local date and time

integer*4 ftime, tloc, iretval

integer*4 secs, mins, hours

integer*4 month, day, year, dayofweek

integer*4 daypyear, daypmonth (12)

integer*4 diff

character*3 weekday (7), monthname (12), zone

character*2 minc, secc

character*7 tz

data daypmonth /31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/

data weekday /"Sun”®, "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"/

data monthname /"Jan", "Feb", "Mar", "Apr", "May", "Jun",
& “Jul", "Aug’, "Sep”, "Oct”, "Nov’, "Dec"/

¢ Get time zone information

call getenv ("TZ", tz)
zone = tz (1:3)

diff = ichar (tz (4:4)) - 48
diff = diff * 3600

¢ Get time in seconds since 00:00:00 GMT, January 1, 1970.

iretval = ftime (tloc)
if (iretval .It. 0) write (*,*) "ftime error?, iretval
tloc = tloc - diff

¢ Compute current local time

secs = mod (tloc, 60)

tioc = tloc / 60

mins = mod (tloc, 60)

tloc = tloc / 60

hours = mod (tloc, 24)

tloc = tloc / 24

minc (1:1) = char ((mins / 10) + 48)
minc (2:2) = char (mod (mins, 10) + 48)
secc (1:1) = char ((secs / 10) + 48)

secc (2:2) = char (mod (secs, 10) + 48)

FTIME(2F) FTIME (2F)

¢ Get day of week

dayofweek = mod ((tloc + 7340036), 7) + 1

¢ Get year .
year = 70
100 continue
daypyear = 365
if (mod (year, 4) .eq. 0) daypyear = 366
if (tloc .It. daypyear) goto 110
tloc = tloc - daypyear

year = year + 1
goto 100

110 continue
year = year + 1900

¢ Get month

month = 1

daypmonth (2) = 28

if (daypyear .eq. 366) daypmonth (2) = 29
200 continue

if (tloc le. daypmonth (month)) goto 210

tloc = tloc - daypmonth (month)

month = month + 1
goto 200

210 continue
day = tloc + 1

¢ Your mission: Account for daylight savings time
¢ Print date and time

write (*,9000) weekday (dayofweek), monthname (month),
& day, hours, minc, secc, zone, year
9000 format (*°, a3, x, a3, 13, x, i2, 7', a2, *?, a2, x, a3, x, i4)
end
NOTES
The FORTRAN System Interface Call time was renamed to ftime to distinguish it from the VAX/VMS
System Subroutine time.
SEE ALSO
stime(2F).
WARNING
ftime fails and its actions are undefined if loc points to an illegal address. .

DIAGNOSTICS
Upon successful completion, ftime returns the value of time. Otherwise, a negative value indicating the
error is returned.

GETDENTS (2F) GETDENTS (2F)

NAME
getdents - read directory entries and put in a file system independent format

SYNOPSIS
include <sysf/dirent.i>
integer®4 getdents, fildes, nbyte
integer®*1 buf (SIZE)
iretval = getdents (fildes, buf, nbyte)
DESCRIPTION
fildes is a file descriptor obtained from an open (2F) or dup (2F) system call.

getdents attempts to read nbyte bytes from the directory associated with fildes and to format them as
file system independent directory entries in the buffer pointed to by buf of SIZE bytes. Since the file
system independent directory entries are of variable length, in most cases the actual number of bytes
returned will be strictly less than nbyte.

The file system independent directory entry is specified by the dirent structure. For a description of
this see dirent(4).

On devices capable of seeking, getdents starts at a position in the file given by the file pointer associ-
ated with fildes. Upon return from getdents, the file pointer is incremented to point to the next direc-
tory entry.

This system call was developed in order to implement the readdir(3X) routine [for a description see
directory (3X)], and should not be used for other purposes.

getdents will fail if one or more of the following are true:

[EBADF] fildes is not a valid file descriptor open for reading.

[EFAULT] Buf points outside the allocated address space.

[EINVAL] nbyte is not large enough for one directory entry.

[ENOENT] The current file pointer for the directory is not located at a valid entry.

[ENOLINK] fildes points to a remote machine and the link to that machine is no longer active.
[ENOTDIR] fildes is not a directory.
[EIO] An I/O error occurred while accessing the file system.

GETDENTS(2F) GETDENTS(2F)

BEXAMPLE
program getdents
include <sysf/fentli>
define MAXNAMSIZ 20

define MAXBUFSIZ 128
integer*4 getdents, fildes, nbyte .
integer*1 buf(MAXBUFSIZ)
integer*4 be, open, iretval
integer*4 i, index, i_off, inode, offset, entlen
integer*4 skip, close, tmp
character*MAXNAMSIZ name

¢ Open directory

fildes = open (*, O_RDONLY)
if (fildes .lt. 0) write (*,*) "open error?’, fildes

¢ Loop on all directory entries

10 continue
nbyte = MAXBUFSIZ
be = getdents (fildes, buf, nbyte)
if (bc .eq. 0) then ! all done
iretval = close (fildes)
stop
else if (be .It. 0) then

write (*,*) ‘getdents error?’, be
stop

endif
index = 1
ioff=0

¢ Loop on directory entries read into buffer

do while (bc .gt. 0)
index = index + i_off
ioff=0
inode = 0
offset = 0
entlen = 0

GETDENTS(2F) GETDENTS(2F)

¢ Format variables according to dirent(4)

do100i=1,4
tmp = buf (index + i off)
inode = inode * 256 + (tmp .and. '0fx)
tmp = buf (index + i_off + 4)
offset = offset * 256 + (tmp .and. 0f’x)
tmp = buf (index + i_off + 8)
if (i .It. 3) entlen = entlen * 256 + (tmp .and. *0ffx)
ioff=ioff +1
100 coatinue

ioff=ioff +6
name = "
skip = 1

¢ Format name of null-terminated entry

do200i = 1, entlen - i_off

if (buf (index + i_off) .eq. 0) skip = -1

if (skip .1t. 0) goto 210

if (i le. MAXNAMSIZ) name (i:i) = char (buf (index + i_off))
210 continue

i_off =i off +1
200 continue

write (*,9000) inode, offset, entlen, name
be = be-i_off
end do

¢ Do entire directory

goto 10
9000 format (* inode?’, i6,” offset:’, i6,’ entlen?’, i6,
& ' name:’, a MAXNAMSIZ)
end
SEE ALSO
directory(3X), dirent(4).

DIAGNOSTICS
Upon successful completion a non-negative integer is returned indicating the number of bytes actually

read. A value of 0 indicates the end of the directory has been reached. If the system call failed, a nega-
tive value indicating the error is returned.

GETINTERVAL(2F) GETINTERVAL(2F)

NAME
getinterval - get the current value for a process interval timer

SYNOPSIS
include <sysf/time.i>

integer®4 getinterval, timerid
record /itimerstruc/ value
iretval = getinterval (timerid, value)

DESCRIPTION
The getinterval system call is used to obtain a time value for the process interval timer described by
timerid and returned by gettimerid (2F).

The value argument is a pointer to an itimerstruc where the it_value represents the amount of time
remaining before the timer is to expire and it_interval is the current interval value if one exists (or 0 if
one does not).

BXAMPLE
program getinter
include <sysf/time.i>
integer*4 getinterval, timerid, iretval
record /itimerstruc/ value

¢ Use evget to get an event id

¢ Use gettimerid to get a timer id for the event id

¢ Use incinterval or absinterval to start interval timer

¢ Delay some time and use getinterval to check time remaining

iretval = getinterval (timerid, value)
if (iretval .It. 0) write (*,*) ’getinterval error?’, iretval

¢ Print time remaining

write (*,9000) value.it_value.tv_sec, value.it_value.tv_nsec
9000 format (* seconds remaining:’, i8,” nano-sec remaining:’, i8)

end
ERROR CODES
If getinterval is not successful, a negative value indicating the error is returned.
[EFAULT] The value argument points outside of the allocated address space.
[EINVAL] The timerid argument does not correspond to a valid timer identifier returned by
gettimerid (2F) or it has been previously released with a reltimerid (2F) call.
SEE ALSO
absinterval(2F), gettimerid(2F), incinterval(2F), reltimerid(2F), resabs(2F), resinc(2F), itimerstruc(4),
timestruc(4).

GETMSG(2F) GETMSG(2F)

NAME
getmsg - get next message off a stream

SYNOPSIS
#include <stropts.i>

int getmsg(fd, ctiptr, dataptr, flags)
integer*2 fd
record/strbuf/ctlptr
record/strbuf/dataptr
integer*4 flags

DESCRIPTION
getmsg retrieves the contents of a message [see intro(2F)] located at the stream head read queue from a
STREAMS file, and places the contents into user specified buffer(s). The message must contain either
a data part, a control part or both. The data and control parts of the message are placed into separate
buffers, as described below. The semantics of each part is defined by the STREAMS module that gen-
erated the message.

fd specifies a file descriptor referencing an open stream. ctiptr and dataptr are each records of strbuf
structure which contains the following members:

integer*4 maxlen /* maximum buffer length */

integer*4len /* length of data */

integer*4buf /* ptr to buffer */
where buf points to a buffer in which the data or control information is to be placed, and maxlen indi-
cates the maximum number of bytes this buffer can hold. On return, /en contains the number of bytes
of data or control information actually received, or is 0 if there is a zero-length control or data part, or
is -1 if no data or control information is present in the message. flags may be set to the values 0 or
RS_HIPRI and is used as described below.

ctptr is used to hold the control part from the message and dataptr is used to hold the data part from
the message. If ctiptr (or dataptr) is NULL or the maxien field is -1, the control (or data) part of the
message is not processed and is left on the stream head read queue and len is set to -1. If the maxlen
field is set to 0 and there is a zero-length control (or data) part, that zero-length part is removed from
the read queue and len is set to 0. If the maxlen field is set to 0 and there are more than zero bytes of
control (or data) information, that information is left on the read queue and len is set to 0. If the max-
len field in ctiptr or dataptr is less than, respectively, the control or data part of the message, maxlen
bytes are retrieved. In this case, the remainder of the message is left on the stream head read queue
and a non-zero return value is provided, as described below under DIAGNOSTICS. If information is
retrieved from a priority message, flags is set to RS_HIPRI on return.

By default, getmsg processes the first priority or non-priority message available on the stream head read
queue. However, a user may choose to retrieve only priority messages by setting flags to RS_HIPRI. In
this case, getmsg will omly process the next message if it is a priority message.

If O_NDELAY has not been set, getmsg blocks until a message, of the type(s) specified by flags (priority
or either), is available on the stream head read queue. If O NDELAY has been set and a message of
the specified type(s) is not present on the read quene, getmsg fails and sets ermo to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved, getrnsg will continue to
operate normally, as'described above, until the stream head read queue is empty. Thereafter, it will
retura 0 in the ken ficlds of coiptr and dataptr.

getmsg fails if one or more of the following are true:

[EAGAIN] The O_NDELAY flag is set, and no messages are available.

[EBADF] fd is not a valid file descriptor open for reading.

GETMSG(2F) GETMSG(2F)

[EBADMSG] Queued message to be read is not valid for getmsg.

[EFAULT] ctiptr, dataptr, or flags points to a location outside the allocated address space.

[EINTR] A signal was caught during the getmsg system call.

[EINVAL) An illegal value was specified in flags, or the stream referenced by fd is linked under
a multiplexor.

[ENOSTR] A stream is not associated with fd.

A getmsg can also fail if a STREAMS error message had been received at the stream head before the
call to getrnsg. The error returned is the value contained in the STREAMS error message.

SEE ALSO
intro(2F), read(2F), poll(2F), putmsg(2F), write(2F).

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. A value of 0 indicates that a full mes-
sage was read successfully. A return value of MORECTL indicates that more control information is
waiting for retrieval. A return value of MOREDATA indicates that more data is waiting for retrieval. A
return value of MORECTL|MOREDATA indicates that both types of information remain. Subsequent
getmsg calls will retrieve the remainder of the message.

GETPEERNAME(2F) GETPEERNAME(2F)

NAME
getpeername - get name of connected peer
SYNOPSIS

#include <sysf/types.i>
#include <sysf/socket.i>

. integer®4 getpeername,s,namelen
struct/sockaddr/name
iretval = getpeername(s, name, namelen)

DESCRIPTION
getpeername returns the name of the peer connected to socket s. The namelen parameter should be
initialized to indicate the amount of space pointed to by name. On return it contains the actual size of
the name returned (in bytes). The name is truncated if the buffer provided is too small.

ERRORS
Upon successful completion, the value zero is returned. Otherwise, a negative value indicating the
error is returned.

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insuﬂiciq!;t resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process address
space.
EXAMPLE
see socket(2F)
SEE ALSO

accept(2F), bind(2F), socket(2F), getsockname(2F)

GETPID (2F)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process IDs
SYNOPSIS
integer*4 getpid
iretval = getpid ()
integer*4 getpgrp
iretval = getpgrp ()
integer*4 getppid
iretval = getppid ()
DESCRIPTION
getpid returns the process ID of the calling process.
getpgrp returns the process group ID of the calling process.
getppid returns the parent process ID of the calling process.
EXAMPLE
program getpid
integer*4 getpid, getpgrp, getppid
integer*4 pid, pgrp, ppid

¢ Get process id, group, and parent process id

pid = getpid ()
pexp = getpgrp O
ppid = getppid)

write (*,*) pid, pgrp, ppid
end

SEE ALSO
exec(2F), fork(2F), intro(2F), setpgrp(2F), signal(2F).

GETPID (2F)

GETPRI(2F) GETPRI(2F)

NAME
getpri - get scheduling priority
SYNOPSIS
integer*4 getpri, pid
iretval = getpri (pid)
DESCRIPTION
pid is the process ID of the target process, or zero if the calling process is the target. gepri returns the
scheduling priority of the target process.
If pid is nonzero, the requesting process must have superuser or realtime privileges which are granted
via the sert(2F) system call.
getpri will fail if one or more of the following are true:
[ESRCH] No process can be found corresponding to that specified by pid.
[EPERM]} The pid is nonzero and the requesting process does not have realtime or superuser per-
missions,
EXAMPLE
program getpri
integer*4 getpri, pid
integer*4 pri

¢ Get my priority

pid=0
pri = getpri (pid)
if (pri It. 0) then

write (*,*) "getpri error?’, pri
else

write (*,*) ‘my priority if, pri
endif
end

SEE ALSO
setpri(1R), getpid(2F), setpri(2F), setrt(2F).

DIAGNOSTICS
Upon successful completion, a non-negative integer is returned indicating the priority of the target pro-
cess. Otherwise, a negative value indicating the error is returned.

GETSOCKNAME (2F) GETSOCKNAME(2F)

NAME
getsockname - gets socket name

SYNOPSIS
integer*4 getsockname,s,namelen
record /sockaddr/ name
iretval =getsockname(s, name, namelen)

DESCRIPTION
getsockname returns the current name for the specified socket. The namelen parameter should be ini-
tialized to indicate the amount of space pointed to by name. On return, it contains the actual size of
the name returned (in bytes).

ERRORS
Upon successful completion, the value zero is returned. Otherwise, a negative value indicating the
error is returned.

The call succeeds unless:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in the system to perform the operation.
[EFAULT] The name parameter points to memory not in a valid part of the process
address space.
EXAMPLE
see socket(2F)
SEE ALSO

bind(2F), socket(2F)

GETSOCKOPT(2F) GETSOCKOPT(2F)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sysf/types.i>

#include <sysf/socket.i>

. integer*4 getsockopt,s,level,optname,optien
character*SIZE optval
iretval= getsockopt(s, level, optname, optval, optlen)

integer*4 setsockopt,s,level,optname,optlen
character*SIZE optval
iretval= setsockopt(s, level, optname, optval, optlen)

DESCRIPTION
getsockopt and setsockopt manipulate options associated with a socket. Options may exist at multiple
protocol levels; they are always present at the uppermost socket level.

When manipulating socket options the level at which the option resides and the name of the option
must be specified. To manipulate options at the socket level, level is specified as SOL_SOCKET. To
manipulate options at any other level the protocol number of the appropriate protocol controlling the
option is supplied. For example, to indicate that an option is to be interpreted by the TCP protocol,
level should be set to the protocol number of TCP; see getprotoent (3N).

The parameters optval and optlen are used to set option values for setsockopt. For getsockopt they
identify a buffer in which the value for the requested option(s) is to be returned. For getsockopt, optien
is a value-result parameter, initially containing the size of the buffer pointed to by optval, and modified
on return to indicate the actual size of the value returned. A valid option value pointer must always be

passed

. optname and any specified options are passed uninterpreted to the appropriate protocol module for
interpretation. The include file <sysf/socket.i > contains definitions for socket level options, described
below. Options at other protocol levels vary in format and name; consult the appropriate entries in
section (7).
Socket-level options take an inf pointer for optval. For setsockopt, the parameter must point to a
non-zero value to enable a boolean option, or a zero value if the option is to be disabled. For get-
sockopt, the value returned in *optval == optname if the option is enabled, or 0 if it is disabled (for
boolean options).

The following options are recognized at the socket level. Except as noted, each may be examined with
getsockopt and set with setsockopt .

SO_DEBUG toggle recording of debugging information
SO REUSEADDR toggle local address reuse
SO] KEEPALIVE toggle keeping connections alive

SO_DEBUG enables dcbugging in the underlying protocol modules. SO_REUSEADDR indicates
that the rules used in validating addresses supplied in a bind(2F) call should allow reuse of local
addresses. SO_KEEPALIVE enables the periodic transmission of messages on a connected socket.
Should the connected party fail to respond to these messages, the connection is considered broken and
calls on the socket will return -1 with ermo set to ETIMEDOUT.

ERRORS
Upon successful completion, the value zero is returned. Otherwise, a negative value indicating the
error is returned.

The call succeeds unless:

GETSOCKOPT (2F) GETSOCKOPT (2F)

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown at the level indicated.

[EFAULT] The address pointed to by optval is not in a valid part of the process address

space. For getsockopt, this error may also be returned if optlen is not in a valid
part of the process address space.
EXAMPLE
see socket(2F)
SEE ALSO
ioctl(2F), socket(2F), getprotoent(3N)
BUGS
Several of the socket options should be handled at lower levels of the system.

Options must be set/cleared via setsockopt prior to issuing a connect or listen on a SOCK_STREAM
socket.

GETTIMER (2F) GETTIMER (2F)

NAME
gettimer - get the current value for a system-wide realtime timer

SYNOPSIS
include <sysf/time.i>

integer*4 gettimer, timer_type

record /timestruc/ tp

iretval = gettimer (timer_type, tp)
DESCRIPTION

gettimer returns the current value of the system-wide realtime timer specified by the timer_type argu-
ment.

The timer type argument identifies the system-wide realtime timer used with this system call.
TIMEOFDAY is a valid timer_type and corresponds to the system time-of-day clock representing the
current time in seconds and nanoseconds since January 1, 1970. This timer is ascending in nature and
is updated by the system at the frequency of the 64 Hz system clock.

{p is a pointer to a timestruc structure where the timer value is to be placed.

EXAMPLE
program gettimer
include <sysf/time.i>
integer*4 gettimer, timer_type
integer*4 iretval, secs, mins, hours, tmp

record /timestruc/ tp

iretval = gettimer (TIMEOFDAY, tp)
. if (iretval .It. 0) write (*,*) 'gettimer error?’, iretval

secs = mod (¢p.tv_sec, 60)
tmp = tp.tv_sec / 60
mins = mod (tmp, 60)
tmp = tmp / 60
hours = mod (tmp, 24)
write (*,9000) tp.tv_sec, tp.tv_nsec
write (*,9001) hours, mins, secs
9000 format (time since 1/1/1970: *,i10,” seconds,’i10,” nano-seconds’)
9001 format (’ time: ’,i2,’:,i2,'7,i2," GMT’)
end
ERROR CODES
If successful, gettimer returns a value of 0. Otherwise a negative value indicating the error is returned.

[EFAULT] tp points outside the allocated address space of the process.
[EINVAL} The timer_type argument does not specify a valid system-wide realtime timer type.
SEE ALSO

restimer(2F), settimer(2F), timestruc(4).

GETTIMERID(2F) GETTIMERID (2F)

NAME
gettimerid - get a unique identifier for a process interval timer

SYNOPSIS
include <sysf/time.i>
include <sysf/evt.i>

integer®4 gettimerid, timer_type, event_type, eid
iretval = gettimerid (timer_type, event_type, eid)
DESCRIPTION
The gettimerid system call allocates a process interval timer to the calling realtime process and assigns
it a unique identifier (ID). This timer ID is required by all system calls that manipulate process interval
timers.

The timer_type argument identifies the system-wide realtime timer associated with this timer identifier
(ID). TIMEOFDAY is a valid fimer_type and corresponds to the system time-of-day clock representing
the current time in seconds and nanoseconds since January 1, 1970. This timer is ascending in nature
and is updated by the system at the frequency of the 64 Hz system clock.

event_type identifics the type of event mechanism used to deliver an event when a process interval timer
expiration occurs. The high-performance event notification facility is used by selecting
MODCOMP_EVENTS as the event_type.

The gettimerid system call is used in conjunction with the event system calls. It must be preceeded by a
call to evget(2F) which returns a unique event identifier (eid) for the process. When a timer previously
activated by an absinterval (2F) or incinterval (2F) system call expires, the timer expiration event is sent
to the process via the eid value. The process uses the evrev(2F) or the evrcvi(2F) system calls to receive
a timer signal or event.

EXAMPLE
See absinterval(2F) for an example.
NOTES
Interval timers are not inherited by a child process across a fork (2F) or an exec (2F).

ERROR CODES
If successful, gettimerid returns a value equal to that of the timer ID. Otherwise a negative value indi-
cating the error is returned.

[EINVAL] The timer_type or event_type arguments do not specify a valid timer type or event type.
The eid specified is not valid for the calling process.

[ENOSPC] The process interval timer cannot be allocated to this process. It exceeds the number of
allowable timers for a single process.

[EPERM] The effective user ID does not have realtime privileges.

SEE ALSO
absinterval(2F), getinterval(2F), incinterval(2F), reltimerid(2F), resabs(2F), resinc(2F), restimer(2F).

GETUID(2F) GETUID(2F)

NAME

getuid, geteuid, getgid, getegid - get real user, effective user, real group, and effective group IDs
SYNOPSIS

integer*4 getuid

iretval = getuid ()

integer®*4 geteuid
iretval = geteuid ()

integer*4 getgid
iretval = getgid ()
integer*4 getegid
iretval = getegid ()

DESCRIPTION
getuid returns the real user ID of the calling process.
geteuid returns the effective user ID of the calling process.
getgid returns the real group ID of the calling process.
getegid returns the effective group ID of the calling process.

EXAMPLE
program getuid
integer®4 getuid, geteuid, getgid, getegid
integer*4 uid, euid, gid, egid

¢ Get and print user id, effective user id, group id, effective group id

uid = getuid ()
euid = geteuid ()
gid = getgid ()
egid = getegid ()
write (*,*) uid, euid, gid, egid
end
SEE ALSO
intro(2F), setuid(2F).

IOCTL(2F) IOCTL(2F)

NAME
ioctl - control device

SYNOPSIS
integer®*4 joctl, fildes, request, arg
iretval = ioctl (fildes, request, arg)

DESCRIPTION
ioctl performs a variety of control functions on devices and STREAMS. For non-STREAMS files, the
functions performed by this call are device-specific control functions. The arguments request and arg
are passed to the file designated by fildes and are interpreted by the device driver. This control is
infrequently used on non-STREAMS devices, with the basic input/output functions performed through
the read(2F) and write(2F) system calls.

For STREAMS files, specific functions are performed by the ioct call as described in streamio(7).

fildes is an open file descriptor that refers to a device. request sclects the control function to be per-
formed and will depend on the device being addressed. arg represents additional information that is
needed by this specific device to perform the requested function. The data type of arg depends upon
the particular control request, but it is either an integer or a pointer to a device-specific data structure.

In addition to device-specific and STREAMS functions, generic functions are provided by more than
one device driver, for example, the general terminal interface [see termio (7)].

ioctl will fail for any type of file if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.
[ENOTTY] fildes is not associated with a device driver that accepts control functions.
[EINTR] A signal was caught during the ioct! system call.

ioctl will also fail if the device driver detects an error. In this case, the error is passed through ioct!
without change to the caller. A particular driver might not have all of the following error cases. Other
requests to device drivers will fail if one or more of the following are true:

[EFAULT] request requires a data transfer to or from a buffer pointed to by arg, but some part
of the buffer is outside the process’s allocated space.

[EINVAL] request or arg is not valid for this device.

[EIO}) Some physical I/O error has occurred.

[ENXIO] The request and arg are valid for this device driver, but the service requested can not

be performed on this particular subdevice.
[ENOLINK] fildes is on a remote machine and the link to that machine is no longer active.
STREAMS errors are described in streamio(7).

EXAMPLE
See cisema(2F) for an example.
SEE ALSO
streamio(7), termio(7).
DIAGNOSTICS
Upon successful completion, the value returned depends upon the device control function, but must be
a non-negative integer. Otherwise, a negative value indicating the error is returned.

KILL(2F) KILL(2F)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
integer®*4 Kkill, pid, sig
iretval = kill (pid, sig)

DESCRIPTION
kill sends a signal to a process or a group of processes. The process or group of processes to which the
signal is to be sent is specified by pid. The signal that is to be sent is specified by sig and is either one
from the list given in signal(2F), or 0. If sig is 0 (the null signal), error checking is performed but no
signal is actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or effective user ID of the
receiving process, unless the effective user ID of the sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes [see intro(2F)] and will
be referred to below as proc0 and procl, respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is equal to pid. Pid may
equal 1.

If pid is 0, sig will be sent to all processes excluding proc@ and procI whose process group ID is equal to
the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be sent to all processes
excluding proc0 and proc whose real user ID is equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be sent to all processes exclud-
ing proc0 and procl.

If pid is negative but not -1, sig will be sent to all processes whose process group ID is equal to the
absolute value of pid.

kill will fail and no signal will be sent if one or more of the following are true:
[EINVAL] sig is not a valid signal number.

[EINVAL] sig is SIGKILL and pid is 1 (procl).

[ESRCH]} No process can be found corresponding to that specified by pid.

[EPERM] The user ID of the sending process is not super-user, and its real or effective user ID
does not match the real or effective user ID of the receiving process.

EXAMPLE
program kill
include <sysf/signali>
integer*4 kill, pid, sig
integer*4 iretval

¢ Kill all my processes (in other words, bye-bye)

pid=0
sig = SIGKILL
iretval = kill (pid, sig)
if (iretval lt. 0) then
write (*,*) ’kill error?’, iretval
else
write (*,*) *should not have got this message’
endif
end

KILL(2F) KILL(2F)

SEE ALSO
Kill(1), getpid(2F), setpgrp(2F), signal(2F), sigset(2F).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error

is returned. .

LINK(2F)

NAME

LINK(2F)

link - link to a file

SYNOPSIS
integer*4 link

character*SIZE pathl, path2
iretval = link (pathl, path2)

DESCRIPTION

SIZE can be any number between and including 1 through 128. pathl points to a path name naming an
existing file. path2 points to a path name naming the new directory entry to be created. link creates a
new link (directory entry) for the existing file.

link will fail and no link will be created if one or more of the following are true:

[ENOTDIR]
[ENOENT]
[BACCES]
[ENOENT]
[EEXIST]
[EPERM]
[EXDEV]

[ENOENT]
[EACCES]

[EROFS]
[EFAULT]
[EMLINK]
[EINTR}
[ENOLINK]
[EMULTTHOP]

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by path1 does not exist.

The link named by path2 exists.

The file named by path1 is a directory and the effective user ID is not super-user.

The link named by path2 and the file named by pathl are on different logical devices
(file systems).

path2 points to a null path name.

Tl.le }'equested link requires writing in a directory with a mode that denies write per-
mission.

The requested link requires writing in a directory on a read-only file system.

path points outside the allocated address space of the process.

The maximum number of links to a file would be exceeded.

A signal was caught during the /ink system call.

path points to a remote machine and the link to that machine is no longer active.
Components of path require hopping to multiple remote machines.

LINK(2F) LINK (2F)

EXAMPLE
program link
integer*4 link, unlink
character*40 pathl, path2
integer*4 irctval

¢ Rename a file by making a new directory entry for the file, then
¢ deleting the old directory entry.

pathl = ’../example/link. F°
path2 = ’../example /newlink.F°

iretval = link (pathl, path2)
if (iretval .lt. 0) write (*,*) "link error?’, iretval

iretval = unlink (path1)
if (iretval .It. 0) write (*,*) ’unlink error:’, iretval
end
SEE ALSO
In(1), unlink(2F).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

LISTEN(2F) LISTEN(2F)

NAME
listen - listens for connections on a socket

SYNOPSIS
integer®4 listen, s, backlog
iretval =listen(s,backlog)

DESCRIPTION
To accept connections, a socket is first created with socket(2F), a backlog for incoming connections is
specified with listen and then the connections are accepted with accept(2F). The listen call applies only
to sockets of type SOCK_STREAM.

The backlog parameter defines the maximum length the queue of pending connections may grow to. If
a connection request arrives with the queuc full, the client will receive an error with an indication of
ECONNREFUSED.

ERRORS
Upon successful completion, the value zero is returned. Otherwise, a negative value indicating the
error is returned.

The call fails if:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the listen operation.
EXAMPLE

see socket(2F)
SEE ALSO

accept(2F), connect(2F), socket(2F)
BUGS

The backlog is currently limited (silently) to 5.

LSEEK(2F) LSEEK(2F)

NAME
Iseek - move read/write file pointer

SYNOPSIS
integer®4 Iseek, fildes, offset, whence
iretval = lseek (fildes, offset, whence)

DESCRIPTION
fildes is a file descriptor returned from a creat, open, dup, or fentl system call. Iseek sets the file
pointer associated with fildes as follows:

If whence is 0, the pointer is set to offser bytes.
If whence is 1, the pointer is set to its current location plus offset.
If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in bytes from the beginning of
the file, is returned. Note that if fildes is a remote file descriptor and offset is negative, Iseek will return
the file pointer even if it is negative.

Iseek will fail and the file pointer will remain unchanged if one or more of the following are true:

[EBADF] fildes is not an open file descriptor.
[ESPIPE] Sfildes is associated with a pipe or fifo.
[EINVAL and SIGSYS signal]
whence is not 0, 1, or 2.
[EINVAL] fildes is not a remote file descriptor, and the resulting file pointer would be negative.
Some devices are incapable of seeking. The value of the file pointer associated with such a device is
undefined.
EXAMPLE
program lseek

include <sysf/fentli>
integer*4 Iseek, fildes, offset, whence, fp
integer*4 open

fildes = open ('../example/lseck.F’, O_RDONLY)
if (fildes .It. 0) write (*,*) "open error?’, fildes

¢ Point to beginning of file

whence = 0

offset = 0

fp = Iseek (fildes, offset, whence)

if (fp .it. 0) write (*,*) ’lseek error’, fp
write (*,9000) fp

¢ Point to end of file

whence = 2

offset = 0

fp = lseek (fildes, offset, whence)

if (fp .It. 0) write (*,*) "Iseek error:’, fp

write (*,9000) fp
9000 format (* current file pointer =’, i10)
end

LSEEK(2F) LSEEK(2F)

SEE ALSO
creat(2F), dup(2F), fcatl(2F), open(2F).

DIAGNOSTICS
Upon successful completion, a non-negative integer indicating the file pointer value is returned. Oth-
erwise, a negative value indicating the error is returned.

MEMCTL(2F) MEMCTL(2F)

NAME
memctl - control write /execute attributes of memory.

SYNOPSIS
#include <sysf/m88kbcs.i> (on 88k machine only)

integer*4 memctl,start,length,mode
iretval = memctl(start,length,mode)

DESCRIPTION
memectl can change the access mode of a part of memory. It recognizes these modes:

MCT TEXT 1 Readable and executable
MCT_TEXT 2 Readable and writable
MCT TEXT 3 Readable only

The text section of a process is initially in mode 1. The data, bss, and stack sections are initially in
mode 2. A process should only access its memory in the ways supported by the current mode, or
unpredictable problems will resnlt. The main purpose of this facility is to allow code to be written in
the data section of a process and then be executed. This will not work correctly unless memctl() is
called to make the relevant part of the data section executable after it has been modified and before it
has been executed. If the memory is.shared by several processes, all the processes must follow this
procedure. start and length must be specified in bytes, and must be multiples of 4k.

RETURN VALUE
If the call fails, -1 will be returned, and the global errno set to reflect the error. Otherwise 0 will be

returned.
ERRORS
[EENVAL] The mode is invalid, or the start or length are not multiples of 4k.
[EFAULT] The region of memory specified by the start and length parameters is not valid for
the process.
NOTES
Currently on 88k machine only.

MKDIR (2F) MKDIR (2F)

NAME
mkdir - make a directory

SYNOPSIS
integer*4 mkdir, mode

character*SIZE path
iretval = mkdir (path, mode)

DESCRIPTION
SIZE can be any number between and including 1 through 128. The routine mkdir creates a new direc-
tory with the name path. The mode of the new directory is initialized from the mode. The protection
part of the mode argument is modified by the process’s mode mask [see umask (2F)).

The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID is set to the
processs effective group ID. The newly created directory is empty with the possible exception of
entries for "." and "..". mkdir will fail and no directory will be created if one or more of the following
are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[ENOLINK] path points to a remote machine and the link to that machine is no longer active.
[EMULTIHOP] Components of path require hopping to multiple remote machines.

[EACCES] Either a component of the path prefix denies search permission or write permission
is denied on the parent directory of the directory to be created.
[ENOENT] The path is longer than the maximum allowed.
[EEXIST] The named file already exists.
. [EROFS] The path prefix resides on a read-only file system.
[EFAULT) path points outside the allocated address space of the process.
[EMLINK] The maximum number of links to the parent directory would be exceeded.
[EIO] An I/O error has occurred while accessing the file system.
EXAMPLE
program mkdir
integer*4 mkdir, mode
character*40 path
integer*4 iretval

¢ Make directory "tstdir” in current directory

path = ’tstdir’
mode = 7770
iretval = mkdir (path, mode)
if (iretval .It. 0) write (*,*) *mkdir error’, iretval
end
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error

. is returned.

MKNOD (2F) MKNOD (2F)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
integer*4 mknod, mode, dev
character*SIZE path
iretval = mkunod (path, mode, dev)

DESCRIPTION
SIZE can be any number between and including 1 through 128. mknod creates a new file named by
the path name pointed to by path. The mode of the new file is initialized from mode. The value of
mode is interpreted as follows:

’0170000°0 file type; one of the following:
’0010000°0 fifo special
’0020000°0 character special
’0040000°0 directory
’0060000°0 block special
’0100000°0 or *0000000’0 ordinary file
*0004000’0 set user ID on execution
’00020#0°0 set group ID on execution if # is 7, 5,3, or 1
enable mandatory file/record locking if # is 6, 4, 2, or 0
’0001000°0 save text image after execution
’0000777°0 access permissions; constructed from the following:

’0000400°0 read by owner

’0000200’0 write by owner

’0000100°0 execute (search on directory) by owner
’0000070°0O read, write, execute (search) by group
’0000007°0 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The group ID of the file is set to
the effective group ID of the process.

Values of mode other than those above are undefined and should not be used. The low-order 9 bits of
mode are modified by the process’s file mode creation mask: all bits set in the process’s file mode
creation mask are cleared [see umask (2F)). If mode indicates a block or character special file, dev is a
configuration-dependent specification of a character or block I/0 device. If mode does not indicate a
block special or character special device, dev is ignored.

mhknod may be invoked only by the superuser for file types other than FIFO special; mknod will fail and
the new file will not be created if one or more of the following are true:

[EPERM] The effective user ID of the process is not superuser.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EROFS] The directory in which the file is to be created is located on a read-only file system.
[EEXIST] The named file exists.

[EFAULT] path points outside the allocated address space of the process.

[ENOSPC] No space is available.

[EINTR] A signal was caught during the minod system call.

[ENOLINK] path points to a remote machine and the link to that machine is no longer active.
[EMULTIHOP] Components of path require hopping to multiple remote machines.

MKNOD (2F)

EXAMPLE

program mknod

include <sysf/fentli>
integer*4 mknod, mode, dev
character*20 path, buf
integer*4 open, fd, write, read
integer®4 iretval, i, fork

data buf /"Message:’/

¢ Create a named pipe

path = ’./fifo’

mode = *107770 ! fifo + full access permissions

dev=10
iretval = mknod (path, mode, dev)

if (iretval .It. 0) write (*,*) *mknod error?, iretval

¢ Make a child process

iretval = fork ()
if (iretval .eq. 0) goto 3000

¢ Write to the pipe

100

fd = open (fifo’, O WRONLY)
if (fd .1t. 0) write (*,*) ’open error?’, fd

do108i = 1,28

buf (19:19) = char ((i/10) + 48)

buf (20:20) = char (mod (j, 10) + 48)

iretval = write (fd, buf, 20)

if (iretval .It. 0) write (*,*) *write error?’, iretval
continue

if (.true.) stop

¢ Here if child
¢ Open pipe, read from it, and write to stdout

3000 continue

fd = open (fifo’, O_RDONLY)
if (fd .It. 0) write (*,*) "child open error’, fd

do3100i = 1,20

buf =’

iretval = read (fd, buf, 20)

if (iretval .ge. 0) write (*,9000) buf

3100 continue
9000 format (*, a20)

end

MKNOD (2F)

MKNOD(2F) MKNOD (2F)

SEE ALSO
mkdir(1), chmod(2F), exec(2F), umask(2F), fs(4).
DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a negative value indicating the error is
returned. .

WARNING
If minod is used to create a device in a remote directory (Remote File Sharing), the major and minor
device numbers are interpreted by the server.

MSGCTL(2F)

NAME

MSGCTL(2F)

msgctl - message control operations

SYNOPSIS

include <sysf/types.i>

include <sysf/ipci>

ioclude <sysf/msg.i>
integer*4 msgctl, msqid, cmd
record /msqid_ds/ buf
iretval = msgetl (msqid, cmd, buf)

DESCRIPTION

msgetl provides a variety of message control operations as specified by cmd. The following cmds are

available:
IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data structure associated with msgid
into the structure pointed to by buf. The contents of this structure are defined in
intro(2F). {READ}

Set the value of the following members of the data structure associated with msgid to
the corresponding value found in the structure pointed to by buf:

msg _perm.uid

msg_perm.gid

msg_perm.mode lonly low 9 bits

msg_qgbytes
This cmd can only be executed by a process that has an effective user ID equal to
either that of super user, or to the value of msg_perm.cuid or msg_perm.uvid in the
data structure associated with msgid. Only super user can raise the value of
msg_gbytes.
Remove the message queue identifier specified by msgid from the system and des-
troy the message queue and data structure associated with it. This cmd can only be
exccuted by a process that has an effective user ID equal to either that of super user,
or to the value of msg_perm.cuid or msg_perm.uid in the data structure associated
with msqid.

msgct] will fail if one or more of the following are true:

[EINVAL]
[EINVAL]
[BACCES]

[EPERM]

[EPERM)

[EFAULT]

msgqid is not a valid message queue identifier.
cmd is not a valid command.

cmd is equal to IPC_STAT and {READ} operation permission is denied to the calling
process [see intro (2F)).

cmd is equal to IPC_RMID or IPC_SET. The effective user ID of the calling process is
not equal to that of super user, or to the value of msg_perm.cuid or msg_perm.uid in
the data structure associated with msqid.

cmd is equal to IPC_SET, an attempt is being made to increase to the value of
msg_gbytes, and the effective user ID of the calling process is not equal to that of
super user.

buf points to an illegal address.

MSGCTL(2F) MSGCTL(2F)

EXAMPLE
See msgop(2F) for an example.
SEE ALSO
intro(2F), msgget(2F), msgop(2F).
DIAGNOSTICS .
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error is
returned.

MSGGET(2F) MSGGET(2F)

NAME
msgget - get message queue
SYNOPSIS
include <sysf/types.i>
include <sysf/ipci>
include <sysf/msg.i>

integer*4 msgget, key, msgfig
iretval = msgget (key, msgflg)
DESCRIPTION
msgget returns the message queue identifier associated with key.

A message quene identifier and associated message queue and data structure [sce intro(2F)] are
created for key if one of the following are true:

key is equal to IPC_PRIVATE.

key does not already have a message queue identifier associated with it, and (msgflg &
IPC_CREAT) is “true”.

Upon creation, the data structure associated with the new message queue identifier is initialized as fol-
lows:

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid arc set equal to the
effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgfig.
Msg_gnum, msg_Ispid, msg_lrpid, msg_stime, and msg_rtime are set equal to 0.
Msg_ctime is set equal to the current time.

. Msg_gbytes is set equal to the system limit.

msgget will fail if one or more of the following are true:

{EACCES] A message queue identifier exists for key, but operation permission [see intro (2F)] as
specified by the low-order 9 bits of msgflg would not be granted.

[ENOENT} A message queue identifier does not exist for key and (msgflg & IPC_CREAT) is
“false”.

[ENOSPC] A message queue identifier is to be created but the system-imposed limit on the
maximum number of allowed message queue identifiers system wide would be
exceeded.

[EEXIST] A message queuc identifier exists for key but ((msgflg & IPC_CREAT) & (msgflg &
IPC_EXCL)) is “true”.

EXAMPLE
See msgop(2F) for an example.
SEE ALSO
intro(2F), msgctl(2F), msgop(2F).
DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a message queue identifier, is returned.
. Otherwise, a negative value indicating the error is returned.

MSGOP(2F) MSGOP(2F)

NAME
msgop: msgrcv, msgsnd - message operations
SYNOPSIS
include <sysf/types.i>
include <sysf/ipc.i>
include <sysf/msg.i>
integer®*4 msgsnd, msqid, msgsz, msgflg, msgtyp
structure /msghuff/

integer*4 mtype
character*SIZE mtext
end structure

record /msghuff/ msgp
iretval = msgsnd (msqid, msgp, msgsz, msgfig)
iretval = msgrev (msqid, msgp, msgsz, msgtyp, msgflg)

DESCRIPTION
msgsnd is used to send a message to the queue associated with the message queue identifier specified
by msqid. {WRITE} msgp points to a structure containing the message. This structure is composed of
the following members:

integer*4 mtype 'message type
character*SIZE mtext !message text

miype is a positive integer that can be used by the receiving process for message selection (see msgrev
below). mtext is any text of length msgsz bytes. msgsz can range from 0 to a system-imposed maximum.
SIZE must be greater or equal to msgsz.

msgfig specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_gbytes {see intro (2F)].

The total number of messages on all queues system-wide is equal to the system-imposed limit.
These actions are as follows:

If (msgflg & IPC_NOWAIT) is “true”, the message will not be sent and the calling process will
return immediately.

If (msgflg & IPC_NOWAIT) is “false”, the calling process will suspend execution until one of
the following occurs:

The condition responsible for the suspension no longer exists, in which case the mes-
sage is sent.

msqid is removed from the system [see msgct/ (2F)]. When this occurs, iretval is set
equal to EIDRM.

The calling process receives a signal that is to be caught. In this case the message is
not sent and the calling process resumes execution in the manner prescribed in

signal (2F).
msgsnd will fail and no message will be sent if one or more of the following are true:
[EINVAL] msgid is not a valid message queue identifier,
[EACCES] Operation permission is denied to the calling process [see intro (2F)).
[EINVAL] mtype is less than 1.

[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg &
IPC_NOWAIT) is “true”.

MSGOP(2F) MSGOP(2F)

[EINVAL] msgsz is less than zero or greater than the system-imposed limit.
[EFAULT] msgp points to an illegal address.
Upon successful completion, the following actions are taken with respect to the data structure associ-
ated with msqid [see intro (2F)].
msg_gnum is incremented by 1.
msg_lspid is set equal to the process ID of the calling process.
msg_stime is set equal to the current time.

msgrev reads a message from the queue associated with the message queue identifier specified by
msgqid and places it in the structure pointed to by msgp. {READ} This structure is composed of the fol-
lowing members:

integer®4 mtype !message type
character*SIZE mtext !message text

mtype is the received message’s type as specified by the sending process. mtext is the text of the mes-
sage. msgsz specifies the size in bytes of meext. The received message is truncated to msgsz bytes if it is
larger than msgsz and (msgflg & MSG_NOERROR) is “true”. The truncated part of the message is lost
and no indication of the truncation is given to the calling process. SIZE may be greater or equal to
msgsz.

msgtyp specifies the type of message requested as follows:
If msgtyp is equal to 0, the first message on the queue is received.
If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the
absolute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is mot on the queue. These are
as follows:

If (msgflg & IPC_NOWAIT) is “true”, the calling process will return immediately with a return
value of ENOMSG.

If (msgflg & IPC_NOWAIT) is “false”, the calling process will suspend execution until one of
the following occurs:

A message of the desired type is placed on the queue.
msqid is removed from the system. When this occurs, iretval is set equal to EIDRM.
The calling process receives a signal that is to be caught. In this case a message is
not received and the calling process resumes execution in the manner prescribed in
signal (2F).

msgrev will fail and no message will be received if one or more of the following are true:

[EINVAL] msgqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process.

[EINVAL] msgsz is less than 0.

[E2BIG] mtext is greater than msgsz and (msgflg & MSG_NOERROR) is “false”.

[ENOMSG] The queue does not contain a message of the desired type and (msgtyp & FPC_NOWAIT)

is “true”.
[EFAULT] msgp points to an illegal address.

MSGOP(2F) MSGOP(2F)

Upon successful completion, the following actions are taken with respect to the data structure associ-
ated with msgid [see intro (2F)].

msg_qnum is decremented by 1.
msg_lrpid is set equal to the process ID of the calling process.
msg_rtime is set equal to the current time.

EXAMPLE

program msgop

include <sysf/types.i>

include <sysf/ipc.i>

include <sysf/msg.i>
integer*4 msgctl, msqid, cmd
integer*4 msgget, iretval
integer*4 msgsnd, msgrev, msgflg, msgtyp, msgsz

structure /msgbuff/
integer*4 mtype
character*40 mtext
end structure

record /msqid_ds/ buf
record /msgbuff/ msgpsnd, msgprev

¢ Get msg queue id with full permissions

msqid = msgget (101, ("777°0 .or. IPC_CREAT))
if (msqid .1t. 0) write (*,*) *msgget error:’, msqid

¢ Send a message to myself

msgpsnd.mtype = 1234

msgpsnd.mtext = hello to myself’

msgsz = 40

msgflg = 0

iretval = msgsnd (msqid, msgpsnd, msgsz, msgflg)
if (iretval .lt. 0) write (*,*) 'msgsnd error:’, iretval

¢ Message now on queue, receive message

msgprcv.mtype = 0

msgprcv.mtext = ’testing 1,2, 3

msgtyp = 0

iretval = msgrcv (msqid, msgprev, msgsz, msgtyp, msgflg)
if (iretval .It. 0) write (*,*) ‘msgrcv error?, iretval

MSGOP(2F) MSGOP(2F)

¢ Print message

write (*,9000) msgprcv.mtype, msgprcv.mtext
9000 format (* Message received. Type?, i6, * Text: ’, a40)

¢ Place contents of msg structure in buf and print some info

cmd = IPC_STAT

iretval = msgctl (msqid, cmd, buf)

if (iretval .It. 0) write (*,*) 'msgctl error?’, iretval

write (*,9001) buf.msg_lspid, buf.msg_lrpid, buf.msg_rtime
9001 format (pid of last msgsnd:’, i6,/
& > pid of last msgrev?’, i6,/
& > time stamp of msgrev’, i10)

¢ Remove message quene

iretval = msgctl (msqid, IPC_RMID, buf)
if (iretval Jt. 0) write (*,*) *msgctl error on remove?’, iretval
end

SEE ALSO
intro(2F), msgctl(2F), msgget(2F), signal(2F).
DIAGNOSTICS

If msgsnd or msgrev return due to the receipt of a signal, a value of EINTR is returned to the calling
process. If they return due to removal of msgid from the system, a value of EIDRM is returned.

Upon successful completion, the return value is as fallows:

msgand returns a valoe of 0.

msgrev returns a value equal to the number of bytes actually placed into mirext.
Otherwise, a negative value indicating the error is returned.

NICE(2F) NICE(2F)

NAME

nice - change priority of a process
SYNOPSIS

integer®4 nice, incr

iretval = nice (incr)
DESCRIPTION

nice adds the value of incr to the nice value of the calling process. A process’s nice value is a non-
negative number for which a more positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system. (The default
nice value is 20.) Requests for values above or below these limits result in the nice value being set to
the corresponding limit.
[EPERM] nice will fail and not change the nice value if incr is negative or greater than 39 and
the effective user ID of the calling process is not super-user.
EXAMPLE
program nice
integer*4 nice, incr, value

¢ Determine current nice value

incr = 0
value = nice (incr)
if (value .It. 0) then
write (*,*) "1st nice error:’, value
else
write (*,*) *nice value was?’, value + 20
endif

¢ Decrease priority of this process

value = nice (5)
if (value .It. 0) then
write (*,*) *2nd nice error?’, value
else
write (*,*) *nice value now?’, value + 20
endif

end
SEE ALSO
nice(1), exec(2F).
DIAGNOSTICS

Upon successful completion, nice returns the new nice value minus 20. Otherwise, a negative value
indicating the error is returned.

OPEN (2F) OPEN(2F)

NAME
open - open for reading or writing
SYNOPSIS
include <sysf/fcntli>
integer*4 open, oflag, mode
character*SIZE path
iretval = open (path, oflag, [,mode])

DESCRIPTION
path points to a path name naming a file. SIZE can be any number between and including 1 through
128. open opens a file descriptor for the named file and sets the file status flags according to the value
of oflag. For non-STREAMS [see intro(2F)] files, oflag values are constructed by or-ing flags from the
following list (only one of the first three flags below may be used):

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes [see read (2F) and write (2F)].
When opening a FIFO with O_RDONLY or O_WRONLY set:
If O_NDELAY is set:

An open for reading-only will return without delay. An open for writing-only
will return an error if no process currently has the file open for reading.

If O_NDELAY is clear:

An open for reading-only will block until a process opens the file for writing.
An gpen for writing-only will block until a process opens the file for reading.

‘When opening a file associated with a communication line:
If O_NDELAY is set:
The open will return without waiting for carrier.
If O NDELAY is clear:
The open will block until carrier is present.
O_APPEND If set, the file pointer will be set to the end of the file prior to each write.

O_SYNC When opening a regular file, this flag affects subsequent writes. If set, each write(2F)
will wait for both the file data and file status to be physicalily updated.

O_CREAT If the file exists, this flag has no effect. Otherwise, the owner ID of the file is set to the
effective user ID of the process, the group ID of the file is set to the effective group ID
of the process, and the low-order 12 bits of the file mode are set to the value of mode
modified as follows [see creat (2F)):

All bits set in the file mode creation mask of the process are cleared [see
umask (2F)].
The “save text image after execution bit” of the mode is cleared [see
chmod (2F)}.

O_TRUNC If the file exists, its length is truncated to 0 and the mode and owner are unchanged.
O_EXCL If O_EXCL and O_CREAT are set, open will fail if the file exists.

When opening a STREAMS file, oflag may be constructed from O NDELAY or-ed with either
O_RDONLY, O_WRONLY or O_RDWR. Other flag values are not applicable:to STREAMS devices and
have no effect on them. The value of O_NDELAY affects the operation of STREAMS drivers and

OPEN(2F)

OPEN(2F)

certain system calls [see read(2F), getmsg(2F), putmsg(2F) and write(2F)]. For drivers, the implementa-
tion of O_NDELAY is device-specific. Each STREAMS device driver may treat this option differently.

Certain flag values can be set following open as described in fent(2F).

The file pointer used to mark the current position within the file is set to the beginning of the file.

The new file descriptor is set to remain open across exec system calls [see fent! (2F)].

The named file is opened unless one or more of the following are true:

[BACCES]
[EACCES)

{EAGAIN]

{EEXIST]
[EFAULT]
[EINTR]

[EIO)
[EISDIR]
[EMFILE]
[EMULTIHOP]
(ENFILE]
[ENOENT]
[ENOLINK]
[ENOMEM]
[ENOSPC]
[ENOSR]
[ENOTDIR]
[ENXIO]

[ENXIO)

[ENXIO]
{EROFS]
(ETXTBSY]

A component of the path prefix denies search permission.
oflag permission is denied for the named file.

The file exists, mandatory file/record locking is set, and there are outstanding record
locks on the file [see chmod (2F)].

O_CREAT and O_EXCL are set, and the named file exists.

path points outside the allocated address space of the process.

A signal was caught during the open system call.

A hangup or error occurred during a STREAMS open.

The named file is a directory and oflag is write or read/write.
NOFILES file descriptors are currently open.

Components of path require hopping to multiple remote machines.
The system file table is full.

O_CREAT is not set and the named file does not exist.

path points to a remote machine, and the link to that machine is no longer active.
The system is unable to allocate a send descriptor.

O_CREAT and O_EXCL are set, and the file system is out of inodes.
Unable to allocate a stream.

A component of the path prefix is not a directory.

The named file is a character special or block special file, and the device associated
with this special file does not exist.

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process has
the file open for reading.

A STREAMS module or driver open routine failed.
The named file resides on a read-only file system and oflag is write or read /write.

The file is a pure procedure (shared text) file that is being executed and oflag is
write or read /write.

OPEN(2F) OPEN(2F)

EXAMPLE

program open

include <sysf/errno.i>
include <sysf/fentli>

*# %

integer*4 open, oflag, mode
character*80 path

integer*4 fildes
¢ open file for read fwrite, create if necessary, accessible to anyone

path = ’tstx’
oflag = O_RDWR .or. O_CREAT
mode = ‘07770
fildes = open (path, oflag, mode)
if (fildes .It. 0) then
write (*,*) *open error ’, fildes
stop
endif
¢ "fildes" is the file descriptor of the opened file
c .
end
SEE ALSO
chmod(2F), close(2F), creat(2F), dup(2F), fentl(2F), intro(2F), lseek(2F), read(2F), getmsg(2F),
putimsg(2F), umask(2F), write(2F).
DIAGNOSTICS
Upon successful completion, the file descriptor is returned. Otherwise, a negative value indicating the
error is returned.

-3.

PATHCONF(2F) PATHCONF (2F)

NAME
pathconf, fpathconf - get configurable pathname variables

SYNOPSIS
#include <unistd.i>

integer*4 pathconfname
character*SIZE path
iretval = pathconf(path,name)

integer*4 fpathconf filedes,name
iretval = fpathconf(filedes,name)

DESCRIPTION
SIZE can be any number 1 through 128. pathconf and fpathconf provide a method for an application to
determine the current value of a configurable limit or option that is associated with a file or directory.

For pathconf, path points to a pathname of a file or directory. For fpathcony, filedes is an open file
descriptor. name is the variable to be queried relative to the file or directory. The following variables
can be queried.

_PC_LINK_MAX
“PC_MAX_CANON
“PC_MAX_INPUT
“PC_NAME_MAX
“PC_PATH_MAX
_PC_PIPE_BUF
_PC_CHOWN_RESTRICTED
_PC_NO_TRUNC
“PC_BLKSIZE
_PC_VDISABLE
RETURN VALUE
If name is not a valid variable name, or if the variable cannot be associated with the specified file or
directory, or if the process does not have permission to query the file specified by path, or path does
not exist, pathconf will return -1, and ermo will be set to indicate the error. If the named variable is not
defined on the system, a value of -1 will be returned and errno will remain unchanged.

Otherwise, pathconf and fpathconf will return the current value associated with the variable for the file

or directory.
ERRORS
pathconf and fpathconf will fail if one or more of the following are true:
[ENOTIDR] A component of the path prefix is not a directory.
[EPERM] A pathname contains a character with the high-order bit set.
[ENAMETOOLONG] A component of a pathname exceeded NAME_MAX characters, or an
entire pathname exceeded PATH_MAX.
[ELOOP] Too many symbolic links were encountered in translating a pathname.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.
[EFAULT] path points to an invalid address.
fpathconf will also fail if the following condition occurs:
[EBADF] filedes is not a valid open file descriptor.

PATHCONF(2F) PATHCONF(2F)

[EINVAL] Name is not equal to one of the allowable values above.or name cannot
be associated with the specified file or directory.

SEE ALSO
sysconf(3P)

NOTES
Currently on 88k machine only.

PAUSE(2F) PAUSE (2F)

NAME

pause - suspend process until signal
SYNOPSIS

integer*4 pause

iretval = pause ()
DESCRIPTION

pause suspends the calling process until it receives a signal. The signal must be one that is mot
currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the signal-catching function
[see signal(2F)}, the calling process resumes execution from the point of suspension; with a return
value of EINTR.
EXAMPLE
program pause
integer*4 pause, iretval

¢ Suspend until some signal occurs, after which this process
¢ is terminated.

write (*,*) "should not have gotten here’, iretval
end
SEE ALSO

|
iretval = pause () ‘
alarm(2F), kill(2F), signal(2F), sigpause(2F), wait(2F). . ‘

PIPE(2F) PIPE(2F)

NAME
pipe - create an interprocess channel
SYNOPSIS

integer*d pipe, fildes(0:1)
iretval = pipe (fildes)

DESCRIPTION
pipe creates an I/O mechanism called a pipe and returns two file descriptors, fildes (0) and fildes(1).
fildes (0) is opened for reading and fildes (1) is opened for writing.

Up to 5120 bytes of data are buffered by the pipe before the writing process is blocked. A read only
file descriptor fildes (0) accesses the data written to fildes (1) on a first-in-first-out (FIFO) basis.

pipe will fail if:
[EMFILE} NOFILES file descriptors are currently open.
[ENFILE] The system file table is full.

PIPE(2F) PIPE(2F)

EXAMPLE
program pipe

integer*4 pipe, fildes (0:1), dup, close, fork, iretval, i
character*40 line

¢ Create a pipe for interprocess communication
iretval = pipe (fildes)

¢ Make a new process

iretval = fork ()
if (iretval .gt. 0) goto 200

Child process

o0

¢ Read from pipe, write to standard output

100 continue
iretval = close (0)
iretval = dup (fildes (0))
iretval = close (fildes (0))
iretval = close (fildes (1))

do150i =1,15

read (*,9000) line

write (*,9001) line
150 continue

stop

9000 format (a40)
9001 format (20x, ad0)

PIPE(2F) PIPE(2F)

¢ Parent process
c
¢ Write to pipe

200 continue
iretval = close (1)
iretval = dup (fildes (1))
iretval = close (fildes (0))
iretval = close (fildes (1))

do250i=1,15
write (*,9002) This is line’, i
250 continue
9002 format (*’, al5, i4)
end
SEE ALSO
sh(1), read(2F), write(2F).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

PLOCK(2F) PLOCK(2F)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
include <sysf/lock.i>

integer*4 plock, op
iretval = plock (op)

DESCRIPTION
plock allows the calling process to lock its text segment (text lock), its data segment (data lock), or both
its text and data segments (process lock) into memory. Locked segments are immune to all routine
swapping. plock also allows these segments to be unlocked. The effective user ID of the calling process
must be superuser or have realtime privileges to use this call. op specifies the following:

PROCLOCK lock text and data segments into memory (process lock)

TXTLOCK lock text segment into memory (text lock)

DATLOCK lock data segment into memory (data lock)

UNLOCK remove locks

plock will fail and not perform the requested operation if one or more of the following are true:
[EAGAIN] Not enough physical memory free at this time.

[EINVAL] op is equal to PROCLOCK and a process lock, a text lock, or a data lock already exists on

the calling process.

[EINVAL] op is equal to TXTLOCK and a text lock, or a process lock already exists on the calling
process.

[EINVAL] op is equal to DATLOCK and a data lock, or a process lock already exists on the calling
process.

{EINVAL] op is equal to UNLOCK and no typg of lock exists on the calling process.
[EPERM] The effective user ID of the calling process is not superuser, or does not have realtime
privileges.
EXAMPLE

program plock

include <sysf/lock.i>
integer*4 plock, op
integer*4 iretval

¢ Lock process in memory

op = PROCLOCK

iretval = plock (op)

if (iretval .It. 0) write (*,*) *plock error?, iretval
c .
¢ Remove locks

iretval = plock (UNLOCK)

if (iretval .Jt. 0) write (*,*) "2nd plock error?’, iretval
end

PLOCK(2F) PLOCK(2F)

SEE ALSO
exec(2F), exit(2F), fork(2F), resident(2F).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned to the calling process. Otherwise, a negative value
indicating the error is returned.

PREALLOC(2F) PREALLOC(2F)

NAME
prealloc - preallocate contiguous file space

SYNOPSIS
integer*4 prealloc, fd, hint, nbytes, flags
iretval = prealloc (fd, hint, nbytes, flags)

DESCRIPTION
The prealioc system call allocates contiguous file space to the file referenced by fd. fd is the file
descriptor of a file open for writing, nbyres is the size in bytes of the contiguous file extent that is
desired. The extent will logically start immediately after the last existing extent of the file. If hint is
nonzero, it is used to determine the physical byte offset in the file system where the extent should be
located. If the extent cannot be placed there, the system determines the physical location of the extent.

If the FSNOGROW bit is set in flags, then subsequent write(2F) system calls, that occur beyond the end
of the file, fail and return an error of EFBIG to the user. If the FSNOGROW bit is reset, writes beyond
the end of the file will automatically allocate space, but in a noncontiguous fashion.

If the FSSHRINK bit is set in flags, then subsequent creat(2F) and open(2F) with the O_TRUNC option
or trunc(2F) system calls cause physical space to be freed from the file as well as logical space. If the
F5SHRINK bit is not set, physical space will remain across such truncate operations.

If the FSNOZERO is set in flags and the user has realtime or superuser privileges, then the allocated
space is not zeroed. Otherwise the space is zeroed. If not zeroed, the contents of the extent are
undefined. If the space is zeroed, synchronous write operations are used so that the data and inode
will both be on the disk when the preailoc call finishes.

If the FSNOCHANGE is set in flags, then the value of the FSNOGROW and FSSHRINK bits remains the
same as they were before the call to prealioc.

prealloc will fail if one or more of the following are true:
[EBADF] fd is not a valid file descriptor open for writing,

[EEXIST] The request overlaps an area of the file that already had space allocated to it, or an
attempt was made to preallocate space after noncontiguous growth had occurred.

[EFBIG] An attempt was made to prealloc a file that exceeds the process’s file size limit or the
maximum file size (see ulimit(2F)), or the number of extents in the file exceeds NFSEXT,

[EINVAL] fd does not describe a file on a FS file system.
[ENOSPC] There is not enough contiguous space to satisfy the request.
[ENXIO] fd does not describe a regular file.

PREALLOC(2F)

EXAMPLE

program prealloc

include <sysf/fentli>

integer*4 prealloc, fd, hint, nbytes, flags
integer*4 open, close, iretval

. ¢ Open a file assuming have an F5 file system

fd = open (’tmp’, O_RDWR .or. O_CREAT, '7770)
if (fd .lt. 0) write (*,*) *open error?’, fd

¢ Make room for some contiguous space

SEE ALSO

close(2F), creat(2F), dup(2F), exec(2F), fentl(2F), fork(2F), open(2F), pipe(2F).

hint = 0

nbytes = 4096

flags = FSNOCHANGE

iretval = prealloc (fd, hint, nbytes, flags)

if (iretval It. 0) write (*,*) 'prealloc error?, iretval
iretval = close (fd)

end

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

PREALLOC(2F)

PUTMSG (2F) PUTMSG (2F)

NAME

putmsg - send a message on a stream

SYNOPSIS

#include <sysf/stropts.i>

integer*2 fd

record /strbuf/ ctlptr, dataptr

integer®*4 flags

irtval= putmsg (fd, ctlptr, dataptr, flags)

DESCRIPTION

putmsg creates a message [see intro(2F)] from user specified buffer(s) and sends the message to a
STREAMS file. The message may contain either a data part, a control part or both. The data and con-
trol parts to be sent are distinguished by placement in separate buffers, as described below. The
semantics of each part is defined by the STREAMS module that receives the message.

Jd specifies a file descriptor referencing an open stream. ctiptr and dataptr are each records of a strbuf
structure which contains the following members:

integer*4 maxlen ! not used
integer*4 len ! length of data
integer*4 buf ! ptr to buffer

ctiptr is the structure describing the control part, if any, to be included in the message. The buf field in
the strbuf structure points to the buffer where the control information resides, and the Jen field indi-
cates the number of bytes to be sent. The maxien field is not used in putmsg [see getmsg(2F)]. In a
similar manner, dataptr specifies the data, if any, to be included in the message. flags may be set to the
values 0 or RS_HIPRI and is used as described below.

To send the data part of a message, dataptr must be non-NULL and the len field of dataptr must have a
value of 0 or greater. To send the control part of a message, the corresponding values must be set for
ctiptr. No data (control) part will be sent if either datapir (ctiptr) is NULL or the Jen field of dataptr
(ctiptr) is set to -1.

If a control part is specified, and flags is set to RS_HIPRI, a priority message is sent. If flags is set to 0, a
non-priority message is sent. If no control part is specified, and flags is set to RS_HIPRI, putmsg fails
and sets ermo to EINVAL. If no control part and no data part are specified, and flags is set to 0, no
message is sent, and 0 is returned.

For non-priority messages, putmsg will block if the streamn write queue is full due to internal flow con-
trol conditions. For priority messages, putrnsg does not block on this condition. For non-priority mes-
sages, putmsg does not block when the write queue is full and O NDELAY is set. Instead, it fails and
sets ermo to EAGAIN.

putmsg also blocks, unless prevented by lack of internal resources, waiting for the availability of mes-
sage blocks in the stream, regardless of priority or whether O_NDELAY has been specified. No partial
message is sent.

putmsg fails if one or more of the following are true:

[EAGAIN] A non-priority message was specified, the O_NDELAY flag is set and the stream write
queue is full due to internal flow control conditions.

[EAGAIN] Buffers could not be allocated for the message that was to be created.

[EBADF] fd is not a valid file descriptor open for writing,

[EFAULT] ctiptr or dataptr points outside the allocated address space.

[EINTR] A signal was caught during the putmsg system call.

[EINVAL] An undefined value was specified in flags, or flags is set to RS_HIPRI and no control
part was supplied.

PUTMSG (2F) PUTMSG (2F)

[EINVAL] The stream referenced by fd is linked below a multiplexor.
[ENOSTR] A stream is not associated with fd.

[ENXIO] A hangup condition was generated downstream for the specified stream.
[ERANGE] The size of the data part of the message does not fall within the range specified by the
maximum and minimum packet sizes of the topmost strearn module. This value is also

returned if the control part of the message is larger than the maximum configured size
of the control part of a message, or if the data part of a message is larger than the max-
imum configured size of the data part of a message.

A putmsg also fails if a STREAMS error message had been processed by the strearm head before the call
to putmsg. The error returned is the value contained in the STREAMS error message.

SEE ALSO
intro(2F), read(2F), getmsg(2F), poll(2F), write(2F).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and ermo is
set to indicate the error.

READ (2F) READ(2F)

NAME
read - read from file

SYNOPSIS
integer*4 read, fildes, nbyte
integer*1 buf(SIZE)
iretval = read (fildes, buf, nbyte)

integer*4 read, fildes, nbyte
character*SIZE bufc
iretval = read (fildes, bufc, nbyte)
DESCRIPTION
SIZE is the maximum number of bytes in the buffer. fildes is a file descriptor obtained from a
creat (2F), open (2F), dup (2F), fentl (2F), or pipe(2F) system call.
read attempts to read nbyte bytes from the file associated with fildes into the buffer pointed to by buf.
On devices capable of seeking, the read starts at a position in the file given by the file pointer associ-

ated with fildes. Upon return from read, the file pointer is incremented by the number of bytes actu-
ally read.

Devices that are incapable of seeking always read from the current position. The value of a file pointer
associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and placed in the buffer;
this number may be less than nbyte if the file is associated with a communication line [see ioct! (2F) and
termio (7))}, or if the number of bytes left in the file is less than nbyte bytes. A value of 0 is returned
when an end-of-file has been reached.

A read from a STREAMS [see intro(2F)] file can operate in three different modes: "byte-stream” mode,
"message-nondiscard” mode, and "message-discard” mode. The default is byte-stream mode. This can
be changed using the I_SRDOPT ioct! request [see streamio(7)), and can be tested with the I GRDOPT
ioctl. In byte-stream mode, read will retrieve data from the stream until it has retrieved nbyte bytes, or
until there is no more data to be retrieved. Byte-stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read retrieves data uatil it has read nbyte bytes, or until it
reaches a message boundary. If the read does not retrieve all the data in a message, the remaining data
are replaced on the stream, and can be retrieved by the next read or getmsg(2F) call. Message-discard
mode also retrieves data until it has retrieved nbyte bytes, or it reaches a message boundary. However,
unread data remaining in a message after the read returns are discarded, and are not available for a
subsequent read or getmsg.

When attempting to read from a regular file with mandatory file/record locking set [see chmod (2F)],
and there is a blocking (i.e. owned by another process) write lock on the segment of the file to be read:

If O_NDELAY is set, the read will return EAGAIN.
If O_NDELAY is clear, the read will sleep until the blocking record lock is removed.
When attempting to read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.
If O_NDELAY is clear, the read will block until data is written to the file or the file is no longer
open for writing.
When attempting to read a file associated with a tty that has no data currently available:
If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data becomes available.

READ(2F) READ(2F)

When attempting to read a file associated with a stream that has no data currently available:
If O_NDELAY is set, the read will return EAGAIN.
If O_NDELAY is clear, the read will block until data becomes available.

When reading from a STREAMS file, handling of zero-byte messages is determined by the current read
mode setting. In byte-stream mode, read accepts data until it has read nbyte bytes, or until there is no
more data to read, or until a zero-byte message block is encountered. read then returns the number of
bytes read, and places the zero-byte message back on the stream to be retrieved by the next read or
getmsg. In the two other modes, a zero-byte message returns a value of 0 and the message is removed
from the stream. When a zero-byte message is read as the first message on a stream, a value of 0 is
returned regardless of the read mode.

A read from a STREAMS file can only process data messages. It cannot process any type of protocol
message and will fail if a protocol message is encountered at the stream head.

read will fail if one or more of the following are true:

[EAGAIN] Mandatory file /record locking was set, O NDELAY was sct, and there was a block-
ing record lock.

[EAGAIN] Total amount of system memory available when reading via raw I/0O is temporarily
insufficient.

[EAGAIN] No message waiting to be read on a stream and O_NDELAY flag set.

[EBADF] fildes is not a valid file descriptor open for reading.

[EBADMSG] Message waiting to be read on a streamn is not a data message.
[EDEADLK] The read was going to go to sleep and cause a deadlock situation to occur.

[EFAULT) buf points outside the allocated address space.

[EINTR] A signal was caught during the read system call.

[EINVAL) Attempted to read from a stream linked to a multiplexor.

[ENOLCK] The system record lock table was full, so the read could not go to sleep until the
blocking record lock was removed.

[ENOLINK] fildes is on a remote machine and the link to that machine is no longer active.

A read from a STREAMS file will also fail if an error message is received at the stream head. In this
case, iretval is set to the value returned in the error message. If a hangup occurs on the stream being
read, read will continue to operate normally until the stream head read queue is empty. Thereafter, it
will return 0.

READ(2F) READ(2F)

EXAMPLE
program read
integer*4 read, fildes, nbyte
integer*1 buf (80)

integer*4 bytcat, open
character*80 bufc

equivalence (buf, bufc)
¢ Open a file to read

fildes = open ('../example/read.F’, 0)
if (fildes .It. 0) write (*,*) 'open err:’, fildes

¢ Read 80 bytes of the file

nbyte = 80
bytent = read (fildes, buf, nbyte)
if (bytcat .It. 0) write (*,*) 'read err:’, bytent

¢ bytcnt is number of bytes read in

write (*, 9000) bufc
9000 format (’°, a80)
end
NOTES
The streams features described in this manual page are not supported in this release.

SEE ALSO
creat(2F), dup(2F), fentl(2F), ioctl(2F), intro(2F), open(2F), pipe(2F), getmsg(2F), streamio(7), ter-
mio(7).

DIAGNOSTICS
Upon successful completion a non-negative integer is returned indicating the number of bytes actually
read. Otherwise, a negative value indicating the error is returned.

READLINK(2F) READLINK(2F)

NAME
readlink - read value of a symbolic link

SYNOPSIS
integer®*4 readlink,bufsiz
character*SIZE path,buf
iretval = readlink(path,buf,bufsiz)

DESCRIPTION
SIZE can be any number 1 through 128. readlink places the contents of the symbolic link path in the
buffer buf which has size bufsiz. The contents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an error occurs,
placing the error code in the global variable ermo.

ERRORS
readlink will fail and the file mode will be unchanged if:
[EPERM] The path argument contained a byte with the high-order bit set.
[ENAMETOOLONG] A component of a pathname exceeded NAME_MAX characters, or an
entire pathname exceeded PATH_MAX.
[ELOOP] Too many symbolic links were encountered in translating a pathname.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a component of the path prefix.
[EPERM] The effective user ID does not match the owner of the file and the
effective user ID is not the superuser.
[EINVAL] The named file is not a symbolic link.
[EFAULT] buf extends outside the process’s allocated address space.
SEE ALSO
stat(2F), Istat(2F), symlink(2F)
NOTES
Currently on 88k machine only.

READV(2F) READV(2F)

NAME
readv - do multiple reads from a file

SYNOPSIS
include <sysf/uiod>
integer*4 readv, fildes, iovent
record /iovec/ iov(16)
iretval = readv (fildes, iov, iovcent)

DESCRIPTION
readv attempts to read data from the object referenced by fildes. The input data is scattered into the
iovent buffers specified by the members of the iov array: iov(1), iov(2), ..., iov(iovent). This allows you
to do up to 16 read operations with one system call.

The jovec structure is defined as:

structure /iovec/
integer*4 iov_base
integer*4 iov_len
end structure
Each iovec entry specifies the base address and length of an area in memory where data should be
placed. readv fills one area completely before proceeding to the next.

Upon successful completion, readv returns the number of bytes actually read and placed in the buffer.
The system will read the number of bytes requested if the descriptor references a normal file that has
that many bytes left before the end-of-file; this is not guaranteed for other cases.

READV (2F) READV/(2F)

EXAMPLE

program readv

include <sysf/uio.i>

include <sysf/fentli>

integer*4 ready, fildes, iovent, 1, j, iretval, offset, open
integer*1 buf(80,4)

character*20 bufl, buf2, buf3, buf4

equivalence (buf (1,1), bufl), (buf (1,2), buf2), (buf (1,3), buf3)
equivalence (buf (1,4), buf4)

record /fiovec/ iov (16)

¢ Open afile

fildes = open ("../example/readv.F’, O_RDONLY)
if (fildes .It. 0) write (*,*) ‘open error?, fildes

¢ Fill the iov structure for four buffers

offset = 0

do100i = 1,4

iov (i).iov_base = %loc (buf(1,i))
iov (i).iov_len = 20

offset = offset + 20

100 continue

¢ Do the four read operations

ioveat = 4
iretval = readv (fildes, iov, iqvent)
if (iretval .it. 0) write (*,*) ‘readv error?’, iretval

¢ Print the buffers

write (*,9000) bufl, buf2, buf3, buf4

9000 format (* ’,4a20)

ERRORS

end

readv will fail if one or more of the following are true:

[EBADF} fildes is not a valid file descriptor open for reading.

[EFAULT] buf or part of the iov points outside the allocated address space.

[EINTR} A read from a slow device was interrupted by a signal before any data arrived.
[EINVAL] The pointer associated with d was negative or greater than 16.

[EINVAL] iovent was negative or greater than 16.

[EINVAL] One of the iov_len values in the iov array was negative.

[EINVAL]} Part of the iov points outside the process’s allocated address space.

{EIO] An 1/0 error occurred while reading from the file system.

READV(2F) READV(2F)

NOTES
The following example can be used to place the address of a buffer into the iov array:
iov(2).iov_base = %loc (buf2)
SEE ALSO
creat(2F), dup(2F), fentl(2F), getmsg(2F), ioctl(2F), intro(2F), open(2F), pipe(2F), read(2F). .

RECV(2F) RECV(2F)

recv, recvfrom - receive a message from a socket

SYNOPSIS

#include <sysf/types.i>
#include <sysf/socket.i>

integer*2 recv,cc,s
character*SIZE buf
integer®4 len,flags

cc = recv(s, buf, len, flags)

integer*2 recvirom,cc,s

character*SIZE buf

integer®4 len,flags

record/sockaddr/from

integer*4 fromlen

cc = recvfrom(s, buf, len, flags, from, fromlen)

DESCRIPTION

recv and recvfrom are used to receive messages from a socket.

The recv call may be used only on a connected socket (see connect(2F)), while recyfrom may be used to
receive data on a socket whether it is in a connected state or not.

If from is nonzero, the source address of the message is filled in. fromlen is a valuc-result parameter,
initialized to the size of the buffer associated with from, and modified on return to indicate the actual
size of the address stored there. The length of the message is returned in cc. If a message is too long
to fit in the supplied buffer, excess bytes may be discarded depending on the type of socket the message
is received from; see socket(2F).

If no messages are available at the socket, the receive call waits for a message to arrive, unless the
socket is nonblocking (see fens!(3)) in which case a cc of -1 is returned with the external variable errno
set to EWOULDBLOCK. The select(2F) call may be used to determine when more data arrives.

The flags argument to a recv call is formed by or-ing one or more of the values,

#define MSG OOB 0x1 ! process out-of-band data
#define MSG PEEK 0x2 ! peek at incoming message

RETURN VALUE

These calls return the number of bytes received, or -1 if an error occurred.

ERRORS

The calls fail if:

[EBADF] The argument s is an invalid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would block.
[EINTR] The receive was interrupted by delivery of a signal before any data was avail-

able for the receive.

RECV(2F) RECV(2F)

[EFAULT] The data was specified to be received into a nonexistent or protected part of
the process address space.

SEE ALSO
read(2F), send(2F), socket(2F).

RELINQUISH(2F) RELINQUISH(2F)

NAME
relinquish - voluntarily give up CPU

SYNOPSIS
integer®4 relinquish
iretval = relinquish ()

DESCRIPTION
relinquish causes a context switch to occur from the calling process to the next process that is runnable
at the same priority of the calling process. If no other processes are runnable at that priority, the caller
will immediately switch back to itself. Since processes are scheduled roundrobin within a priority level,
the caller cannot run again until all other runnable processes at the callers priority level have run.

The caller must have realtime or superuser privileges.
relinquish will fail if the following is true:
[EPERM] The requesting process does not have the appropriate permission.

EXAMPLE
program relinquish
include <sysf/errno.i>
integer*4 relinquish, slicesiz

slicesiz = relinquish ()
if (slicesiz .eq. EPERM) then

write (*,*) *not superuser or no realtime privileges’
else

if (slicesiz .1t. 0) write (*,*) 'relinquish error:’, slicesiz
endif
end

DIAGNOSTICS
Upon successful completion, a non-necgative integer is returned indicating the previous slice size of the
target process. Otherwise, a negative value indicating the error is returned.

RELTIMERID (2F) RELTIMERID (2F)

NAME
reltimerid - release a process interval timer identifier

SYNOPSIS
include <sysf/time.i>
integer*4 reltimerid, timerid
iretval = reltimerid (timerid)
DESCRIPTION
The reltimerid system call deactivates and releases the process interval timerid previously allocated to
the realtime process via a gettimerid (2F) system call. Any outstanding timer events associated with the
specified imerid are cancelled and the timer freed when reltimerid returns.
EXAMPLE
See absinterval(2F) for an example.

ERROR CODES
If successful, reltimerid returns 0. Otherwise, a negative value indicating the error is returned.

{EINVAL] The fimerid argument does not correspond to an ID returned by gettimerid (2F).

The timerid specified is not valid for the calling process.

SEE ALSO
absinterval(2F), getinterval(2F), gettimerid(2F), incinterval(2F), resabs(2F), resinc(2F).

RENAME(2F) RENAME (2F)

NAME
rename - change the name of a file.

SYNOPSIS
integer®4 rename
. character*SIZE old;new

iretval = rename(old,new)

DESCRIPTION
SIZE can be any number 1 through 128. rename changes the name of a file from o/d to new. If old is
a file (not a directory), new cannot be a directory, and if new is an existing file, it will be removed and
old renamed. If old is a directory, and new exists, new must be empty, in which case it will be removed
and old renamed. If old and new refer to the same file, rename will return successfully without making
any changes.

RETURN VALUE
0 value is returned if the operation succeeds, otherwise rename returns -1 and the global value ermo
indicates the reason for the failure.

ERRORS

rename will fail and neither of the files named as arguments will be affected if any of the following are

true:

[ENOTDIR] A component of either path prefix is not a directory, or old names a
directory, and new is not a directory.

[ENAMETOOLONG] A component of a pathname exceeded NAME_MAX characters while
_POSIX_NO _TRUE is in effect, or an entire pathname exceeded
PATH_MAX.

. [ENOENT] The link named by old daes not exist or eld or new points to an empty

string,

[EACCES] A component of cither path prefix denies search mrmission, or one of

the dircctories containing old or new denies write permission, or the
requested link requires writing in a directory with a mode that denies
write permission.

[EXDEV] The link named by new and the file named by old are on different logical
devices (file systems).

[EROFS] The requested link requires writing in a directory on an read-only file
system.

[EINVAL] The new pathname contains a path prefix that names old.

[EBUSY} The directory named by old or new cannot be remaned because it is
being used by the system or another process.

[ENOEMPTY] The directory named by new contains file other than " or "..".

[EISDIR] The new points to a directory, and o/d is not a directory.

[ENOSPC] The directory that would enter new cannot be extended.

SEE ALSO

mv(1), link(2F), open(2F), symlink(2F), unlink(2F)
o —
Currently on 88k machine only.

RESABS (2F) RESABS (2F)

NAME
resabs, resinc - get resolution and maximum time value of process interval timer

SYNOPSIS
include <sysf/time.i>

integer*4 resabs, timerid
record /timestruc/ res, max
iretval = resabs (timerid, res, max)

integer*4 resinc, timerid
record /timestruc/ res, max
iretval = resinc (timerid, res, max)

DESCRIPTION
resabs returns the resolution and maximum absolute time value for the process interval timer specified
by timerid (returned by gettimerid (2F)). These are the values used by the operating system to validate
expiration values specified by absinterval (2F).

resinc returns the resolution and maximum increment time value for the process interval timer
specified by timerid (returned by gettimerid (2F)). These are the values used by the operating system to
validate expiration values specified by incinterval (2F).

res is a pointer to a timestruc structure into which the resolution is placed.
max is a pointer to a timestruc structure into which the maximum time value is placed.

EXAMPLE
program resabs
include <sysf/time.i>
integer*4 resabs, timerid
integer*4 resinc, iretval
record /timestruc/ absres, absmax, incres, incmax

[c]

Use evget to get event id
Use gettimerid to get timerid for event
¢ Get absolute resolution and max time value

[¢]

iretval = resabs (timerid, absres, absmax)
if (iretval .It. 0) write (*,*) 'resabs error?’, iretval

¢ Get incremental resolution and max value

iretval = resinc (timerid, incres, incmax)
if (iretval .It. 0) write (*,*) ’resinc error?’, iretval

¢ Print results

write (*,9000) absres.tv_sec, absmax.tv_sec
write (*,9001) incres.tv_sec, incmax.tv_sec

9000 format (* absolute resolution in secs?’, i8,/

& > absolute maximum in secs?’, i8)
9001 format (* incremental resolution in secs?’, i8,/
& > incremental maximum in secs?’, i8)

end

RESABS(2F) RESABS (2F)

ERROR CODES
If resabs o resinc is not successful, a negative value is returned with one of the following error codes.

[BFAULT] res or max points outside the allocated address space of the process.

[EINVAL] The timerid argument does not correspond to an ID returned by gettimerid (2F) or it has
previously been released with a reltimerid (2F) call.

SEE ALSO
absinterval(2F), getinterval(2F), gettimerid(2F), incinterval(2F), reltimerid(2F), itimerstruc(4), times-
truc(4).

RESIDENT(2F) RESIDENT (2F)

NAME

resident - make locked segments resident in memory

SYNOPSIS

include <sysf/lock.i>
include <sysf/evti>

integer*4 resident, flags, eid
iretval = resident (flags, eid)

DESCRIPTION

The resident system call causes all segments of the calling process that have been locked using
Pplock(2F) or shmctl (2F) to be made resident in physical memory. The effective user ID of the calling
process must be superuser or have realtime privileges to use this call.

If resident is not called after plock(2F) or shmctl(2F) with the SHM_LOCK option, then, although the
pages of the locked segments will be prevented from being paged out, each page will still be loaded
when it is initially accessed, causing possible degradation of realtime performance.

After a call of resident, any attempt to increase the size of a locked data segment (whether through
natural stack growth, calls to malloc(3), or explicit calls to brk(2F) or stkexp (2F)) may cause degrada-
tion of realtime performance; for example, pages belonging to lower priority processes may have to be
copied to disk, to free physical memory for the extra resident pages being created. Therefore, a real-
time process should preallocate enough space for the data and stack regions of its data segment, using
brk (2F) or stkexp (2F), before calling resident.

A mechanism is provided to inform a process if it has violated its realtime constraints by expanding its
data segment. If (flags & EVT_POST) is “true”, eid specifies an event identifier, initialized by the user,
to which events may be posted with data items consisting of a combination of the following flags:

STKEXP Pages have been added to the stack region of the data segment as a result of a
stkexp (2F) call, causing degradation of realtime performance.

STKGROW Pages have been added to the stack region of the data segment as a result of natural
stack growth, causing degradation of realtime performance.

BRK Pages have been added to the data segment as a result of a brk (2F) or sbrk(2F) call,

causing degradation of realtime performance.

DATUNLOCK The data segment (comprising the data and stack regions) has been unlocked, caus-
ing degradation of realtime performance. This occurs when pages have been added
to the data segment, but there is no more physical memory available for resident seg-
ments.

This mechanism is reset (i.e. no further events will be posted) following a call to fork (2F), exec(2F),

Pplock(2F) with the UNLOCK option, or a subsequent call to resident with (flags & EVT_POST) equal to
“false)l.

The resident system call will fail if:
[EPERM] The effective user ID of the calling process is not superuser, or does not have realtime
privileges.

[EINVAL] No segment of the calling process has been locked by plock (2F) or shmctl (2F).
[EINVAL] The calling process does not have the event identifier specified by eid.
[EINVAL] A valid eid was specified, but the data segment is not locked.

RESTIMER (2F) RESTIMER(2F)

ERROR CODES

If successful, restimer returns a value of 0. Otherwise, a negative value indicating the error is returned
with one of the following error codes:
[EFAULT] The res or maxval arguments point outside the allocated address space of the pro-
[EINVAL] The timer_type argument does not specify a valid system-wide realtime timer type.
[EIO] A device error occurred while accessing the system-wide timer.

SEE ALSO

gettimer(2F), settimer(2F), timestruc(4).

RESUME (2F) RESUME (2F)

NAME
resume - resume a suspended process

SYNOPSIS
integer* resume, pid
iretval = resume (pid)
DESCRIPTION
pid is the process ID of the target process to be resumed.

If the target process is suspended because of a suspend(2F), or swich(2F) system call, it will resume
execution after the resume is completed and when it becomes the highest runnable process in the sys-
tem.

For a process to have permission to resume another process, the requesting process must have
superuser or realtime privileges which are granted via the setrt(2F) system call. If the effective user ID
of the requesting process is superuser, permission checks are bypassed.

resume will fail if one or more of the following are true:

[ESRCH] No process can be found corresponding to that specified by pid. Or pid refers to a pro-
cess that is not suspended.

[EINVAL] pid refers to the requesting process or a process that was not suspended.

[EPERM] The requesting process does not have the appropriate permission to resume the target
process.

EXAMPLE
program resume
integer*4 resume, pid
integer*4 suspend, fork, iretval

¢ Create a child process, print a line, suspend, print line, exit

pid = fork ()
if (pid .1t. 0) then
write (*,9001) “fork error?’, pid
stop
else if (pid .eq. 0) then
write (*,9000) *child suspended’
iretval = suspend ()
if (iretval .It. 0) write (*,9001) child suspend error:’, iretval
write (*,9000) *child resumed, exiting’
else

¢ Here if parent, resume child

write (*,9001) *child id>’, pid
iretval = resume (pid)
if (iretval .It. 0) write (*,9001) ’parent resume error:’, iretval
endif
9000 format (’0’, a40)
9001 format ('0°, a40,3x,i6)
end

RESUME(2F) RESUME (2F)

SEE ALSO
setrtgroup(1), resume(1R), getpid(2F), setrt(2F), suspend(2F), swtch(2F).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

RMDIR (2F)

NAME

RMDIR (2F)

rmdir - remove a directory

SYNOPSIS
integer*4 rmdir

character*SIZE path
iretval = rmdir (path)

DESCRIPTION

SIZE can be any number between and including 1 through 128. rmndir removes the directory named by
the path name pointed to by path. The directory must not have any entries other than "." and "..".

The named directory is removed unless one or more of the following are true:

[EINVAL]} The current directory may not be removed.
[EINVAL] The "." entry of a directory may not be removed.
[EEXIST] The directory contains entries other than those for "." and "..".
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named directory does not exist.
[EACCES] Search permission is denied for a component of the path prefix.
[EACCES} Write permission is denied on the directory containing the directory to be removed.
[EBUSY] The directory to be removed is the mount point for a mounted file system.
[EROFS] The directory entry to be removed is part of a read-only file system.
[EFAULT] path points outside the process’s allocateéd address space.
[EIO] An 1/0 error occurred while accessing the file system.
[ENOLINK] path points to a remote machine, and the link to that machine is no longer active.
[EMULTIHOP] Components of path require hopping to multiple remote machines.
EXAMPLE
program rmdir
integer*4 rmdir
character*40 path
integer*4 iretval

¢ Remove directory "tstdir" in current directory

path = ’tstdir
iretval = rmdir (path)
if (iretval It. 0) write (*,*) *rmdir error?’, iretval

end
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error

is returned.
SEE ALSO

rmdir(1), rm(1), mkdir(1), mkdir(2F).

SELECT(2F) SELECT(2F)

NAME

select - synchronous I/O multiplexing

SYNOPSIS

include <sysf/types.i>
include <sysf/time.i>

integer*4 select, nfds

record /fd_set/readfds, writefds, exceptfds

record /timeval/ timeout

iretval = select (nfds, readfds, writefds, exceptfds, timeout)

integer®4 fd
record /fd_set/ fdset

FD_SET (fd, fdset)

FD_CLR (fd, fdset)

FD ZERO (fdset)

iretval = FD_ISSET (fd, fdset)

DESCRIPTION

select examines the 1/0 descriptor sets whose addresses are passed in readfds, writefds, and exceptfds to
see if some of their descriptors are ready for reading, are ready for writing, or have an exceptional con-
dition pending, respectively. The first nfds descriptors are checked in each set; i.e. the descriptors from
0 through nfds-1 in the descriptor sets are examined. On return, select replaces the given descriptor
sets with subsets consisting of those descriptors that are ready for the requested operation. The total
number of ready descriptors in all the sets is returned.

The descriptor sets are stored as bit fields in arrays of integers. The following macros are provided for
manipulating such descriptor sets: FD_ZERO(fdset) initializes a descriptor set fdset to the null set.
FD_SET(fd, fdsef) includes a particular descriptor fd in fdset. FD_CLR(fd, fdset) removes fd from
fdset. FD_ISSET(fd, fdset) returns nonzero if fd is a member of fdset, zero otherwise. The behavior of
these macros is undefined if a descriptor value is less than zero or greater than or equal to
FD_SETSIZE, which is normally at least equal to the maximum number of descriptors supported by
the system.

If timeout is not %val(0), it specifies a maximum interval to wait for the selection to complete. If
timeout is %val(0), the select blocks indefinitely. To affect a poll, the timeout argument should be
non-zero, pointing to a zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as %val(0) if no descriptors are of interest.

EXAMPLE

program select

include <sysf/fentli>

include <sysf/types.i>
include <sysf/time.i>

W ®

integer*4 select, nfds
integer*4 nrdy

integer*4 open, oflag, fildes
integer*4 read

integer*4 i

record /fd_set/ rwids
record /timeval/ timeout

SELECT(2F)

c Inititalize all descriptor values

FD_ZERO (rwfds)
nfds = 0

¢ Open a file, set descriptor entry

oflag = O_RDWR .or. O_NDELAY
fildes = open (’../example/tst.x’, oflag)
if (fildes .ge. 0) FD_SET (fildes, rwids)
nfds = max (nfds, fildes)

¢ Set timeout value to 5 milli-seconds

timeout.tv_sec = 0
timeout.tv_usec = 5000

¢ Check 0, 1, and 2 also (stdin, stdout, stderr)

do100i=1,3
FD_SET (i-1, rwids)
100 continue

write (*,9000) ‘rwids before = ’, (rwfds.fds_bits (i), =0, 7)
nfds = nfds + 1

¢ Check which files are ready for reading
nrdy = select (nfds, rwfds, %val (0), %val (0), timeout)
c Print results

if (ordy .It. 0) then
write (*,9001) "select error ’, nrdy
else if (nrdy .gt. 0) then
write (*,9001) ‘number of files ready for I/O:’, nrdy
do200i = 1, nfds
if (FD_ISSET (i-1, rwids) .ne. 0) goto 210
200 continue
i=0
210 continue
fildes = i-1
write (*,9001) “first file descriptor for 1/0:, fildes
else
write (*,9001) 'timeout occurred. files ready: ’, nrdy
endif
write (*,9000) 'rwfds after = °, (rwfds.fds_bits (i), i=0, 7)
9000 format (*’, al5, 8 (i6, 1x))
9001 format (*°, a30, i6)
end

SELECT(2F)

SELECT(2F) SELECT(2F)

subroutine memset (mem, value, bc)

¢ This subroutine called by 'FD_ZERO’

integer*1 mem (bc)
integer*4 value, be, i
do 100i=1,bc
mem (i) = value
100 continue

return
end

RETURN VALUE

select returns the number of ready descriptors that are contained in the descriptor sets, or a negative
number if an error occurred. If the time limit expires then select returns 0. If select returns with an
error, including one due to an interrupted call, the descriptor sets will be unmodified.

ERRORS
An error return from select indicates:
[EBADF] One of the descriptor sets specified an invalid descriptor.
[EINTR] A signal was delivered before the time limit expired and before any of the selected
events occurred.
[EINVAL] The specified time limit is invalid. One of its components is negative or too large.
NOTES

The macros FD_SET, FD_CLR, and FD_ZERO expand to FORTRAN statements. FD_ISSET is a
function. FD_ZERO requires the subroutine memset [see memset(3)].

SEE ALSO
accept(2F), connect(2F), read(2F), write(2F), recv(2F), send(2F), getdtablesize(2F)

BUGS
Although the provision of getdtablesize (2F) was intended to allow user programs to be written indepen-
dent of the kernel limit on the number of open files, the dimension of a sufficiently large bit field for
select remains a problem. The default size FD_SETSIZE (currently 256) is somewhat larger than the
current kernel limit to the number of open files. However, in order to accommodate programs which
might potentially use a larger number of open files with select, it is possible to increase this size within
a program by providing a larger definition of FD_SETSIZE before the inclusion of <sysf/types.i>.

select should probably return the time remaining from the original timeout, if any, by modifying the
time value in place. This may be implemented in future versions of the system. Thus, it is unwise to
assume that the timeout value will be unmodified by the select call.

SEMCTL(2F)

NAME

SEMCTL(2F)

semctl - semaphore control operations

SYNOPSIS

include <sysf/types.i>
include <sysf/ipc.i>
include <sysf/sem.i>

integer®*4 semctl, semid, cmd, semnum
integer*4 val, array (25)

record /semid_ds/ semid_buf
iretval = semctl (semid, semnum, cmd, val)

iretval
iretval

DESCRIPTION

semctl (semid, semnum, cmd, semid_buf)
semct]l (semid, semnum, cmd, array)

semctl provides a variety of semaphore control operations as specified by cmd.

The following crd's are executed with respect to the semaphore specified by semid and semnum:

GETVAL
SETVAL

GETPID
GETNCNT
GETZCNT

Return the value of semval [see intro (2F)]. {READ}

Set the value of semval to val. {ALTER} When this cmd is successfully executed,
the semadj value corresponding to the specified semaphore in all processes is
cleared.

Return the value of sempid. {READ}
Return the value of semncnt. {READ}
Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of semaphores.

GETALL
SETALL

Place semvals into array pointed to by array. {READ}

Set semvals according to the array pointed to by array. {ALTER} When this cmd
is successfully executed the semadj values corresponding to each specified sema-
phore in all processes are cleared.

The following cmdss are also available:

IPC_STAT

IPC_SET

Place the current value of each member of the data structure associated with
semid into the structure pointed to by semid_buf. The contents of this structure
are defined in intro (2F). {READ}

Set the value of the following members of the data structure associated with
semid to the corresponding value found in the structure pointed to by semid_buf:
sem_perm.uid

sem_perm.gid

sem_perm.mode !only low 9 bits

This cmd can only be executed by a process that has an effective user ID equal to
either that of superuser, or to the value of sem_perm.cuid or sem_perm.uid in
the data structure associated with semid.

Remove the semaphore identifier specificd by semid from the system and des-
troy the set of semaphores and data structure associated with it. This cmd can
only be executed by a process that has an effective user ID equal to either that of
superuser, or to the value of sem_perm.cuid or sem_perm.uid in the data struc-
ture associated with semnid.

SEMCTL(2F) SEMCTL(2F)

semctl fails if one or more of the following are true:

[EINVAL] semid is not a valid semaphore identifier.

[EINVAL} semnum is less than zero or greater than sem_nsems.

[EINVAL] cmd is not a valid command.

[EACCES] Operation permission is denied to the calling process [see intro(2F)].

[ERANGE] cmd is SETVAL or SETALL and the value to which semval is to be sct is greater than the

system imposed maximum.

[EPERM] cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling process is

not equal to that of superuser, or to the value of sem_perm.cuid or sem_perm.uid in
the data structure associated with semid.

[EFAULT] semid_buf points to an illegal address.

EXAMPLE

* % %K

program semctl

include <sysf/types.i>

include <sysf/ipc.i>

include <sysf/sem.i>

define MAXSEMNUM 8

integer*4 semget, key, nsems, semflg
integer*4 semctl, semid, cmd, semnum
integer*4 val, array (:MAXSEMNUM-1)
integer*4 array_out (0:MAXSEMNUM-1)
integer*4 iretval, i

record /semid_ds/ semid_buf

¢ Get an id for a number of semaphores

key = 1234 | some agreed upon value

nsems = MAXSEMNUM

semflg = *7770 .or. IPC_CREAT

semid = semget (key, nsems, semflg)

if (semid .It. 0) write (*,*) *semget error:’, semid
write (*,*) *semaphore id:’, semid

¢ Set some values

100

do 100 i = 0, MAXSEMNUM-1

array (i) = i

array_out (i) = -1

continue

cmd = SETALL

semnum = 0

iretval = semctl (semid, semnum, cmd, array)

if (iretval .It. 0) write (*,*) 'semctl error:’, iretval

¢ Get some values

iretval = semctl (semid, 0, GETALL, array out)
if (iretval .It. 0) write (*,*) *2 semctl error?’, iretval
write (*,9000) ’semaphore values’, array_out

9000 format (**, 220, /, 8 (1x, i5))

SEMCTL(2F) SEMCTL(2F)

¢ Get and print value of a specific semaphore

do 2001 = 0, MAXSEMNUM-1
iretval = semctl (semid, i, GETVAL, 0)
if (iretval .It. 0) write (*,*) *3 semctl error?’, iretval
write (*,*) ’semaphore value?’, i, iretval
200 continue

¢ Get and print number of processes waiting on nonzero
¢ semaphore value

iretval = semctl (semid, 2, GETNCNT, 0)
if (iretval .It. 0) write (*,*) ’4 semctl error?, iretval
write (*,*) "nonzero wait count, semaphore #2’, iretval

¢ Get some info on these semaphores

semid_buf.sem_nsems = 0

iretval = semctl (semid, 0, IPC_STAT, semid_buf)

if (iretval .It. 0) write (*,*) ’5 semcti error?, iretval

write (*,9001) ‘number of semaphores:’, semid_buf.sem_nsems
9001 format (*’, a20, 3x, i10)

¢ Remove semaphore

iretval = semctl (semid, 0, IPC_RMID, 0)
if (iretval .It. 0) write (*,*) °6 semcti error?, iretval

end
SEE ALSO
intro(2F), semget(2F), semop(2F).
DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:
GETVAL The value of semval
GETPID The value of sempid
GETNCNT The value of semnent
GETZCNT The value of semzcnt

All others A value of 0
Otherwise, a negative value indicating the error is returned.

SEMGET(2F) SEMGET(2F)

NAME
semget - get set of semaphores

SYNOPSIS
include <sysf/types.i>
include <sysf/ipc.i>
include <sysf/sem.i>

integer*4 semget, key, nsems, semflg
iretval = semget (key, nsems, semflg)

DESCRIPTION
semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores [sce
intro (2F)] are created for key if one of the following is true:

key is equal to IPC_PRIVATE.

key does mot already have a semaphore identifier associated with it, and (semflg &
IPC_CREAT) is “truc”.

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:

Sem_perm.cuid, sem_perm.uid, sem _pérm.cgid, and sem_perm.gid are set equal to the
effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to the low-order 9 bits of semflg.
Sem_nsems is set equal to the value of nsems.
Sem_otime is sct equal to 0 and sem_ctime is set equal to the current time.

semget fails if one or more of the following are true:

[EINVAL] nsems:is eithier less: than or equal to-zero or greater than-the: system-imposed limit.

[EACCES] A semaphore identifier exists for key, but eperation: permission [sce intro(2F)] as
specified by the low-order 9 bits of semflg would not be granted.

[EINVAL] A semaphore identifier exists for key, but the number of semaphores in the set asso-
ciated with it is less than nsems, and nsems is not equal to zero.

[ENOENT] A semaphore identifier does not exist for key and (semfig & IPC_CREAT) is “false”.

[ENOSPC} A semaphore identifier is to be created but the system-imposed limit on the max-
imum number of allowed semaphore identifiers system wide would be exceeded.

[ENOSPC] A semaphore identifier is to be created but the system-imposed limit on the max-
imum number of allowed semaphores system wide would be exceeded.

[EEXIST] A semaphore identifier exists for key but ((semflg & TPC_CREAT) and (semflg &

IPC_EXCL)) is “true”.

SEMGET(2F) SEMGET(2F)

EXAMPLE

program semget

include <sysf/types.i>

include <sysf/ipc.i>

include <sysf/sem.i>

define MAXSEMNUM 8 .
integer*4 semget, key, nsems, semflg

integer*4 semid

L

¢ Get an id for a number of semaphores

key = 1234 ! some agreed upon value

nsems = MAXSEMNUM

semflg = *7770 .or. IPC_CREAT

semid = semget (key, nsems, semflg)

if (semid .It. 0) write (*,*) ’semget error?’, semid
write (*,*) ’semaphore id:’, semid

end

SEE ALSO
intro(2F), semctl(2F), semop(2F).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned. Oth-
erwise, a negative value indicating the error is returned.

SEMOP(2F) SEMOP (2F)

NAME
semop - semaphore operations

SYNOPSIS
include <sysf/types.i>
include <sysf/ipc.i>
include <sysf/sem.i>
integer*4 semop, semid, nsops
record /sembuf/ sops(NUM)
iretval = semop (semid, sops, nsops)
DESCRIPTION
semop is used to automatically perform an array of semaphore operations on the set of semaphores
associated with the semaphore identifier specified by semid. sops is a pointer to the array of

semaphore-operation structures. nsops is the number of such structures in the array. NUM should be
greater than or equal to nsops. The contents of each structure includes the following members:

integer*2 sem_num !semaphore number
integer*2 sem_op !semaphore operation
integer*2 sem_flg loperation flags
Each semaphore operation specified by sem_op is performed on the corresponding semaphore
specified by semid and sem_num.
sem_op specifies one of three semaphore operations as follows:
If sem_op is a negative integer, one of the following will occur: {ALTER}

If semval [see intro (2F)] is greater than or equal to the absolute value of sem_op, the

absolute value of sem op is subtracted from semval. Also, if (sem flg &
. SEM_UNDO) is “truc”, the absolute value of sem_op is added to the calling process’s

semadj value {sce exit (2F)] for the specified semaphore.

If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is

“true”, semop will return immediately.

If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is
“false”, semop will increment the semncnt associated with the specified semaphore
and suspend execution of the calling process until one of the following conditions
occur.

Semval becomes greater than or equal to the absolute value of sem_op. When this
occurs, the value of semncnt associated with the specified semaphore is decre-
mented, the absolute value of sem_op is subtracted from semval and, if (sem_flg &
SEM_UNDO) is “true”, the absolute value of sem_op is added to the calling
process’s semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from the sys-
tem [see semct!(2F)]. When this occurs, iretval is set equal to EIDRM.

The calling process receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal (2F).

If sem_op is a positive integer, the value of sem_op is added to semval and, if (sem_flg &
SEM_UNDO) is “true”, the value of sem_op is subtracted from the calling process’s semadj
value for the specified semaphore. {ALTER}

SEMOP(2F)

SEMOP (2F)

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem_fig & IPC_NOWAIT) is “true”, semop will
return immediately.
If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is “false”, semop will
increment the semzent associated with the specified semaphore and suspend execu-
tion of the calling process until one of the following occurs:
Semval becomes zero, at which time the value of semzent associated with the
specified semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the sys-
tem. When this occurs, iretval is set equal to EIDRM.

The calling process receives a signal that is to be caught. When this occurs, the
value of semzent associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal (2F).

semop will fail if one or more of the following are true for any of the semaphore operations specified

by sops:
[EINVAL]
[EFBIG]

[B2BIG]
[EACCES)]

[EAGAIN}
[ENOSPC]
(EINVAL]

[ERANGE]
[ERANGE]
{EFAULT]

semid is not a valid semaphore identifier.

sem_num is less than zero or greater than or equal to the number of semaphores in
the set associated with semid.

nsops is greater than the system-imposed maximum.
Operation permission is denied to the calling process [see intro (2F))

The operation would result in suspension of the calling process but (sem flg &
IPC_NOWAIT) is “true”.

The limit on the number of individual processes requesting an SEM_UNDO would be
exceeded.

The number of individual semaphores for which the calling process requests a
SEM_UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed limit.
An operation would cause a semadj value to overflow the system-imposed limit.
sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified in the array pointed to
by sops is set equal to the process ID of the calling process.

SEMOP (2F) SEMOP (2F)

EXAMPLE
program semop
include <sysf/types.i>
include <sysf/ipc.i>
include <sysf/sem.i>
define MAXSEMNUM 1

integer*4 semget, key, nsems, semfig
integer*4 semop, nsops

integer*4 semid, i, j, iretval, semctl
integer*4 fork, pid, pause

character*80 dummy

record /sembuf/ sops (MAXSEMNUM)

¢ Get an id for semaphores

key = 1234 ! some agreed upon value

nsems = MAXSEMNUM

semflg = 7770 .or. IPC_CREAT

semid = semget (key, nsems, semfig)

if (semid .I¢. 0) write (*,*) ’semget error:’, semid
write (*,*) ’semaphore id:’, semid

¢ Make a child
pid = fork ()

¢ Child and parent executing together.
¢ Fill array of semaphore operation to take each semaphore

do 100i = 1, MAXSEMNUM
sops (i).sem_num = i-1
sops (i).sem_op = 1 ! take a scmaphore
sops (i).sem_flg = 0 ! no flags
100 continue

¢ Perform the semaphore operations
nsops = MAXSEMNUM
iretval = semop (semid, sops, nsops)
if (iretval .It. 0) write (*,*) ’semop error?’, iretval

¢ Inform of semaphore taken

if (pid .gt. 0) write (*,*) ’semaphores taken by parent’
if (pid .eq. 0) write (*,*) *semaphores taken by child”

SEMOP(2F) SEMOP (2F)

¢ Release semaphores

do 1501 = 1, MAXSEMNUM
sops (i).sem_op = -1
sops (i).sem_flg = SEM_UNDO
150 continue
iretval = semop (semid, sops, nsops)
if (iretval It. 0) write (*,*) ’3 semop error?’, iretval

¢ Wait for semaphores to reach zero

do200i = 1, MAXSEMNUM
sops (i).sem_op = 0
200 continue
iretval = semop (semid, sops, nsops)
if (iretval .It. 0) write (*,*) 2 semop error?’, iretval

if (pid .eq. 0) write (*,*) "child exiting’
if (pid .ne. 0) write (*,*) ’parent exiting’

do 5001 = 1, 1000
do 500 j = 1, 1000
iretval = i

500 continue
¢ If parent, remove semaphore

if (pid .eq. 0) stop

iretval = semectl (semid, 0, IPC_RMID, 0)

if (iretval .It. 0) write (*,*) *could not remove semaphore’, iretval
end

SEE ALSO
exec(2F), exit(2F), fork(2F), intro(2F), semctl(2F), semget(2F).
DIAGNOSTICS

If semop returns due to the receipt of a signal, a value of EINTR isreturned to the calling process. If it
returns due to the removal of a semid from the system, a value of EIDRM is returned.

Upon successful completion, a value of zero is returned. Otherwise, a negative value indicating the
error is returned.

SEND (2F) SEND(2F)

send, sendto - sends a message from a socket

SYNOPSIS

#include <sysf/types.i>
#include <sysf/socket.i>

integer*2 cc,s
character*SIZE msg

integer*4 send,len,flags
cc = send(s, msg, len, flags)

integer®2 cc,s

character*SIZE msg

integer*4 sendto,len,flags
record/sockaddr/to

integer®4 tolen

cc = sendto(s, msg, len, flags, to, tolen)

DESCRIPTION

SIZE can be any number 1 through 128. send and sendfo are used to transmit a message to another
socket. send may be used only when the socket is in a connected state, while sendfo may be used at any
time,

The address of the target is given by fo with folen specifying its size. The length of the message is given
by len. If the message is too long to pass atomically through the underlying protocol, then the error
EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some locally
detected errors.

If no message space is available at the socket to hold the message to be transmitted, then send normally
blocks, unless the socket has been placed in non-blocking I/O mode. The select(2F) call may be used
to determine when it is possible to send more data.

The flags parameter may be set to MSG_OOB to send out-of-band data on sockets which support this
notion (¢.g., SOCK_STREAM).

See recv(2F) for a description of the msghdr structure.

ERRORS

EXAMPLE

SEE ALSO

The call returns the number of characters sent, or a negative value indicating an error occurred.

[EBADF] - An invalid descriptor was specified.

[ENOTSOCK] The argument s is not a socket.

[EFAULT] An invalid user space address was specified for a parameter.

[EMSGSIZE] The socket requires that message be sent atomically, and the size of the mes-
sage to be sent made this impossible.

[EWOULDBLOCK]} The socket is marked non-blocking and the requested operation would block.

see socket(2F)

recv(2F), socket(2F)

SETGROUPS(2F)

NAME

SETGROUPS (2F)

setgroups - set group access list

SYNOPSIS
#include <sysf/param.i>
#include <sysf/types.i>
integer*4 rename
character*SIZE old,new
iretval = rename(old,new)

DESCRIPTION

SIZE can be any number between 1 through 128. rename changes the name of a file from old to new.
If old is a file (not a directory), new cannot be a directory, and if new is an existing file, it will be
removed and old renamed. If old is a directory, and new exists, new must be empty, in which case it
will be removed and old renamed. If old and new refer to the same file, rename will return success-
fully without making any changes.

RETURN VALUE

0 value is returned if the operation succeeds, otherwise rename returns -1 and the global value ermo
indicates the reason for the failure.

ERRORS

rename will fail and neither of the files named as arguments will be affected if any of the following are

true:
[ENOTDIR] A component of either path prefix is not a directory, or old names a
directory, and new is not a directory.
[ENAMETOOLONG] A component of a pathname exceeded NAME_MAX characters while
POSIX NO_TRUE is in effect, or an entire pathname exceeded
PATH_MAX.
[ENOENT] The link named by old does not exist or either old or new points to an
empty string.
[EACCES] A component of either path prefix denies search permission, or one of
the directories containing old or new denies write permission, or the
requested link requires writing in a directory with a mode that denies
write permission.
[EXDEV] The link named by new and the file named by old are on different logical
devices (file systems).
[EROFS] The requested link requires writing in a directory on a read-only file sys-
tem.
[EINVAL] The new pathname contains a path prefix that names old.
[EBUSY] The directory named by old or new cannot be renamed because it is
being used by the system or another process.
[ENOEMPTY] The directory named by new contains file other than "." or "..".
[EISDIR} The new points to a directory, and old is not a directory.
[ENOSPC] The directory that would enter new cannot be extended.
SEE ALSO

mv(1), link(2), open(2), symlink(2), unlink(2)
NOTES

Currently on 88k machine only.

SETPGID (2F) SETPGID (2F)

NAME
setpgid - Set process group ID for job control.

SYNOPSIS

integer*4 setpgid,pid,pgid
. iretval = setpgid(pid,pgid)

DESCRIPTION
The setpgid function is used to either create a new process group or move the calling process or one of
it’s children into an already existing process group.
Upon successful completion, the process group ID of the process with a process ID which matches pid
is set to pgid. If pid is zero, the pid of the calling process is used for pid. If pgid is set to 0, pid is used
for pgid.

ERRORS

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and ermo is
set to indicate the error.

setpgid will not set the process group ID for process pid equal to pgid if one of the following are true:

[EACCESS] pid matches the process ID of a child process of the calling process which has suc-
cessfully completed an exec (2) call.

[EINVAL] pgid does not fall within the range of valid process group ID numbers.

[EPERM] pgid matches the process ID of a session leader, or pid matches the process ID of a
child of the calling process which does not belong to the calling process’s session, or
there is no process with a process ID which matches the pgid argument within the
session of the calling process.

[ESRCH] pid does not match the process ID of the calling process or the process ID of a child
of the calling process.

SEE ALSO
intro(2), exec(2), exit(2), fork(2), getpid(2), kill(2), sigaction(2), setsid(2), and terminos(7)
NOTES
Currently on 88k machine only.

SETPGRP(2F) SETPGRP(2F) |

NAME

setpgrp - set process group ID
SYNOPSIS

integer®d setpgrp

iretval = setpgrp () . |
DESCRIPTION

setpgrp sets the process group ID of the calling process to the process ID of the calling process and
returns the new process group ID. ‘

EXAMPLE

program setpgrp
integer*4 setpgrp, gid

¢ Set group id to process id |

gid = setpgrp ()
write (*,*) group id”’, gid
end
SEE ALSO
exec(2F), fork(2F), getpid(2F), intro(2F), kill(2F), signal(2F).
DIAGNOSTICS
setpgrp returns the value of the new process group ID.

SETPRI(2F) SETPRI(2F)

NAME
setpri - set scheduling priority

SYNOPSIS
integer*4 setpri, pid, pri
iretval = setpri (pid, pri)

DESCRIPTION
pid is the process ID of the target process, or zero if the calling process is the target. pri is the new
scheduling priority that is to be assigned to the target process. The range of valid process priorities is 0
to 255, with lower values indicating higher priorities. Realtime processes have priorities in the range of
0 to 127. Time sharing processes have priorities in the range of 128 to 253. Priority 254 is to be used by
user supplied idle tasks and priority 255 is reserved for system idle tasks. The priority of a realtime
process or idle process is fixed unless explicitly changed via a setpri system call.

Time sharing processes are subject to fair-share priority migration similar to what occurs in standard
UNIX. Using sefpri to set the priority of a process within the fair-share range will subject that process
to automatic priority adjustment by the system.

K pid is non-zero, the requesting process must have realtime privileges which are granted via the
setrt(2F) system call. If pid is zero, the caller must have realtime or superuser permissions to make it’s
priority more favorable. If the effective user ID of the requesting process is superuser, permission

checks are bypassed.

Care must be taken when using sepri because a process will be able to completely consume the
bandwidth of a CPU by setting a high scheduling priority, therefore not relinquishing the CPU.

setpri will fail if one or more of the following are true:
[ESRCH] No process can be found corresponding to that specified by pid.
[EPERM] The requesting process does not have the appropriate permission to change the priority
of the target process.
[EINVAL] pri is negative or greater than 255.
EXAMPLE
program setpri
integer*4 setpri, pid, pri
integer*4 prevpri

¢ Reduce my priority

pid=0

pri = 253

prevpri = setpri (pid, pri)

if (prevpri .It. 0) write (*,*) "setpri error:’, prevpri

if (prevpri .ge. 0) write (*,*) *previous priority:’, prevpri
end

SEE ALSO
setpri(1R), getpid(2F), getpri(2F), setrt(2F).

DIAGNOSTICS
Upon successful completion, a non-negative integer is returned indicating the previous priority of the
target process. Otherwise, a negative value indicating the error is returned.

SETPSR (2F) SETPSR (2F)

NAME

setpsr,getpsr - set/get Processor Status Register

SYNOPSIS

#include <sysf/m88kbcs.i> (on 88K machine only)
integer®*4 setpsr,psr

iretval = setpsr(psr)

integer®4 getpsr

iretval = getpsr(

DESCRIPTION

setpsr sets certain bits in the Processor Status Register (PSR) of the calling process. The precise effects
of these bits are defined in the Motorola MC88100 User’s Manual.

Setting the C bit (PSR_C) sets the carry bit; clearing it will reset the carry bit.
Setting the MXM bit (PSR_MXM) will disable misaligned access exceptions. With the bit clear, a
misaligned access will cause a SIGBUS signal to be delivered to the process.

Setting the BO bit (PSR_BO) will select Little-Endian byte order. Clearing this bit will select Big-
Endian, which is the normal mode. All interfaces to the system must always be in Big-Endian byte
order.

Setting the SER bit (PSR_SER) will sclect serial operation. Clearing this bit will select concurrent
operation, which is the normal mode.

The psr value may be formed by the OR of the following:

PSR C 0x20000000
PSR MXM 0x10000000
PSR_BO 0x00000004
PSR_SER 0x40000000

RETURN VALUE

NOTES

setpsr() returns the previous value of the PSR.
getpsr() returns the current value of the PSR.

Currently on 88k machine only.

SETRT(2F) SETRT(2F)

NAME

setrt - set realtime privileges
SYNOPSIS

integer*d setrt

. iretval = setrt()

integer*4 = clrrt

iretval = clrrt()
DESCRIPTION

setrt gives the calling process realtime privileges. Realtime privileges are required in order to perform
such realtime operations as changing the scheduling priority of a process via setpri(2F) or suspending a
process via suspend(2F).

The requesting processes effective user ID must appear in the kernel’s realtime user privileged list
which is set with the setrtusers(2F) system call. Realtime privileges are automatically obtained when a
process acquires superuser privileges. Realtime privileges are also inherited by a child through a fork
if the parent had realtime privileges.

clrrt removes realtime privileges from the calling process; although in certain circumstances the process
may still be able to access realtime resources that were obtained while the process was privileged.

setrt will fail if the following is true:
[EPERM] The requesting process does not have permission to become a realtime process.

EXAMPLE
program setrt

integer*4 setrt, clrrt, iretval
I . ¢ Set'realtime privileges.if Have permission
iretval = setrt ()
if (iretval It. Q) write (*,*) "setrt error?’, irctval
¢ Do some realtime stuff

¢ Clear realtime privileges

iretval = clrrt ()
end
SEE ALSO
setrtusers(1M), setrtusers(2F).
DIAGNOSTICS

clm always returns a value of 0. Upon successful completion, setrt returns a value of 0. Otherwise, a
negative value indicating the error is returned.

SETRTUSERS(2F) SETRTUSERS(2F)

NAME
setrtusers - set realtime privileged users kst
SYNOPSIS
integer*4 setrtusers, uidp (SIZE), count
iretval = setrtusers (uidp, count)
DESCRIPTION
setrtusers loads the system realtime privilege table with a list of user IDs that will be allowed to acquire
realtime privileges, see setrt(2F). SIZE is the size of the array containing the user IDs.

setrtusers will fail and leave the system realtime privilege table unchanged if one or more of the follow-
ing are true:

[EPERM] The requesting process does not have superuser permissions.

[EFAULT] uidp points to an invalid address.

[EINVAL] count specifies more user IDs than would fit in the system realtime privilege table.

EXAMPLE
program setrtusers
integer*4 setrtusers, uidp (10), count
integer*4 getuid, iretval

¢ Get my user id
uidp (1) = getuid ()
¢ Load realtime users list

count = 1

iretval = setrtusers (uidp, count)

if (iretval .It. 0) write (*,*) *setrtusers error?’, iretval
end

SEE ALSO
setrtusers(1M), setrt(2F).

DIAGNOSTICS
Upon successful completion, sefrfusers returns a value of 0. Otherwise, a negative value indicating the
error is returned.

SETSLICE(2F) SETSLICE(2F)

NAME
setslice - set CPU time slice size

SYNOPSIS

include <sysf/param.i>
. integer®4 setslice, pid, slice
iretval = setslice (pid, slice)

DESCRIPTION
pid is the process ID of the target process, or zero if the calling process is the target. slice is the new
CPU time slice, specified in ticks, that is to be assigned to the target process. A tick is 1/HZ of a
second. The range of valid slice sizes is 1 to 21 (alittle over 11 years with a 60 HZ system clock).

Processes will not share the CPU with other processes of the same priority except at the expiration of
their time slice or when some other event in the system causes the CPU to be rescheduled (1/0 comple-
tion, etc.).

For a process to have permission to set the time slice of the target process or increase the time slice of
itself above the system default, the requesting process must have realtime privileges which are granted
via the setrt(2F) system call. If the effective user ID of the requesting process is superuser, permission
checks are bypassed.

setslice will fail if one or more of the following are true:
[EINVAL] slice is non-positive.

[EPERM] The requesting process does not have the appropriate permission to change the time
slice of the target process.

[ESRCH] No process can be found corresponding to that specified by pid.
. EXAMPLE
program setslice
include <sysf/param.i>
integer®4 setslice, pid, slice
integer*4 prevslice

¢ Decrease time slice

pid = 0 ! myself
slice = HZ -5
prevslice = setslice (pid, slice)
if (prevslice .1t. 0) write (*,*) *setslice error?’, prevslice
write (*,*) *previous slice value:’, prevslice
end
SEE ALSO
setpri(1R), getpid(2F), setrt(2F).
+ DIAGNOSTICS
Upon successful completion, a non-negative integer is returned indicating the previous slice size of the
target process. Otherwise, a negative value indicating the error is returned.

SETTIMER (2F) SETTIMER (2F)

NAME

settimer - set the current value for a system-wide realtime timer

SYNOPSIS
#

include <sysf/time.>

integer®d settimer, timer_fype
record /timestruc/ tp

iretval = settimer (timer_type, tp)

DESCRIPTION
The settimer system call sets the value of the system-wide realtime timer, specified by the fimer_type
argument, to the value pointed to by p.

The timer_type argument identifies the system-wide realtime timer used with this system call.
TIMEOFDAY is a valid timer _type and corresponds to the system time-of-day clock representing the
current time in seconds and nanoseconds since January 1, 1970. This timer is ascending in nature and
is updated by the system at the frequency of the 64 Hz system clock.

tp is a pointer to a timestruc structure where the timer value is taken from.

EXAMPLE

#

program settimer

include <sysf/time.i>
integer*4 settimer, timer_type
record /timestruc/ tp
integer*4 iretval, gettimer

¢ Get current time

iretval = gettimer (TIMEOFDAY, tp)
if (iretval .It. 0) write (*,*) *gettimer error?’, iretval

¢ Modify for new time (bump by one hour)

tp.tv_sec = tp.tv_sec + 3600

iretval = settimer (TIMEOFDAY, tp)

if (iretval .It. 0) write (*,*) ’settimer error:’, iretval
end

ERROR CODES
If successful, settimer returns a value of 0. Otherwise, a negative value indicating the error is returned.

[EFAULT] tp points outside the allocated address space of the process.
[EINVAL] The timer_type argument does not specify a valid system-wide realtime timer type.
[EIO] A device error occurred while accessing the system-wide realtime timer.
[EPERM] The effective user ID does not have realtime privileges.

SEE ALSO

gettimer(2F), restimer(2F), timestruc(4).

SETUID(2F) SETUID (2F)

setuid, setgid - set user and group IDs

SYNOPSIS

integer®4 setuid, vid
iretval = setuid (uid)

integer*4 setgid, gid
iretval = setgid (gid)

DESCRIPTION

setuid (setgid) is used to set the real user (group) ID and effective user (group) ID of the calling pro-
cess.

If the effective user ID of the calling process is super-user, the real user (group) ID and effective user
(group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real user (group) ID is equal to
uid (gid), the effective user (group) ID is set to uid (gid).

If the effective user ID of the calling process is not super-user, but the saved set-user (group) ID from
exec(2F) is equal to uid (gid), the effective user (group) ID is set to uid (gid).

setuid (setgid) will fail if the real user (group) ID of the calling process is not equal to uid (gid) and its
effective user ID is not super-user. [EPERM]

The uid is out of range. [EINVAL]

EXAMPLE

program setuid

integer*4 setuid, uid, setgid, gid
integer*4 getuid, getgid
integer*4 irctval.

¢ Get current user and group ids

uid = getuid ()

gid = getgid ()
¢ Modify and update

uid = uid + 1

gid=gd+1

iretval = setuid (uid)

if (iretval .It. 0) write (*,*) 'setuid error?’, iretval
iretval = setgid (gid)

if (iretval .It. 0) write (*,*) *setgid error?’, iretval
end

SEE ALSO

getuid(2F), intro(2F).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

SHMCTL(2F)

NAME

SHMCTL(2F)

shmctl - shared memory control operations

SYNOPSIS

include <sysf/typesi>

include <sysf/ipc.i>

include <sysf/shm.i>
integer*4 shmctl, shmid, cmd
record /shmid_ds/ buf

iretval =
DESCRIPTION

shmctl (shmid, cmd, buf)

shmctl provides a variety of shared memory control operations as specified by cmd. The following
cmds are available:

IPC_STAT

IPC_SET

IPC_RMID

SHM_LOCK

SHM_UNLOCK

Place the current value of each member of the data structure associated with shmid
into the structure pointed to by buf. The contents of this structure are defined in
intro(2F). {READ}

Set the value of the following members of the data structure associated with shmid to
the corresponding value found in the structure pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode lonly low 9 bits

This crmd can only be executed by a process that has an effective user ID equal to that
of superuser, or to the value of shm_perm.cuid or shm_perm.uid in the data struc-
ture associated with shmid.

Remove the shared memory identifier specified by shmid from the system and des-
troy the shared memory segment and data structure associated with it. This cmd can
only be executed by a process that has an effective user ID equal to that of superuser,
or to the value of shm_perm.cuid or shm_perm.uid in the data structure associated
with shmid.

Lock the shared memory segment specified by shmid in memory. This cmd can only
be executed by a process that has realtime privileges, or has an effective user ID
equal to superuser.

Unlock the shared memory segment specified by shmid. This cmd can only be exe-
cuted by a process that has realtime privileges, or has an effective user ID equal to
superuser.

shmctl will fail if one or more of the following are true:

[EINVAL} shmid is not a valid shared memory identifier.

[EINVAL] cmd is not a valid command.

[EACCES] c¢md is equal to IPC_STAT and {READ} operation permission is denied to the calling pro-
cess [see intro (2F)].

[EPERM] cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling process is
not equal to that of superuser, or to the value of shm_perm.cuid or shm_perm.uid in the
data structure associated with shmid.

[EPERM] cmd is equal to SHM_LOCK or SHM_UNLOCK and the effective user ID of the calling
process is not equal to that of superuser, or the calling process does not have realtime
privileges.

SHMCTL(2F) SHMCTL(2F)

[EFAULT] buf points to an illegal address.
[ENOMEM] cmd is equal to SHM_LOCK and there is not enough memory.
EXAMPLE

. program shmetl
¢ See "shmop(2F)" to see how to link edit this program

include <sysf/types.i>

include <sysf/ipc.i>

include <sysf/shm.i>

integer*4 shmctl, shmid, cmd
record /shmid_ds/ buf

integer*4 shmget, key, size, shimflg
integer*4 iretval, varcl, varc2
integer*4 cmnaddr, cmnsize

* %%

¢ Define common

external cmnsize ! size of common
common /c1/ varcl
common /c2/ varc2

¢ Get shared memory segment

key = 1234 ! Some agreed upon value
size = %loc (cmnsize)
shmflg = *7770 .or. IPC_CREAT

' shmid = shmget (key, size, shmflg)
if (shmid .1t. 0) write (*,*) ’shmget error:’, shmid

¢ Remove shared memory segment

cmd = IPC_RMID
iretval = shmctl (shmid, cmd, buf)
if (iretval .It. 0) write (*,*) shmctl error?’, iretval
| end
| NOTES
The user must explicitly remove shared memory segments after the last reference to them has been
removed.
SEE ALSO
resident(2F), shmget(2F), shmop(2F).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error is
returned.

SHMGET(2F) SHMGET (2F)

NAME
shmget - get shared memory segment identifier
SYNOPSIS
include <sysf/types.i>
include <sysf/ipc.i>
include <sysf/shm.i>
integer*4 shmget, key, size, shmflg ,physadr
iretval = shmget (key, size, shmflg [,physadr])
DESCRIPTION
shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of at least size
bytes [see intro (2F)] are created for key if one of the following are true:

key is equal to IPC_PRIVATE.
key does not already have a shared memory identifier associated with it, and (shmflg &
IPC_CREAT) is “true”.
Upon creation, the data structure associated with the new shared memory identifier is initialized as fol-
lows:

shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid arec set equal to the
effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are set equal to the low-order 9 bits of shmflg.
shm_segsz is set equal to the value of size.

shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to 0.

shm_ctime is set equal to the current time.

If (shmflg & IPC_PHYS) is "true," then shmget retrieves the physadr argument and creates a shared
memory segment starting at that physical memory address. This physical memory must not be within
the kernel’s free memory pool. When created, a physical shared memory segment does not remove the
associated memory from the system free memory pool. Upon removal, the memory is not returned to
the system free memory pool. IPC_PHYS may only be set by a process that has realtime privileges, or
has an effective user ID equal to superuser.

For physical shared memory, if (shinflg & IPC_NOCLEAR) is "true," then the shared memory segment is
not cleared on the first attach.

For physical shared memory, if (shmflg & IPC_CI) is "true,” then the hardware cache, if any, is inhibited
on this shared memory segment.

SHMGET (2F)

SHMGET(2F)

shmget will fail if one or more of the following are true:

[EINVAL] size is less than the system-imposed minimum or greater than the system-imposed max-
imum.
[EACCES] A shared memory identifier exists for key but operation permission [see intro(2F)] as
specified by the low-order 9 bits of shmflg would not be granted.
[EINVAL] A shared memory identifier exists for key but the size of the segment associated with it is
less than size and size is not equal to zero.
[ENOENT] A shared memory identifier does not exist for key and (shmflg & IPC_CREAT) is “false”.
[ENOSPC] A shared memory identifier is to be created but the system-imposed limit on the max-
imum number of allowed shared memory identifiers system wide would be exceeded.
[ENOMEM] A shared memory identifier and associated shared memory segment are to be created
but the amount of available memory is not sufficient to fill the request.
[EEXIST] A shared memary identifier exists for key but ((shmflg & IPC_CREAT) and (shmfig&
IPC_EXCL)) is “true”.
[EPERM] A physical shared memory identifier is to be created but the calling process does not
have realtime privileges, or the effective user ID of the calling process is not superuser.
EXAMPLE
See shmop(2F) for an example.
NOTES
The user must explicitly remove shared memory segments after the last reference to them has been
removed.
SEE ALSO

intro(2F), shmctl(2F), shmop(2F).

DIAGNOSTICS

Upon successful completion, a non-negative integer, namely a shared memory identifier is returned.
Otherwise, a negative value indicating the error is returned.

SHMOP(2F) SHMOP (2F)

NAME
shmop: shmat, shmdt - shared memory operations

SYNOPSIS
include <sysf/types.i>
include <sysf/ipc.i>
include <sysf/shm.i>
integer*4 shmat, shmid, shmaddr, shmflg
iretval = shmat (shmid, shmaddr, shmflg)

integer*4 shmdt, shmaddr
iretval = shmdt (shmaddr)

DESCRIPTION
shmat attaches the shared memory segment associated with the shared memory identifier specified by
shmid to the data segment of the calling process. The segment is attached at the address specified by
one of the following criteria:

If shmadadr is equal to zero, the segment is attached at the first available address as selected by
the system.

If shrmaddr is not equal to zero and (shmflg & SHM_RND) is “truc”, the segment is attached at
the address given by (shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM_RND) is “false”, the segment is attached at
the address given by shmaddr.

shmdt detaches from the calling process’s data segment the shared memory segment located at the
address specified by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is “true” {READ]}, otherwise it is
attached for reading and writing {READ/WRITE}.

shmat will fail and not attach the shared memory segment if one or more of the following are true:
[EINVAL] shmid is not a valid shared memory identifier.

[EACCES] Operation permission is denied to the calling process [see intro (2F)].

[ENOMEM] The available data space is not large enough to accommodate the shared memory seg-

ment.

[EINVAL) shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr modulus SHMLBA))
is an illegal address.

[EINVAL] shmaddr is not equal to zero, (shmflg & SHM_RND) is “false”, and the value of shmaddr
is an illegal address.

[EMFILE] The number of shared memory segments attached to the calling process would exceed
the system-imposed limit.

shmdt will fail and not detach the shared memory segment if:
[EINVAL] shmaddr is not the data segment start address of a shared memory segment.
{EBUSY] The shared memory segment is still in use for asynchronous I/0O or connected interrupts.

SHMOP(2F) SHMOP(2F)

EXAMPLE

00000

* % *

c

program shmop

This program is an example of making a region of memory
GLOBAL to more than one process. Each process must be
link edited with the common region and contain statements
to get and attach the region. Following the end statement
of this program are steps to link edit and necessary files.

include <sysf/types.i>

include <sysf/ipc.i>

include <sysf/shm.i>

integer*4 shmget, key, size, shmflg, physadr
integer*4 shmat, shmid

integer*4 iretval, varcl, varc2, suspend
integer*4 cmnaddr, cmnsize

Define global common

external cmnaddr ! address of common
external cmnsize ! size of common
common /c1/ varcl

common /c2/ varc2

¢ Get shared memory segment

key = 1234 ! Some agreed upon value

size = %loc (cmnsize)

shmflg = 7770 .or. IPC_CREAT

shmid = shmget (key, size, shmflg)

if (shmid .It. 0) write (*,*) shmget error?’, shmid

¢ Attach the common regions

iretval = shmat (shmid, cmnaddr, shmflg)
if (iretval .It. 0) write (*,*) ’shmat error?’, iretval

¢ Print values of common variables and increment for next invocation

write (*,9000) *varcl:’, varcl, *varc2:’, varc2
varcl = varcl + §
varc2 = varc2 + 10

9000 format (*’, a6, 2x, i6, 2x, a6, 2x, i6)

end

------ common.f ----------

block data common
integer*4 varcl, varc2
common /cl/ varcl
common /c2/ varc2
end

SHMOP(2F) SHMOP (2F)

/* Save the following as "ld.cmd" */

SECTIONS
{
common 0x400000 (NOLOAD) :
cmnaddr_ = ,;
common.o [COMMON]
cmnsize_ = . - cmnaddr_;
}
text ALIGN (0x400000) :
{
*(.init)
*(text)
}
GROUP ALIGN (0x400000) :
.data: {}
bss : {}
}
}
/* End of "Id" command file */
---------- Steps to link edit ----------
gf77 -c common.f

gf77 -c shmop.F -Ifs -1/usr/include /gls
1d 1d.cmd /lib/crt0.0 common.o shmop.o -0 shmop -L/usr/lib/gls -If -Ifs -1m -lc

end

NOTES
The user must explicitly remove shared memory segments after the last reference to them has been
removed.

SEE ALSO
aread(2F), exec(2F), exit(2F), fork(2F), intro(2F), shmctl(2F), shmget(2F), cintrio(7).

DIAGNOSTICS
Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the attached shared memory segment.
shmdt returns a value of 0.

Otherwise, a negative value indicating the error is returned.

SIGACTION(2F) SIGACTION(2F)

NAME

sigaction - examine or change signal action.

SYNOPSIS

#include <sysf/signal.i>

integer*4 sigaction,sig
record/sigaction/act,oact
iretval = sigaction(sigact,oact)

DESCRIPTION

‘The system defines a set of signals that may be delivered to a process. Signal delivery resembles the

occurrence of a hardware interrrupt: the signal is blocked from further occurrence, the current pro-
cess context is saved, and a new one is built. A process may specify a handler to which a signal is
delivered, or specify that a signal is to be blocked or ignored. A process may also specify that a default
action is to be taken by the system when a signal occurs. Normally, signal handlers execute on the
current stack of the process.

All signals have the same priority. Signal routines invoked by sigaction(2) execute with the signal that
caused their invocation blocked, but other signals may yet occur. A global "signal mask” defines the set
of signals currently blocked from delivery to a process. The signal mask for a process is initialized
from that of its parent (normally 0). It may be changed with a sigprocmask(2) call, a sigsuspend(2) call,
or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for the pro-
cess. If the signal is not currently blocked or ignored by the process then it is delivered to the process.
When a signal is calculated (as described below), the signal handler is invoked. The call to the handler
is arranged so that if the signal handling routine returns normally the process will resume execution in
the context from before the signal’s delivery. If the process wishes to tesume in a different context,
then it must arrange to restore the previous context itself (see segjump(3C) of sigretjump(3C)).

sigaction allows the calling process to examine or specify the action to be taken on delivery of a signal.
sig specifies the signal number. The sigaction structure is defined in <signal.i>:

STRUCTURE/ sigaction/
INTEGER*4 SA_ HANDLER
RECORD /sigset_t/SA_MASK
INTEGER*4 SA_FLAGS

END STRUCTURE

If act is not NULL, it points to a structure specifying the action to be taken when the signal is
delivered. If oact is not NULL, the action previously associated with the signal is stored in the location
pointed to by oact. If act is NULL, signal handling is unchanged; thus if act is NULL, sigaction can be
used to inquire about the current handling of a given signal.

The sa_flags field of act can be used to modify the delivery of a specific signal. If sig is SGHCHILP
and the SA_CLDSTOP bit is sct in sa_flags, SIGCHILP will be generated if a child process stops.

When a signal is caught by a signal-catching function, a new signal mask is calculated and installed for
the duration of the signal-catching function or until sigprocmask or sigsuspend is called. This mask is
formed by taking the union of the current signal mask and the set associated with the action for the sig-
nal being delivered (i.e., sa_mask), then including the signal being delivered. If and when the user's
signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is explicitly
requested by another call to sigaction or until one of the exec functions is called.

SIGKILL and SIGSTOP cannot be caught or ignored. SIGCONT cannot be ignored. The set of sig-
nals specified in sa_mask is not allowed to block these signals. This is silently enforced.

SIGACTION(2F) SIGACTION(2F)

If sigaction fails, no new signal handler is installed.
The following signal names are listed in the include file <sysf/signal.i> :

SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3+ quit

SIGILL 4* illegal instruction

SIGTRAP 5* trace trap

SIGIOT 6* IOT instruction

SIGABRT

SIGEMT 7 EMT instruction

SIGFPE 8* floating point exception

SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error

SIGSEGV 11+ segmention violation

SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it

SIGALRM 14 alarm clock
SIGTERM 15 software termination signal

SIGUSR1 16 user defined signal 1

SIGUSR2 17 user defined signal 2

SIGCHILD 18@ child status has changed

SIGPWR 19 power-fail restart

SIGWINCH 20@ window size change

SIGPOLL 22 pollable event occurred

SIGSTOP 23+ stop(cannot be caught, blocked, or ignored)
SIGTSTP 24+ stop signal generated from keyboard .
SIGCONT 25@ continue after stop (cannot be blocked)

SIGTTIN 26+ background read attempted from control terminal
SIGTTOU 27+ background write attempted to control terminal
SIGURG 33@ urgent condition present on socket

SIGVTALRM 37 virtual time alarm (see setitimer(2))
SIGPROF 38 profiling timer alarm (see setitimer(2))

The starred signals (*) in the list above cause a core image if not caught or ignored.

The default action for a signal may be reinstated by setting sv_handler to SIG_DFL; this default is ter-
mination (with a core image for starred signals) except for signals marked with @ or +. Signals
marked with a @ sign are discarded if the action is SIG_DFL; signals marked with a plus sign (+)
cause the process to stop. If sv_handler is SIG_IGN, the signal is subsequently ignored, and pending
instances of the signal are discarded.

After a fork(2), the child inherits all signals, the signal mask, and the signal stack.
exec(2) resets all caught signals to default action. Ignored signals remain ignored; the signal mask
remains the same.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise a value of -1 is returned and ermo
is set to indicate the error.

ERRORS
If any of the following conditions occur, sigaction will return -1 and set ermo to the corresponding .
value:

[EINVAL] The value of sig is not a valid signal number, or an attempt was made to supply an action
for a signal that canot be caught or ignored.

SIGACTION(2F) SIGACTION(2ZF)

[EFAULT] act anil/or oact is an invilid address.
SEB ‘ALSO
exec(2)dll2)siguotops(2)sigprocmask(2) sigmspoad(@ysigvec(2)

o
-Currently on 88k machine only.

SIGNAL(2F)

NAME

signal - specify what to do upon receipt of a signal

SYNOPSIS

include <sysf/signal.i>
integer*4 signal, sig, func
external func

iretval

DESCRIPTION

signal allows the calling process to choose one of three ways in which it is possible to handle the receipt
of a specific signal. sig specifies the signal and func specifies the choice.

= signal (sig, func)

sig can be assigned any one of the following except SIGKILL:

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGCLD
SIGPWR
SIGPOLL

func is assigned ome of three values: SIG_DFL, SIG_IGN, or a function address. SIG DFL, and
SIG_IGN, are defined in the include file signali. Each has a unique value that matches no declarable

function.

01 hangup
02 interrupt
o3l quit
o4l illegal instruction (not reset when caught)
o5t trace trap (not reset when caught)
o6l 10T instruction
o711 EMT instruction
osl] floating point exception
kill (cannot be caught or ignored)
10l bus error
11l segmentation violation
1201 bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination signal
16 user-defined signal 1
17 user-defined signal 2F
18121 death of a child
1981 power fail
2283 selectable event pending

The actions prescribed by the values of func are as follows:

SIG_DFL - terminate process upon receipt of a signal

Upon receipt of the signal sig, the receiving process is to be terminated with all of the

consequences outlined in exit (2F). See NOTE [1] below.

SIG_IGN - ignore signal

The signal sig is to be ignored.
Note: the signal SIGKILL cannot be ignored.

SIGNAL(2F)

SIGNAL(2F) SIGNAL(2F)

function address - catch signal
Upon receipt of the signal sig, the receiving process is to execute the signal-catching func-
tion pointed to by func. The signal number sig will be passed as the only argument to the
signal-catching function. Additional arguments are passed to the signal-catching function
for hardware-generated signals. Before entering the signal-catching function, the value of
func for the caught signal will be set to SIG_DFL unless the signal is SIGILL, SIGTRAP, or
SIGPWR.
Upon return from the signal-catching function, the receiving process will resume execution
at the point it was interrupted.
When a signal that is to be caught occurs during a read (2F), a write(2F), an open (2F), or
an joctl(2F) system call on a slow device (like a terminal; but not a file), during a
pause (2F) system call, or during a wait (2F) system call that does not return immediately
due to the existence of a previously stopped or zombie process, the signal catching function
will be executed and then the interrupted system call may return to the calling process with
EINTR.
signal will not catch an invalid function argument, func, and results-are undefined when an
attempt is made to execute the function at the bad address.

Note: The signal SIGKILL cannot be caught.
A call to signal cancels a pending signal sig except for a pending SIGKILL signal.
signal will fail if sig is an illegal signal numbser, including SIGKILL. [EINVAL]

SIGNAL(2F) SIGNAL(2F)

EXAMPLE
program signal
include <sysf/errno.i>
include <sysf/signal.i>

integer*4 signal, sig, sighan, alarm, pause, iretval
integer*4 prevwtd, remtime

integer*4 sig_caught

common /signal_c/ sig_caught

external sighan

¢ Set to terminate on quit signal, setup alarm signal handler

prevwtd = signal (SIGALRM, sighan)
if (prevwtd .1t. 0) stop ’sigalrm’

prevwtd = signal (SIGQUIT, SIG_DFL)
if (prevwtd .1t. 0) stop ’sigquit’

¢ Cause alarm to occur in 5 seconds

remtime = alarm (5)
if (remtime .lIt. 0) stop *alarm error’

¢ Pause until some signal occurs.

c If the signal that occurs is due to an alarm, print

c the signal caught (otherwise, do not expect to return
¢ from pause).

iretval = pause ()
write (*,*) ’signal caught?’, sig_caught
end

subroutine sighan (signo)
integer*4 signo, sig_caught
common /signal_c/ sig_caught

¢ Place the signal which got us here into common
sig_caught = %loc (signo)

return
end

SIGNAL(2F) SIGNAL(2F)

NOTES
[1] If SIG_DFL is assigned for these signals, in addition to the process being terminated, a “core
image” will be constructed in the current working directory of the process, if the following condi-
tions are met:
The effective user ID and the real user ID of the receiving process are equal.

An ordinary file named core exists and is writable or can be created. If the file must be
created, it will have the following properties:

a mode of 0666’0 modified by the file creation mask [see umask(2F)]

a file owner ID that is the same as the effective user ID of the receiving pro-
cess.

a file group ID that is the same as the effective group ID of the receiving pro-
cess

[2] For the signals SIGCLD and SIGPWR, func is assigned one of three values: SIG_DFL, SIG_IGN, or
a function address. The actions prescribed by these values are:
SIG_DFL - ignore signal
The signal is to be ignored.
SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling process’s child processes
will not create zombie processes when they terminate [see exit(2F)].

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that described above for
func equal to function address. The same is true if the signal is SIGCLD with one
exception: while the process is executing the signal-catching function, any received
SIGCLD signals will be ignored. (This is the default action.)

In addition, SIGCLD affects the wait, and exit system calls as follows: -

wait If the func value of SIGCLD is set to SIG_IGN and a waif is executed, the wait will
block until all of the calling process’s child processes terminate; it will then return a
value iretval set to ECHILD.

exit If in the exiting process’s parent process the func value of SIGCLD is set to SIG_IGN,
the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the parent of the
proceeding processes. A process that may be piped into in this manner (and thus become the
parent of other processes) should take care not to set SIGCLD to be caught.

[3]1 SIGPOLL is issued when a file descriptor corresponding to a STREAMS [see intro(2F)] file has a
"selectable’ event pending. A process must specifically request that this signal be sent using the
I_SETSIG ioctl call. Otherwise, the process will never receive SIGPOLL.
SEE ALSO
kill(1), intro(2F), kill(2F), pause(2F), ptrace(2F), wait(2F), setjmp(3C), sigset(2F).
DIAGNOSTICS
Upon successful completion, signal returns the previous value of func for the specified signal sig. Oth-
erwise, a value of SIG_ERR indicating the error is returned. SIG_ERR is defined in the include fite
signal.i.

SIGPENDING (2F) SIGPENDING (2F)

NAME
sigpending - examine pending signals
SYNOPSIS
#include <signalh>
integer*4 sigpending
record/sigset_t/set
iretval = sigpending(set)
DESCRIPTION
sigpending stores the set of signals that are blocked from delivery and pending for the calling process at
the location pointed to by set.
RETURN VALUE
Upon successful completion, zero is returned. Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

ERRORS
If the following condition occurs, sigpending will return -1 and set ermo to the corresponding value:

[EFAULT] set points to an invalid address.

SEE ALSO
sigsetops(2),sigprocmask(2)

NOTES
Currently on 88k machine only.

SIGPROCMASK(2F) SIGPROCMASK (2F)

NAME
sigprocmask - examine and change blocked signals
SYNOPSIS
#include <signalh>
integer®4
record/sigset_t/set,0set
iretval = sigprocmask(how,set,oset)
DESCRIPTION
sigprocmask allows the calling process to examine or change its signal mask. I the value of set is not
NULL, it points to a set of signals to be used to change the currently blocked set.

The value of how indicated the mranner in which the set is changed. The permitted values for how are:

SIG_BLOCK
The resulting set will be the union of the current set and the signal set pointed to by set

SIG_UNBLOCK
The resulting set will be the intersection of the current set and the complement of the signal
set pointed to by set.
SIG_SETMASK
The resnlting set will be the signal set pointed to by set.
If oset is not NULL, the previous mask is stored at the location pointed to by set. If the value of set is
NULL, the value of how is ignored and the process’s signal mask is unchanged. When set is NULL,
sigprocmask can be used to enquire about currently blocked signals.

If there are any pending unblocked. signals after the call to sigprocmask, at least one of those signals
will be delivered before sigprocmask returns.

SiG_KH.L and SIG_SIGSTOP camnot be caught or ignered. SIGCONT cannat be ignored. It is not
possible to block these signals. This is silently enforced.
RETURN VALUE

Upon successful completion, zero is returned. Otherwise, -1 is returned and ermo is set to indicate the
error. If oset contains a valid address, its contents will contain the previous signal mask.

ERRORS
If the following condition occurs, sigprocmask will return -1 and set ermo to the corresponding value.
[EINVAL] The value of how is invalid.
[EFAULT] Set or oset point to an invalid address.
SEE ALSO
sigaction(1), sigpending(2), sigsetops(3P), sigsuspend(2)
NOTES
Currently on 88k machine only.

SIGSET(2F)

NAME

SIGSET(2F)

sigset, sighold, sigrelse, sigignore, sigpause - signal management

SYNOPSIS

include <sysf/signal.i>
integer*4 sigset, sig, func

external func

iretval = sigset (sig, func)

integer*4 sighold, sig
iretval = sighold (sig)

integer*4 sigrelse, sig
iretval = sigrelse (sig)

integer*4 sigignore, sig
iretval = sigignore (sig)

integer*4 sigpause, sig
iretval = sigpause (sig)

DESCRIPTION

These functions provide signal management for application processes. sigset specifies the system signal
action to be taken upon receipt of signal sig. This action is either calling a process signal-catching
handler func or performing a system-defined action.

sig can be assigned any one of the following values except SIGKILL. Machine or implementation
dependent signals are not included (see NOTES below).

SIGHUP
SIGINT
SIGQUIT*
SIGILL*
SIGTRAP*
SIGABRT*
SIGFPE*
SIGKILL
SIGSYS*
SIGPIPE
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGCLD
SIGPWR
SIGPOLL

hangup

interrupt

quit

illegal instruction (not held when caught)
trace trap (not held when caught)

abort

floating point exception

kill (can not be caught or ignored)

bad argument to system call

write on a pipe with no one to read it
alarm clock

software termination signal

user-defined signal 1

user-defined signal 2

death of a child (see WARNING below)
power fail (see WARNING below)
selectable event pending (see NOTES below)

See below under SIG_DFL regarding asterisks (*) in the above list.

The following values for the system-defined actions of func are also defined in <signali>. Each has a
unique value that matches no declarable function.

SIG_DFL - default system action
Upon receipt of the signal sig, the receiving process is to be terminated with all of the
consequences outlined in exit(2F). In addition a “core image” will be made in the current
working directory of the receiving process if sig is one for which an asterisk appears in the
above list and the following conditions are met:

SIGSET(2F) SIGSET(2F)

The effective user ID and the real user ID of the receiving process are equal.

An ordinary file named core exists and is writable or can be created. If the file
must be created, it will have the following properties:

a mode of 0666’0 modified by the file creation mask [see umask(2F)]

a file owner ID that is the same as the effective user ID of the receiving
process. .

a file group ID that is the same as the effective group ID of the receiving
process

SIG_IGN - ignore signal
Any pending signal sig is discarded and the system signal action is set to ignore future
occurrences of this signal type.

SIG_HOLD - hold signal
The signal sig is to be held upon receipt. Any pending signal of this type remains held. Only
one signal of each type is held.

Otherwise, func must be a pointer to a function, the signal-catching handler, that is to be called when
signal sig occurs. In this case, sigset specifies that the process will call this function upon receipt of sig-
nal sig. Any pending signal of this type is released. This handler address is retained across calls to the
other signal management functions listed here.

When a signal occurs, the signal number sig will be passed as the only argument to the signal-catching
handler. Before calling the signal-catching handler, the system signal action will be set to SIG_HOLD .
During normal retura from the signal-catching handler, the system signal action is restored to func and
any held signal of this type released. If a non-local goto (longimp) is taken, then sigrelse must be called
to restore the system signal action and release any held signal of this type.

In general, upos return from the signal-catching handler, the receiving process will resume execution at
the point it was interrupted. However, when a signal is caught during a read(2F), a write(2F), an
open (2F), or an ioct! (2F) system call during a sigpause system call, or during a wait(2F) system call
that does not return immediately due to the existence of a previously stopped or zombie process, the
signal-catching handler will be executed and then the interrupted system call may return with irefval set
to EINTR.

sighold and sigrelse are used to establish critical regions of code. sighold is analogous to raising the
priority level and deferring or holding a signal until the priority is lowered by sigrelse. sigrelse restores
the system signal action to that specified previously by sigset.

sigignore sets the action for signal sig to SIG_IGN (see above).

sigpause suspends the calling process until it receives a signal, the same as pause(2F). However, if the
signal sig had been received and held, it is released and the system signal action taken. This system call
is useful for testing variables that are changed on the occurrence of a signal. The correct usage is to
use sighold to block the signal first, then test the variables. If they have not changed, then call sigpause
to wait for the signal. sigser will fail if one or more of the following are true:

[EINVAL] sig is an illegal signal number (including SIGKILL) or the default handling of sig can-
not be changed.
[EINTR} A signal was caught during the system call sigpause.

SIGSET(2F) SIGSET (2F)

EXAMPLE
program sigset
include <sysf/errno.i>
include <sysf/signal.i>

integer*4 sigset, sig, sighan, alarm, iretval
integer*4 sighold, sigpause, i, j

integer*4 prevwtd, remtime

integer*4 sig_caught

common /signal _c/ sig_caught

external sighan

¢ Set to terminate on quit signal, setup alarm signal handler

prevwtd = sigset (SIGALRM, sighan)
if (prevwtd .1t. 0) stop ’sigalrm’

prevwid = sigset (SIGQUIT, SIG_DFL)
if (prevwtd .It. 0) stop ’sigquit’

¢ Cause alarm to occur in 5 seconds

sig_caught = -1
remtime = alarm (5)
if (remtime .It. 0) stop ’alarm error’

¢ Prevent signal from occurring just yet, delay (hopefully > 5 secs)

iretval = sighold (SIGALRM)
if (iretval .It. 0) write (*,*) ’sighold error?’, iretval

do 1001 = 1, 2000

do 100j = 1,2000

if (sig_caught .ge. 0) write (*,*) sighold not working’
100 continue

¢ Allow alarm signal to occur and pause until some signal occurs.
¢ If the signal that occurs is due to an alarm, print
¢ the signal caught (otherwise, do not expect to return).

iretval = sigpause (SIGALRM)
write (*,*) ’signal caught?’, sig_caught

end

subroutine sighan (signo)
integer™4 signo, sig_caught
common /signal_c/ sig_caught

¢ Place the signal which got us here into common
sig_caught = %loc (signo)

return
end

SIGSET(2F) SIGSET (2F)

SIGPOLL is issued when a file descriptor corresponding to a STREAMS {sce intro(2F)] file has a "select-
able” event pending. A process must specifically request that this signal be sent using the I SETSIG
ioctl(2F) call [see streamio(7)). Otherwise, the process will never receive SIGPOLL.

For portability, applications should use only the symbolic names of signals rather than their values and
use only the set of signals defined here. The aetion for the signal SIGKILL can not be changed from
the default system action.

Specific implementations may have other implementation-defined signals. Also, additional
implementation-defined arguments may be passed to the signal-catching handler for hardware-
generated signals. For certain hardware-generated signals, it may not be possible to resume execution
at the point of interruption.

The signal type SIGSEGYV is reserved for the condition that occurs on an invalid access to a data object.
If an implementation can detect this condition, this signal type should be used.

The other signal management functions, signal(2F) and pause (2F), should not be used in conjunction
with these routines for a particular signal type.

SEE ALSO

Lill(2F), pause(2F), signal(2F), wait(2F), setjmp(3C).

DIAGNOSTICS

returns the previous value of the system signal action for the specified signal sig. Otherwise, a value of
SIG_ERR is returned. SIG_ERR is defined in <signal.i>.

For the other functions, upon successful completion, a value of 0 is returned. Otherwise, a negative
value indicating the error is returned.

WARNING

Two signals that behave differently than the signals described above exist in this release of the system:

SIGCLD death of a child (reset when caught)
SIGPWR power fail (not reset when caught)

For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN, or a function address. The
actions prescribed by these values are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling process’s child processes will
not create zombie processes when they terminate [see exit (2F)].

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that described above for func
equal to function address. The same is true if the signal is SIGCLD with one exception:
while the process is executing the signal-catching function, any received SIGCLD signals will
be ignored. (This is the default action.)

The SIGCLD affects two other system calls [wait (2F), and exit(2F)] in the following ways:

wait If the func value of SIGCLD is set to SIG_IGN and a wait is executed, the wait will block
until all of the calling process’s child processes terminate; it will then return a value of iret-
val that is set to ECHILD.

exit If in the exiting process’s parent process the func value of SIGCLD is set to SIG_IGN , the
exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the parent of the
procecding processes. A process that may be piped into in this manner (and thus become the parent
of other processes) should take care not to set SIGCLD to be caught.

SIGSETOPS(2F) SIGSETOPS (2F)

NAME

sigaddset, sigdelset, sigismember, sigfillset - manipulate signal sets
SYNOPSIS

#include <signalh>

integer*4 sigaddset,signo

record/sigset_t/set

iretval = sigaddset(set,signo)

record/sigset_t/set

integer*4 sigdelset,signo

record/sigset_t/set

iretval = sigdelset(signo)

record/sigset_t/set

integer*4 sigismember

record/sigset_t/set

iretval = sigismember(set)

integer*d sigsfillset

iretval = sigfillset(set)
DESCRIPTION

sigaddset adds the signal specified by signo to the set pointed to by set.

sigdelset deletes the signal specified by signo from the set pointed to by set.
This system defines the following signals:

SIGABRT SIGTERM SIGIOT
SIGALRM SIGUSR1 SIGEMT

SIGFPE SIGUSR2 SIGBUS
SIGHUP SIGCHILD SIGSYS
SIGILL SIGCONT SIGPWR
SIGINT SIGSTOP SIGPOLL
SIGKILL SIGTSTP SIGURG
SIGPIPE SIGTTIN SIGWINCH
SIGQUIT SIGTTOU SIGVTALRM
SIGEGV SIGTRAP SIGPROF

sigfillset initializes the signal set pointed to by sef such that all signals listed above are included.

sigfillset tests whether the signal specified by signo is a member of the set pointed to by set. Applica-
tions should call sigemptyset(3P) or sigfillset(3P) for each object of type sigset_t(3P) before any other
use of the object.

RETURN VALUE
Upon successful completion sigismember returns 1 if the specified signal is a member of the specified
set and zero if it is not. Upon successful completion, each of the other functions returns zero. For all
the above functions, if an error is detected, the function will return -1 and set errno to indicate the

error.
ERRORS
If the following condition occurs, the function shall return -1 and set ermo to the corresponding value.
[EINVAL] The value of signo is not a valid signal number.
SEE ALSO
sigaction(1), sigpending(2), sigprocmask(3P), sigsuspend(2),sigvec(2)
NOTES
Currently on 88k machine only.

SLEEP(2F) SLEEP (2F)

NAME

sleep - suspend execution for interval

SYNOPSIS

integer®4 sleep,seconds
iretval= sleep(seconds)

DESCRIPTION

The current process is suspended from execution for the number of seconds specified by the argument.
The actual suspension time may be less than that requested for two reasons: (1) Because scheduled
wakeups occur at fixed 1-second intervals, (on the second, according to an internal clock) and (2)
because any caught signal will terminate the sleep following execution of that signal’s catching routine.
Note that catching signals while within a sleep call is not recommended, see the warning below. The
suspension time may also be longer than requested by an arbitrary amount due to the scheduling of
other activity in the system. The value returned by sleep will be the “unslept” amount (the requested
time minus the time actually slept) in case the caller had an alarm set to go off earlier than the end of
the requested sleep time, or premature arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some other signal)
occurs. The previous state of the alarm signal is saved and restored. The calling program may have set
up an alarm signal before calling sleep. If the sleep time exceeds the time till such alarm signal, the
process sleeps only until the alarm signal would have occurred. The caller’s alarm catch routine is exe-
cuted just before the sleep routine returns. But if the sleep time is less than the time till such alarm,
the prior alarm time is reset to go off at the same time it would have without the intervening sleep.

SEE ALSO

alarm(2F), pause(2F), signal(2F), sighold(2F), sigrelse(2F), sigset(2F).

WARNING

Before calling the sleep any signals which might be caught during the sleep should be held via sig-
hold(2). After the sleep the sigrelse(2) system call should be used to restore the previous signal han-
dling. These actions are necessary because there is no guarantee that a signal handler which catches a
signal during the sleep will complete before the sleep timeout expires. On expiration of the timeout,
any signal handling still in progress is aborted and the system may be left in a state such that any
further signals of that type will not be caught. The exception to this rule is SIGALRM, as sleep uses this
internally and will automatically save and restore any SIGALRM handler.

SOCKET(2F) SOCKET (2F)

NAME

socket - create an endpoint for communication

SYNOPSIS

#include <sysf/typesd>
#include <sysf/socket.i>

integer*4 s, socket, af, type, protocol
s = socket(af, type, protocol)

DESCRIPTION

socket creates an endpoint for communication and returns a descriptor.

The af parameter specifies an address family in which addresses specified in later operations using the
socket should be interpreted. These families are defined in the include file <sysf/socket.i>. The
currently understood family is

AF INET (ARPA Internet protocols),

The socket has the indicated fype, which specifies the semantics of communication, Currently defined
types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams. An
out-of-band data transmission mechanism may be supported. A SOCK_DGRAM socket supports
datagrams (connectionless, unreliable messages of a fixed (typically small) maximum length).
SOCK_RAW sockets provide access to internal network protocols and interfaces.

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol
exists to support a particular socket type within a given address family. However, it is possible that
many protocols may exist, in which case a particular protocol must be specified in this manner. The
protocol number to use is particular to the communication domain in which communication is to take
place; see protocols (4).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must
be in a connected state before any data may be sent or received on it. A connection to another socket
is created with a connect(2F) call. Once connected, data may be transferred using read(2F) and
write (2F) calls or some variant of the send (2F) and recv(2F) calls. When a session has been completed
a close(2F) may be performed. Out-of-band data may also be transmitted as described in send(2F)
and received as described in recv(2F). An iocti(2F) call with the SIOCSPGRP command can be used
to specify a process group to receive a SIGURG signal when out-of-band data arrives.

The communications protocols used to implement a SOCK_STREAM insure that data is not lost or
duplicated. If a piece of data for which the peer protocol has buffer space cannot be successfully
transmitted within a reasonable length of time, then the connection is considered broken and calls will
indicate an error with -1 returns and with ETIMEDOUT as the specific code in the global variable
errno. The protocols optionally keep sockets warm by forcing transmissions roughly every minute in
the absence of other activity. An ETIMEDOUT error is then indicated if no response can be elicited
on an otherwise idle connection for an extended period (e.g. 3 minutes).

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named in
sendto(2F) calls. Datagrams are generally received with recvfrom (2F), which returns the next
datagram with its return address. Optionally, one may connect(2F) to a SOCK_DGRAM peer, in
which case send(ZF) and write(2F) may be used on the socket, to send packets to only that peer, until
another connect is issued to change the association.

SOCKET(2F)

SOCKET(2F)

The operation of sockets is controlled by socket level options. These options are defined in the file
<sysf/socketd>. setsockopt(2F) and getsockopt(2F) are used to set and get options, respectively.
RETURN VALUE
A negative value is returned if an error occurs, otherwise the return value is a descriptor referencing
the socket.

ERRORS

The socket call fails if:

[EAFNOSUPPORT] The specified address family is not supported.

[ESOCKTNOSUPPORT]
The specified socket type is not supported in the specified address family, or

no address family can be found which supports it.

[EPROTONOSUPPORT]
No protocol is supported or the specified protocol is not supported within this
address family, Possibly because the Network Services Extension has not been
installed, or the protocol has not been initialized yet (by invocation of

ipid(1M)).
{EMFILE]} The per-process descriptor table is full.
[ENFILE] The system file table is full.
[EACCESS]
[ENOBUFS]
sufficient resources are freed.
EXAMPLE

The following typifies a server/client relationship utilizing sockets..

PROGRAM client

C The include files need to be modified to reflect
C fortran include files directory

#include "sysf/types.i”
#include "sysf/socket.i’
#include "sysf/in.i"

INTEGER®4 datsock,s,cc,ijk,y,Jenparam

INTEGER*4 socket,bind,send,accept,gethostby,connect,read
INTEGER*4 getsockopt,getsockname,getpeername
CHARACTER*6 machname

CHARACTER*40 buf

RECORD /sockaddr_in/ server,client

RECORD /hostent/ host

RECORD /sockaddr/ temp

First create socket

datsock = socket(AF_INET, SOCK_STREAM, 0)
IF (datsock .Jt. 0) THEN

write(*,*) "ERROR opening data socket’,datsock
ENDIF

Permission to create a socket of the specified type and/or protocol is denied.
Insufficient buffer space is available. The socket cannot be created until

SOCKET (2F)

[eNeXe!

Let machname equal name of target machine
machname ="glsdev’
lenparam =16

This goes into a ¢ subroutine that calls gethostbyname
from inet library and also performs a memcpy from host
to server

j = gethostby(host,machname,server)

IF (j .It. 0) THEN

write(*,*) 'unknown host ’,machname
ENDIF

server.sin_port is port of your choice

server.sin_port = 1225
server.sin_family = AF_INET

j=getsockopt(datsock,SOL_SOCKET,SO_REUSEADDR buf 4)

IF (j .It. 0) THEN
write(*,*) "/ERROR is getsockopt ’,j
ENDIF

j=getsockname(datsock,temp,lenparam)
IF (j t. 0) THEN

write(*,*) 'TERROR is getsockname ’j
ENDIF

j=connect(datsock, server, lenparam)
IF (j .It. 0) THEN

write(*,*) "ERROR connect data socket’,j
ENDIF

write(*,*) Client - got a new socket *, datsock

j=getpeername(datsock,server,lenparam)
TF (j t. 0) THEN
write(*,*) "ERROR is getpeername °,j
ENDIF
cc=0
DO WHILE (cc .GE. 0)
write(*,*)’buf is ’,buf
cc=read(datsock,buf,40)
write(*,*)’Read bytes ’,cc
END DO
write(*,*) *Client - read bytes : ’,cc

Now close socket
close(datsock)

return
END

SOCKET(2F)

SOCKET (2F)

PROGRAM server

C The include files need to be modified to reflect fortran
C include files directory

#include “sysf/types.i®
#include "sysf/socket.i*
#include "sysf/in.i®

anan

INTEGER®*4 datsock,s,ccij.k,a

INTEGER®4 socket,bind,send,accept,gethostnm
INTEGER*4 setsockopt

CHARACTER*7 machname
CHARACTER*40 buf

RECORD /sockaddr_in/ server,client
RECORD /hostent/ host

First create socket

datsock = socket(AF_INET, SOCK_STREAM, 0)
IF (datsock .It. 0) THEN

write(*,*) ’error opening data socket’,datsock
ENDIF

Next is to fill what is to be sent through socket
buf="characters’

Let machname equal name of target machine
machname ="glsdev’

This goes into a ¢ subroutine that calls gethostbynm
from inet library and also performs a memcpy from host
to server

i = gethostnm(host,machname)
IF (i .1t. 0) THEN

write(*,*) "unknown host >;machname
ENDIF

server.sin_port is port of your choice
server.sin_port = 1225

server.sin_family = AF_INET

j=setsockopt(datsock,SOL_SOCKET,SO_KEEPALIVE,1,4)
IF (j .t. 0) THEN

write(*,*) "ERROR setsockopt ,j
ENDIF

j=bind(datsock, server, 16)
IF (j .It. 0) THEN

write(*,*) "error binding data socket’,j
ENDIF

SOCKET (2F)

SOCKET(2F)

j=listen(datsock, 1)
IF (j At. 0) THEN
write(*,*) ‘error listening ’,j
ENDIF
s = accept(datsock, client, k)
IF (s It.0) THEN
write(*,*) *error listening ’,s
ENDIF
write(*,*) "Server - got a new socket ’, s

a=0
DO WHILE (a .LT.25)
write(*,*) *Sending character and 40 bytes’
cc=send(s,buf,40,0)
i=sleep(2)
a=a+l
END DO
C Close socket
close(s)
return
END

The following are the C interface calls that will work interactively
with the above Fortran programs.

gethostby .c

#include <stdio.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <errno.h>
#include <malloc.h>

extern int errno;

int gethostby (result,xname,servxlen)
struct hostent *result;
char *xname;
struct sockaddr_in *serv;

int xlen;
{
struct hostent *temp;
char *pbuf;
int ij,k;

if ((pbuf = malloc(xlen+1))= =NULL)
return(-ENOMEM);

g_char(xname, xlen, pbuf);

temp = gethostbyname(xnamey;

if (temp==NULL)
return(-errno);

SOCKET (2F)

SOCKET(2F) SOCKET(2F)

memcpy(result,temp,sizeof (struct hostent));

free(pbuf);

memcpy(&serv->sin_addr,result->h_addr,result->h_length);
}

gethostnm-FORTRAN interface to the system
gethostbyname call

#include <stdio.h>
#include <netdb.h>
#include <ermo.h>
#include <malloch>

extern int errno;

int gethostnm_(result,xname,xlen)
struct hostent *result;
char *xname;
int xlen;

struct hostent *temp;
char *pbuf;
int ijk;

if ((pbuf = malloc(xlen+1))==NULL)
return(-ENOMEM);
g_char(xname, xlen, pbuf);
temp = gethostbynamemame);
if (temp==NULL)
return(-errno);
memcpy(result,temp,sizeof (struct hostent));
free(pbuf);
return((int)result);
}
SEE ALSO
accept(2F), bind(2F), connect(2F), getsockname(2F), getsockopt(2F), ioctl(2F), listen(2F), read(2F),
recv(2F), select(2F), send(2F), shutdown(2F), write(2F), tep(7), udp(7)

STAT(2F)

NAME

stat, fstat - get file status

SYNOPSIS

include <sysf/types.i>
include <sysf/stat.i>

integer*4 stat

character*SIZE path
record /stat/ buf

iretval = stat (path, buf)

integer*4 fstat, fildes
record /stat/ buf
iretval = fstat (fildes, buf)

DESCRIPTION

STAT(2F)

SIZE can be any number between and including 1 through 128. path points to a path name naming a
file. Read, write, or execute permission of the named file is not required, but all directories listed in
the path name leading to the file must be searchable. stat obtains information about the named file.

Note that in a Remote File Sharing environment, the information returned by stat depends upon the
user/group mapping set up between the local and remote computers. [See idload(1M)].

fstat obtains information about an open file known by the file descriptor fildes, obtained from a suc-
cessful open, creat, dup, fentl, or pipe system call.

buf is a pointer to a stat structure into which information is placed concerning the file.

The contents of the structure pointed to by buf include the following members:

integer*2
integer*2
integer*2

integer*2

integer*2
integer*2
integer*2
integer*4
integer*4
integer*4
integer*4

st_mode
st_ino
st_dev

st_rdev

st_nlink
st_uid
st_gid
st_size
st_atime
st_mtime
st_ctime

{File mode [see mknod (2F))
!Inode number

!ID of device containing

la directory entry for this file

11D of device

!This entry is defined only for
Icharacter special or block special files
!Number of links

tUser ID of the file’s owner
1Group ID of the file’s group

{File size in bytes

Time of last access

Time of last data modification
ITime of last file status change
{Times measured in seconds since
100:00:00 GMT, Jan. 1, 1970

st mode The mode of the file as described in the mknod(2F) system call.

st_ino This field uniquely identifies the file in a given file system. The pair st_ino and st_dev
uniquely identifies regular files.

st_dev This field uniquely identifies the file system that contains the file. Its value may be used as
input to the ustat(2F) system call to determine more information about this file system. No
other meaning is associated with this value.

st rdev This ficld should be used only by administrative commands. It is valid only for block spe-
cial or character special files and only has meaning on the system where the file was
configured.

STAT(2F)

st_nlink
st_uid
st_gid
st_size

st_atime
st_mtime

st_ctime

stat will fail
[ENOTDIR]
[ENOENT]
[BACCES]
[EFAULT]
[EINTR]
[ENOLINK]

STAT(2F)

This field should be used only by administrative commands.
The user ID of the file’s owner.
The group ID of the file’s group.

For regular files, this is the address of the end of the file. For pipes or fifos, this is the
count of the data currently in the file. For block special or character special, this is not
defined.

Time when file data was last accessed. Changed by the following system calls: creat(2F),
mknod (2F), pipe(2F), utime (2F), and read (2F).
Time when data was last modified. Changed by the following system calls: creat(2F),
mknod(2F), pipe (2F), utime (2F), and write (2F).
Time when file status was last changed. Changed by the following system calls:

chmod (2F), chown (2F), creat(2F), link (2F), mknod (2F), pipe (2F), unlink (2F), utime (2F),
and write (2F).

if one or more of the following are true:
A component of the path prefix is not a directory.
The named file does not exist.
Search permission is denied for a component of the path prefix.
buf or path points to an invalid address.
A signal was caught during the staf system call,
path points to a remote machine and the link to that machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote machines.
Sstat will fail if one or more of the following are true:

[EBADF]
[EFAULT]

[ENOLINK]

fildes is not a valid open file descriptor.
buf points to an invalid address.
fildes points to a remote machine and the link to that machine is no longer active.

STAT(2F)

EXAMPLE
program stat
include <sysf/types.i>
include <sysf/stat.i>
include <sysf/fentl.i>

integer*4 stat, fstat, fildes
character*40 path

record /stat/ buf_path, buf file
integer*4 open, iretval

¢ Get extended status of file using pathname

path = ’../example/stat.F°
iretval = stat (path, buf_path)
if (iretval .It. 0) write (*,*) *stat error?’, irctval

¢ Get extended status of file from file descriptor

fildes = open (path, O_RDONLY)

if (fildes .It. 0) write (*,*) open error?’, fildes
iretval = fstat (fildes, buf file)

if (iretval .It. 0) write (*,*) *fstat error?, iretval

¢ Print some of the information from both structures

write (*,9000) buf_path.st_ino, buf_path.st_size, buf _path.st mode
write (*,9000) buf file.st_ino, buf_file.st_size, buf_file.st_mode

9000 format (’ Inode?’, I5,’, Size in bytes:’,19,", Mode:’,08)
end

SEE ALSO

STAT(2F)

chmod(2F), chown(2F), creat(2F), link(2F), mknod(2F), pipe(2F), read(2F), time(2F), unlink(2F),

utime(2F), write(2F).

DIAGNOSTICS

Upon successful completion a value of 0 is returned. Otherwise, a negative value indicating the error is

returned.

STATFS(2F) STATFS(2F)

statfs, fstatfs - get file system information

SYNOPSIS

include <sysf/types.i>
include <sysf/statfs.i>

integer®4 statfs, len, fstyp
character*SIZE path

record /statfs/ buf

iretval = statfs (path, buf, len, fstyp)

integer®*4 fstatfs, len, fstyp, fildes
record /statfs/ buf
iretval = fstatfs (fildes, buf, len, fstyp)

DESCRIPTION

statfs returns a “generic superblock” describing a file system. It can be used to acquire information
about mounted as well as unmounted file systems, and usage is slightly different in the two cases. In all
cases, buf is a pointer to a structure (described below) which will be filled by the system call, and len is
the number of bytes of information which the system should return in the structure. Len must be no
greater than the number of bytes in the statfs structure and ordinarily it will contain exactly that value;
if it holds a smaller value the system will fill the structure with that number of bytes. (This allows
future versions of the system to grow the structure without invalidating older binary programs.)

If the file system of interest is currently mounted, path should name a file which resides on that file
system. SIZE can be any number between and including 1 through 128. In this case the file system
type is known to the operating system and the fstyp argument must be zero. For an unmounted file
system path must name the block special file containing it and fsfyp must contain the (non-zero) file
system type. In both cases read, write, or execute permission of the named file is not required, but all
directories listed in the path name leading to the file must be searchable.

The statfs structure pointed to by buf includes the following members:
integer*2 f fstyp {File system type
integer®4 f_bsize 1Block size
integer*4 f frsize {Fragment size
integer*4 f blocks !Total number of blocks
integer*4 f bfree ICount of free blocks
integer*4 f files 1Total number of file nodes
integer*4 f firee {Count of free file nodes
character*6 f fname !Volume name
character*6 f fpack !Pack name

ftatfs is similar, except that the file named by path in statfs is instead identified by an open file descrip-
tor filedes obtained from a successful open(2F), creat(2F), dup(2F), fent!(2F), or pipe(2F) system call.

statfs obsoletes ustat (2F) and should be used in preference to it in new programs.
statfs and fstatfs will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EFAULT]} buf or path points to an invalid address.

[EBADF] fildes is not a valid open file descriptor.

[EINVAL] fstyp is an invalid file system type; path is not a block special file and fstyp is nonzera;

len is negative or is greater than the number of bytes in the staffs structure.

STATFS (2F)

STATFS (2F)

[ENOLINK] path points to a remote machine, and the link to that machine is no longer active.

[EMULTIHOP]|

EXAMPLE

#
#

program statfs

include <sysf/types.i>
include <sysf/statfs.i>
integer*4 statfs, len, fstyp
character*40 path

record /statfs/ buf
integer*4 iretval

¢ Get information about a file system

path = >/usr’
len = 38
fstyp = 0

iretval = statfs (path, buf, len, fstyp)
if (iretval .It. 0) write (*,*) ’statfs error’, iretval

¢ Print the information

&
&

write (*,9000) buff fstyp, buff bsize, buff frsize,
buf.f_blocks, buf.f bfree, buf.f files, buff firee,
buf.f foame, buff fpack

9000 format (* Type: ’, i5,/

Components of path require hopping to multiple remote machines.

& > Block size: ’, 18,/
& * Fragment size: ’, i8,/
& > Total blocks: ’, i8,/
& > Total free blocks: *, i8,/
& * Total nodes: ’, i8,/
& * Total free nodes: ’, i8,/
& ’ Volume name: ’, a6,/
& > Pack name: ’, a6)
end

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a negative value indicating the error is
returned.

SEE ALSO

chmod(2F), chown(2F), creat(2F), link(2F), mknod(2F), pipe(2F), read(2F), time(2F), unlink(2F),
utime(2F), write(2F), fs(4).

STIME(2F) STIME(2F)

NAME
stime - set time
SYNOPSIS
integer®4 stime, tp
iretval = stime (tp)
DESCRIPTION
stime sets the system’s idea of the time and date. fp points to the value of time as measured in seconds
from 00:00:00 GMT January 1, 1970.

[EPERM] stime will fail if the effective user ID of the calling process is not super-user.
EXAMPLE
program stime
integer*4 stime, tp
integer*4 ftime, iretval

¢ Get current time and date
tp = ftime (%val(0))
¢ Bump it by 1 hour

tp = tp + 3600
iretval = stime (tp)
if (iretval .It. 0) write (*,*) ’stime error?’, iretval
end
SEB ALSO
time(2F).
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

STKEXP(2F) STKEXP (2F)

NAME
stkexp - expand the stack region of the data segment

SYNOPSIS
include <sysf/lock.i>

integer®4 stkexp, incr, flags .

iretval = stkexp (incr, flags)

DESCRIPTION
stkexp is used to expand the amount of space allocated for the stack region of the data segment. It is
recommended that a realtime process should use this call, in conjunction with plock(2F) and
resident (2F), to preallocate sufficient space to contain the maximum size to which its stack can grow. If
this call is not used, pages will be added to the stack region of the data segment as needed by natural
stack growth, with possible violation of realtime constraints.

incr is the number of bytes to be added to the stack region. It will be rounded up to the nearest page
boundary. If (flags & STKSZ) is true, then incr is the new total size, in bytes, of the stack region. It will
be rounded up to the nearest page boundary. (The number of bytes per page, NBPC, is defined in
<sysf/param.i>.)

The stkexp system call will fail without making any change in the allocated space if:

[EAGAIN] The data segment is locked resulting in more resident pages being allocated than are
currently available.

[EINVAL) The requested new size is less than the current size.

[ENOMEM] Such a change would result in more space being allocated than is allowed by a system-
imposed maximum (see ulimit (2F)).

EXAMPLE .
program stkexp

integer*4 stkexp, incr, flags, oldsize
¢ Expand stack by 2048 bytes

incr = 2048

flags = 0

oldsize = stkexp (incr, flags)

if (oldsize .1t. Q) write (*,*) stkexp error?’, oldsize
oldsize = (oldsize + 1023) / 1024

write (*,9000) ’old stack size:’, oldsize

¢ Get current stack size

incr = 0
oldsize = stkexp (0, 0)
if (oldsize .It. 0) write (*,*) *2 stkexp error?’, oldsize
oldsize = (oldsize + 1023) / 1024
write (*,9000) ‘new stack size:’, oldsize
9000 format (*’, a20, i4, ’Kb’)

end .

STKEXP(2F) STKEXP(2F)

SEE ALSO
brk(2F), plock(2F), resident(2F).

DIAGNOSTICS
Upon successful completion, stkexp returns the old size of the stack region. Otherwise, a negative value
indicating the error is returned.

.2.

SUSPEND (2F) SUSPEND (2F)

NAME
suspend - suspend the calling process
SYNOPSIS

integer*4 suspend
iretval = suspend()

DESCRIPTION
The calling process is suspended until a resume(2F), or swich(2F) is performed by another process.

suspend will fail if the following is true:
[EINTR] A signal was caught during the suspend system call.,

EXAMPLE

See resume(2F) for an example.
SEE ALSO

setrtgroup(1), resume(1R), getpid(2F), resume(2F), setrt(2F), swtch(2F).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

SWTCH(2F) SWTCH (2F)

NAME
swtch - switch into a process

SYNOPSIS
integer®4 swtch, pid
iretval = swich (pid)

DESCRIPTION
pid is the process ID of the target process.

swiech is functionally equivalent to the following code fragment:

ires_retval = resume (target_pid)
isus_retval = suspend ()

The difference being that the overhead of one system call is saved. The target process will resume
when it becomes the highest priority process in the system.

For a process to have permission to swich into another process the requesting process must have
superuser or realtime privileges which are granted via the setrt(2F) system call.

swich will fail if one or more of the following are true:
[EINVAL] The target process was not suspended via a suspend(2F) system call or a switch(2F) system
call.

[EPERM] The requesting process does not have the appropriate permission to suspend the target
process.

[BSRCH] No process can be fonnd corresponding to that specified by pid.

SWTCH(2F) SWTCH (2F)

EXAMPLE
program swtch
integer*4 swtch, pid
integer*4 fork, ppid, getppid
integer*4 suspend, resume
integer*4 iretval, i

¢ Make a child

pid = fork ()
if (pid .eq. 0) goto 2000

¢ Print messages back and forth

do100i=1,5

write (*,9000) ’parent’, i

iretval = switch (pid)

if (iretval .It. 0) write (*,9001) ’parent’, iretval
100 continue

iretval = resume (pid)

if (.true.) stop

¢ Here if child

¢ Get parent process id
2000 continue

ppid = getppid ()
iretval = suspend ()

¢ Print message back and forth

do2100i=1,5

write (*,9000) *child’, i

iretval = swtch (ppid)

if (iretval .It. 0) write (*,9001) *child’, iretval
2100 continue

iretval = resume (ppid)
9000 format (0", al0, x, i4)
9001 format (*’, a6, ’ swtch error?’, x, i6)

end

SEE ALSO
setrtusers(1M), resume(1R), getpid(2F), resume(2F), setrt(2F), suspend(2F).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

SYMLINK(2F) SYMLINK (2F)

NAME
symlink - makes symbolic link to a file

SYNOPSIS

character*SIZE namel,name2
iretval = symlink(namel,name2)

DESCRIPTION
SIZE can be any number 1 through 128. A symbolic link name2 is created to namel (name2 is the
name of the file created, namel is the string used in creating the symbolic link). Either name can be
an arbitrary path name; the files need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is stored in
ermo and a -1 value is returned.

ERRORS
The symbolic link is made unless one or more of the following are true:

[EPERM] Either value of namel or name2 contains a character with the high-order bit set.
[EPERM]} A pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded NAME_MAX characters, or an entire path-
name excceded PATH MAX.

[ELOOP] Too many symbolic links were encountered in translating a pathname.
[ENOENT] One of the pathnames specified was too long.

[ENOTDIR] A component of the name2 prefix is nat a directory.

FEEXIST] nume? already exists.

[EACCES] A component of the name2 path prefix denies. search permission.
[EROFS] The file name2 would reside on a read-only file system.

[EFAULT] namel or name2 points outside the process’ allocated address space.

SEE ALSO
In(1), link(2), readlink(2), unlink(2)

NOTES
Currently on 88k machine only.

SYNC(2F) SYNC(2F)

NAME
sync - update super block
SYNOPSIS
integer®4 sync
iretval = syne ()
DESCRIPTION
sync causes all information in memory that should be on disk to be written out. This includes modified
super blocks, modified i-nodes, and delayed block I/0.

It should be used by programs which examine a file system, for example fsck, df, etc. It is mandatory
before a re-boot.
The writing, although scheduled, is not necessarily complete upon return from sync.

EXAMPLE

program sync
integer*4 sync, iretval

¢ Flush disk data
iretval = sync ()

if (iretval .It. 0) write (*,*) *sync error?’, iretval
end

SYSFS(2F) SYSFS(2F)

NAME .
sysfs - get file system type information

SYNOPSIS
include <sysf/fstypi>
. # include <sysf/fsid.i>

integer®*4 sysfs, opcode
character*SIZE fsname
iretval = sysfs (opcode, fsname)
integer®4 sysfs, opcode, f5_index
character*SIZE buf
iretval = sysfs (opcode, fs_index, buf)
integer*4 sysfs, opcode
iretval = sysfs (opcode)

DESCRIPTION

sysfs returns information about the file system types configured in the system. The number of argu-
ments accepted by sysfs varies and depends on the opcode. The currently recogmzzd opcodes and their

functions are described below:

GETFSIND translates fsname, a null-terminated file-system identifier, into a file-system
type index. SIZE can be any number between and including 1 through 128.

GETFSTYP translates fs_index, a file-system type index, into a null-terminated file-system

identifier and writes it into the buffer pointed to by buf of SIZE bytes; this
buffer must be at least of size FSTYPSZ as defined in <sysf/fstyp.i>.

GETNFSTYP returns the total number of file system types configured in the system.
. sysfs will fail if one or more of the following are true:
[EINVAL] Jfsname points to an invalid file-system identifier; fs_index is zero, or invalid;
opcode is invalid.
[EFAULT) buf or fsname point to an invalid user address.

SYSFS(2F)

EXAMPLE

THRBRE O®R

program sysfs
include <sysf/fstyp.i>
include <sysf/fsid.i>

if FSTYPSZ > 20

define BUFSIZ 20

else

define BUFSIZ FSTYPSZ
endif

integer®4 sysfs, opcode, fs_index
character*FSTYPSZ buf
integer*4 iretval, i,

¢ Get file system names

do 100i = 0,20

opcode = GETFSTYP

fs_index =i

iretval = sysfs (opcode, fs_index, buf)

if (iretval .ge. 0) write (*,9000) fs_index, buf (1:BUFSIZ)

100 continue
9000 format (* Index?’, i3, * Name: ’, a BUFSIZ)

end

DIAGNOSTICS

Upon successful completion, sysfs returns the file-system type index if the opcode is GETFSIND, a
value of 0 if the opcode is GETFSTYP, or the number of file system types configured if the opcode is
GETNFSTYP. Otherwise, a negative value indicating the error is returned.

SYSFS(2F)

SYSM68K(2F) SYSMG6SK (2F)

NAMB

sysm68k - machine specific functions

SYNOPSIS

include <sysf/sysm68k.i>

integer®4- sysm68k, cmd, argl, arg2
iretval = sysm68k (cmd, argl, arg2)

DESCRIPTION

sysm68k implements machine specific functions. The crnd argument determines the function per-
formed. The number of arguments expected is dependent on the function.

Command S68ADDMEM

When cnd is S68ADDMEM, the argument is used as the number of pages to add to the. free list. Note
that this command is available to the superuser only. If more pages are added with this command than
were deleted with SSSDELMEM, only the amount previously deleted will be added back.

Command S68BCACHEOFF

When cmd is S68BCACHEOFF, the cache is disabled. Note this command is available to the superuser
only.

Please note that board caching is not available on the MVME147. This command will fail if attempted
when executing on the MVME147.

Command S68BCACHEON

When cmd is S68BCACHEON, argument is used as the value to be written to the cache mask register
and the cache is then enabled. Note this command is available to the superuser only.

Pleaser note that: board! caching; is<mott availablizon the: MVIB147;. This: conmand: will fail if attempted
when executing on the MVME147;

Command S68BRDSTAT

When cmd is S68BRDSTAT, a structure containing processor board specific status is returned. Two
arguments are required. The first argument is a pointer to a boardid structure into which information
is placed concerning the proeessor board. Refer to sysf/mvmecpu.i for a declaration of this structure.
The second argument is the number of bytes to be transferred. This should be the size of the structure
for the first argument or smaller. This command may be executed by any user. This command is only
available on some of the newer processor boards. Refer to the specific BUG manual for the processor
board being used and to the ROM calls available, which may return similar detailed information about
the processor board.

Command S63CACHERD

When cmd is executed the current mask used for setting the cacr (cache control register) is returned.
No other arguments are necessary. This command may be executed by any user. Refer to the next
command, S68CACHESET, and to the Motorola MC68030 User's Manual for a description of the control
bit values returned.

Command S68CACHESET

When cmd is S68CACHESET, the processor instruction and:data caches may be enabled or disabled
with various options. A value for setting the cacr (cache control register) is passed as the only argu-
ment. If the command is successful, this value is returned as the return value. This command may only
be executed as superuser. The following control bits are available in the cacr with the MC68030
microprocessor:

SYSM68K (2F) SYSM68K (2F)

CACR EI ’000’x Enable Instruction Cache
CACR_FI ’0002’x Freeze Instruction Cache
CACR_CEI ’0004’x Clear Entry in Instruction Cache
CACR_CI ’0008'x Clear Instruction Cache
CACR IBE ’0010’x Instruction Burst Enable
CACR ED ’0100’x Enable Data Cache

CACR FD ’0200x Freeze Data Cache

CACR CED '0400x Clear Entry in Data Cache
CACR CD ’0800’x Clear Data Cache

CACR DBE ’1000’x Data Burst Enable

CACR_ WA ’2000x Write Allocate

Refer to sysf/sysmé8k.i for a declaration of these defines and other cacr related information. Any
flags relating to the data cache are only available on the MC68030. The meaning and use of these flags
is described in the Motorola MC68030 User’s Manual. However, when running under REAL/IX only cer-
tain limited combinations of the above will be legal. Only the following flags will be allowed to be
turned on (or set to a 1):

CACR El Enable Instruction Cache
CACR _CI Clear Instruction Cache
CACR IBE Instruction Burst Enable
CACR ED Enable Data Cache
CACR _CD Clear Data Cache

CACR DBE Data Burst Enable
CACR WA Write Allocate

Command S68CONT

When cmd is S63CONT, the kernel will continue with the instruction that was interrupted by a bus error
signal to the calling routine.

Command S68CPUBRD

When cmd is S68CPUBRD, no arguments are expected. A value corresponding to the processor board
on which the operating system is running is returned. Refer to sysf/mvmecpu.i for the mnemonic
names used for the CPU board values.

Command S68DELMEM

When cmd is S68DELMEM, the argument is used as the number of pages to delete from the free list.
Note that this command is available to the superuser only. This command is intended to allow stress
tests to verify system behavior with low free memory.

Command S68FPEX

When cmd is S68FPEX, the floating-point operand that caused the floating-point exception is returned
to the user at the address specified by argl. This command should be executed only after a floating-
point exception has been indicated to the caller, otherwise an undetermined operand will be returned
to the user.

Command S6SFPHW

When cmd is S68FPHW, a flag is set at the address specified by the argument that indicates whether or
not the floating-point hardware chip is present on the system. A flag of NOFPHW will be stored if
there is not a floating-point chip, a flag of MC68881 will be stored if there is.

SYSMG68K (2F) SYSM68K (2F)

Command S68ICACHEOFF

When cmd is S68ICACHEOFF, the internal cache of the MC68030 chip is disabled. Note that this com-
mand is available to the superuser only.

Command S68ICACHEON

When cmd is S6BICACHEON, the internal cache of the MC68030 chip is enabled. Note that this com-
mand is available to the superuser only.

Command S68MEMSIZE

When cmd is S6SMEMSIZE, no arguments are expected. The size of the virtual memory space and the
amount of physical memory (in bytes) are returned.

Command S68RTODC

When cmd is S68RTODC, the value of the realtime clock (rtc) is returned to the address specified by
the argument. If there is no realtime clock on the system, the current time is returned. Note that this
command is available to the superuser only.

Command S68SETNAME
When cmd is S68SETNAME, the argument is expected to be a pointer to a character string. The system

name and node name are set to the character string specified by the argument. Note that this com-
mand is available to the superuser only.

Command S68STACK
>>> This system call is obsolete and is included only for compatibility with previous releases.

When cmd is S68STACK, the available stack space is increased by the number of bytes (rounded to the
nearest page boundary). If this systen call succeeds, the new value of the stack pointer is returned.

Command S68STIME

When cmd is S68STIME, the argument is used as the new value for the system time and date. The
argument contains the time as measured in seconds from 00:00:00 GMT January 1,1970. Note that this
command is only available to the superuser. This command is redundant in that stime(2F) may also be
used to set the system time but this command is included for compatibility with previous releases.

Command S68SWAP

When cmd is S68SWAP, individual swapping areas may be added or deleted, or the current areas deter-
mined. The address of an appropriately primed swap buffer is passed as the only argument. (Refer to
sysf/swap.i header file for details of loading the buffer.)

The format of the swap buffer is:

structure /swpi_t/
integer*l si cmd !command: list, add, delete
integer®4 si_buf {swap file path pointer
integer®*4 sw_swplo !start block
integer®4 si nblks !swap size

end structure

Note that the add and delete options of the command may only be exercised by the superuser.

SYSM68K (2F) SYSM68K (2F)

Typically, a swap area is added by a single call to sysm68k. First, the swap buffer is primed with
appropriate entries for the structure members. Then sysm68k is invoked.

include <sysf/sysm68k.i>

include <sysf/swap.i
record /swpi_t/ swapbuf
sysm68k(S68SWAP, swapbuf)

Command S6STODCSTAT

When cmd is S68TODCSTAT, no arguments are expected. The integer return value reflects the status of
the time-of-day clock. A useful time-of-day clock is indicated by a return value equal to GOOD_TODC.

Command S68WPOSTOFF

When cmd is S6SWPOSTOFF, write-posting is disabled. No other arguments are necessary. This com-
mand may only be executed by superuser. This command is not available on the MVME147 processor
board, however, it may well become available in future processor boards.

Command S68WPOSTON

When cmd is S68WPOSTON, write-posting is enabled. No other arguments are necessary. This com-
mand may only be executed by superuser. This command is not available on the MVME147 processor
board, however, it may well become available in future processor boards.

Command R6SYMEADDR

When cmd is R68VMEADDR, important VME bus memory map information is returned to the user.
This information identifies the starting physical address and size, in bytes, of each range in question.
The information is returned via a typedefed structure, supplied by the user, which is pointed to by argl.
Below is an code fragment illustrating proper use:

include <sysf/sysmé8k.i>

include <sysf/vme.i>/
record /vme_t/ vme
sysm68k(R6SVMEADDR, vme, 0)

The second argument identifies which VME chassis is of interest to the user. For machines with only
one VME chassis, this argument must be zero.

vme.i contains the following:
#define VMESIZE 20 /#array elements (with reserve space)

#define VMEA16D16 O /16bit address, 8/16 bit data
#define VMEA24D16 1 /24bit address, 8/16 bit data
#define VMEA24D32 2 /24bit address, 32 bit data
#define VMEA32D16 3 /32bit address, 8/16 bit data
#define VMEA32D32 4 /32bit address, 32 bit data

SYSMG6SK(2F)

EXAMPLE

SYSMG68K (2F)

IThis structure is returned by the RGSVMEADDR system service
land holds the starting address and the size of the various memory
Imapped i [o regions of the vme bus. Space for unanticipated future
lextensions is available.

structure fvme t/
integer®4 addr(VMESIZE) /starting physical address of range
integer*4 size(VMESIZE) /size of range, in bytes
integer*4 res1(VMESIZE) /reserved
integer*4 res2(VMESIZE) /reserved
end structure

program sysm68k

include <sysf/sysm68k.i>
integer*4 sysm68k, cnd, argl, arg2
integer*4 iretval

¢ Get size of virtual memory space

iretval = sysm68k (S6SMEMSIZE, argl, arg2)
if (iretval .It. 0) write (*,*) *sysm68k error?’, iretval
write (*,9000) (irctval + 1023) / 1024

9000 format (" Memory size: °, i10, ’Kb’)

SEE ALSO

ead

swap(1M).

TIMES (2F)

NAME

TIMES (2F)

times - get process and child process times

SYNOPSIS

include <sysf/types.i>
include <sysf/times.i>

integer*4 times
record /tms/ buffer
iretval = times (buffer)

DESCRIPTION

times fills the structure pointed to by buffer with time-accounting information. The following are the

contents of this structure:

structure /tms/
integer*4
integer*4
integer*4
integer*4
end structure

tms_utime
tms_stime
tms_cutime
tms_cstime

This information comes from the calling process and each of its terminated child processes for which it
has executed a wait. All times are reported in clock ticks per second. Clock ticks are a system-
dependent parameter. The specific value for an implementation is defined by the variable HZ, found

in the include file param.i.

tms_utime is the CPU time used while executing instructions in the user space of the calling process.
tms_stime is the CPU time used by the system on behalf of the calling process.

tms_cutime is the sum of the ¢ms_utimes and tms_cutimes of the child processes.

tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes.
[EFAULT] times will fail if buffer points to an illegal address.

TIMES(2F) TIMES(2F)

EXAMPLE
program times
include <sysf/times.i>
integer*4 times
integer®4 init_tim, dummy, elap_time, utime, stime
integer*4 cutime, cstime, i, j

record /tms/ buffer
¢ get initial elapsed time and delay a while

init_tim = times (buffer)

do 110i=1, 1000

do 110j=1, 2000

dummy = dummy + i
110 continue

¢ get current elapsed time and print results

clap_time = times (buffer)

utime = buffer.tms_utime

stime = buffer.tms_stime

cutime = buffer.tms_cutime

cstime = buffer.tms_cstime

write (*,9000) utime, stime, cutime, cstime
9000 format (* utime: ’, i8, * stime: ’, i8,
& ’cutime:’, i8,’ cstime: ’, i8)

write (*,9001) utime + stime, elap_time - init_tim
9001 format (’ Total time used via:’"/
& ’ Utime + Stime:’, i4/
& ’ Elapsed Time:’, i4)

end

SEE ALSO
excc(2F), fork(2F), time(2F), wait(2F).

DIAGNOSTICS
Upon successful completion, fimes returns the elapsed real time, in clock ticks per second, from an
arbitrary point in the past (e.g., system start-up time). This point does not change from one invocation
of times to another. If times fails, a negative value indicating the error is returned.

TRUNC(2F) TRUNC(2F)

NAME
trunc - truncate file space

SYNOPSIS
integer*4 trunc, fd, length, flags
iretval = trumc (fd, length, flags)

DESCRIPTION
trunc truncates the file referenced by fd to length bytes. The file referenced by fd must be open for writ-
ing. If the FSNOZERO bit is set in flags, any potential physical space that exists after the new logical
end-of-file will not be zeroed; the default is to zero such space. If FSNOZERO is used, it is possible to
creat holes in the file (using /seek) that will not read as zeroes. If the FSSHRINK bit is set and there is
contiguous file extents for this file (see prealloc(2F)), physical and logical space will be truncated. If
Pprealloc(2F) has never been used on this particular file, both logical and physical space for the file will
be truncated.

trunc will fail if one or more of the following are true:
[EBADF] fd is not a valid file descriptor open for writing,
[ENXI10O] fd is not a regular file.

EXAMPLE
program trunc
include <sysf/fentli>
integer*4 trunc, fd, length, flags

integer*4 open, close, iretval
¢ Open and optionally create a file

fd = open (’tmp’, O_RDWR .or. O_CREAT, *7770)
if (fd .1t. 0) write (*,*) *open error?’, fd

¢ Truncate to 2048 bytes zero filled

length = 2048

flags = 0

iretval = trunc (fd, length, flags)

if (iretval .It. 0) write (*,*) ’trunc error?, iretval

¢ Close the file

iretval = close (fd)
end
SEE ALSO
close(2F), creat(2F), dup(2F), exec(2F), fentl(2F), fork(2F), open(2F), pipe(2F), prealloc(2F).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

UADMIN(2F) UADMIN(2F)

NAME
uadmin - administrative control

SYNOPSIS
include <sysf/uadmini>
integer®*4 uadmin, cmd, fen, mdep
iretval = uadmin (cmd, fen, mdep)
DESCRIPTION
uadmin provides control for basic administrative functions. This system call is tightly coupled to the
system administrative procedures and is not intended for general use. The argument mdep is provided
for machine-dependent use and is not defined here.

As specified by cnd, the following commands are available:

A_SHUTDOWN The system is shutdown. All user processes are killed, the buffer cache is flushed,
and the root file system is unmounted. The action to be taken after the system bas
been shut down is specified by fon. The functions are generic; the hardware capabili-
ties vary on specific machines.

AD_HALT Halt the processor and turn off the power.
AD_BOOT Reboot the system, using /realix.
AD_IBOOT Interactive reboot; user is prompted for system name.

A_REBOOT The system stops immediately without any further processing. The action to be
taken next is specified by fen as above.

A REMOUNT The root file system is mounted again after having been fixed. This should be used
only during the startup process.

A KILLALL Sends a signal to all active processes not directly related to the shutdown procedure
(see killali(1M). The fcn argument should contain the signal number to be sent (as
defined on signal(2F)); the mdep argument should contain the process group ID of
processes to be signaled.

uadmin fails if the following is true:
[EPERM] The effective user ID is not superuser.

EXAMPLE
program uadmin
include <sysf/uadmin.i>
integer*4 uvadmin, cmd, fcn, mdep
integer*4 iretval

¢ Reboot the system

cmd = A_ SHUTDOWN

fen = AD_BOOT

mdep = 0

iretval = vadmin (cmd, fen, mdep)

if (iretval .It. 0) write (*,*) 'vadmin error?’, iretval
end

UADMIN(2F) UADMIN(2F)

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:
A SHUTDOWN Never returns

A REBOOT Never returns
A_REMOUNT 0

Otherwise, a negative value indicating the error is returned.

ULIMIT(2F) ULIMIT(2F)

NAME
ulimit - get and set user limits
SYNOPSIS
integer*4 ulimit, cmd, newlimit
. iretval = ulimit (cmd, newlimit)
DESCRIPTION

This function provides for control over process limits. The crnd values available are:

1 Get the regular file size limit of the process. The limit is in units of 512-byte blocks and is inher-
ited by child processes. Files of any size can be read.

2 Set the regular file size limit of the process to the value of newlimit. Any process may decrease
this limit, but only a process with an effective user ID of super-user may increase the limit. ulimit
fails and the limit is unchanged if a process with an effective user ID other than super-user
attempts to increase its regular file size limit. [EPERM]

3 Get the maximum possible break value [see brk(2F)).

4 Get the maximum possible number of file descriptors that may be used by a process at a time.
This is normally configured to NOFILES. (See system(1M) for reconfiguring the value of
NOFILES.)

EXAMPLE
| program ulimit
integer*4 ulimit, cmd, newlimit

integer*4 maxfilesize, maxbrk, maxnumfd

¢ Get current file size limit

. oand =1

maxfilesize = ulimit (cmd, newlifit)
if (maxfilesize .It. 0) write (*,*) 1 ulimit error:’; maxfilesize

¢ Get maximum break value

cmd =3

maxbrk = ulimit (cmd, newlimit)

if (maxbrk .It. 0) write (*,*) 2 ulimit error:’, maxbrk
¢ Get maximum number of file descriptors

cmd = 4

maxnumfd = ulimit (cmd, newlimit)

if (maxnumfd It. 0) write (*,*) *3 ulimit error:’, maxnumfd
¢ Print results

write (*,9000) maxfilesize, maxbrk, maxnumfd
9000 format (" Max file size in blocks?’, i6,/

& * Max break value?’, 28,/
. & * Max number of file descriptors?’, i6)
end

ULIMIT(2F) ULIMIT(2F)

SEE ALSO

brk(2F), close(2F), creat(2F), dup(2F), open(2F), sysgen(1M), write(2F).
WARNING

ulimit is effective in limiting the growth of regular files. Pipes are currently limited to 5,120 bytes.
DIAGNOSTICS

Upon successful completion, a non-negative value is returned. Otherwise, a negative value indicating
the error is returned.

UMASK(2F) UMASK(2F)

NAME
umask - set and get file creation mask

SYNOPSIS
integer*4 umask, cmask
. iretval = umask (cmask)
DESCRIPTION
umask sets the process’s file mode creation mask to cmask and returns the previous value of the mask.
Only the low-order 9 bits of crmask and the file mode creation mask are used.
EXAMPLE
program umask
integer*4 umask, cmask
integer*4 old_cmask

¢ Set and get file creation mask

cmask = 7770 ! Full permissions
old_cmask = umask (cmask)
write (*,9000) *previous creation mask:’, old_cmask
9000 format (*°, a30, 05)
end
SEE ALSO
mkdir(1), sh(1), chmod(2F), creat(2F), mknod(2F), open(2F).
DIAGNOSTICS
. The previous value of the file mode creation mask is returned.

UMOUNT(2F) UMOUNT(2F)

NAME
umount - unmount a file system

SYNOPSIS
integer®*4 umount

character*SIZE path .

iretval = umount(path)

DESCRIPTION
SIZE can be any number 1 through 128. umount requests that a previously mounted file system con-
tained on the block special device or directory identified by path be unmounted. Path is a pointer to a
path name. After unmounting the file system, the directory upon which the file system was mounted
reverts to its ordinary interpretation.

umount may be invoked only by the super-user.

umount will fail if one or more of the following are true:

[EPERM] The process’s effective user ID is not super-user.
[EINVAL) File does not exist.
[EINVAL] File is not a block special device.
[EINVAL] File 1s not mounted.
[EBUSY] A file on path is busy.
[EFAULT] File points to an illegal address.
[EREMOTE] File is remote.
[ENOLINK] File is on a remote machine, and the link to that machine is no longer active.
[EMULTIHOP] Components of the path pointed to by path require hopping to multiple remote .
machines.
SEE ALSO
mount(2F).
DIAGNOSTICS

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and ermo is
set to indicate the error.

UNAME(2F) UNAME(2F)

NAME
uname - get name of current system

SYNOPSIS
include <sysf/utsname.i>

integer®*4 uname
record /utsname/ name
iretval = uname (name)
DESCRIPTION
uname stores information identifying the current system in the structure pointed to by name.

uname uses the structure defined in < sysf/utsname.i> whose members are:

character®9 sysname
character*9 nodename
character*9 release
character®9 version
character*9 machine

uname returns a null-terminated character string naming the current system in the character array
sysname. Similarly, nodename contains the name that the system is known by on a communications
network. Release and version further identify the operating system. Machine contains a standard name
that identifies the hardware that the system is runsing on.

[EFAULT] uname will fail if name points to ansavalid address.

EXAMPLE
program uname
include <sysf/utsname.i>
integer*4 uname, iretval
record /utsname/ name

¢ Get name of current system and print

iretval = uname (name)

if (iretval .It. 0) write (*,*) *uname error?’, iretval

write (*,9000) name.sysname, name.nodename, name.release,
& name.version, name.machine
9000 format (* Sysname: ’°, a9,/
& > Nodename: ’, a9,/

& ’ Release: °, a9,/
& ? Version: ’°, a9,/
& * Machine: ’, a9)
end
SEE ALSO
uname(1)
DIAGNOSTICS

Upon successful completion, a non-negative value is returned. Otherwise, a negative value indicating
the error is returned.

UNLINK(2F) UNLINK(2F)

NAME
unlink - remove directory entry
SYNOPSIS
integer*4 unlink
character*SIZE path
iretval = unlink (path)
DESCRIPTION
SIZE can be any number between and including 1 through 128. unlink removes the directory entry
named by the path name pointed to by path.

The named file is unlinked unless one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES]) Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to be removed.

[EPERM] The named file is a directory and the effective user ID of the process is not super-
user.

[EBUSY] The entry to be unlinked is the mount point for a mounted file system.

[ETXTBSY] The entry to be unlinked is the last link to a pure procedure (shared text) file that is
being executed.

[EROFS] The directory entry to be unlinked is part of a read-only file system.

[EFAULT] path points outside the process’s allocated address space.

[EINTR] A signal was caught during the unlink system call.

[ENOLINK] path points to a remote machine and the link to that machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote machines.

When all links to a file have been removed and no process has the file open, the space occupied by the
file is freed and the file ceases to exist. If one or more processes have the file open when the last link
is removed, the removal is postponed until all references to the file have been closed.

EXAMPLE
See link(2F) for an example.
SEE ALSO
rm(1), close(2F), link(2F), open(2F).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

USTAT(2F) USTAT(2F)

NAME
ustat - get file system statistics
SYNOPSIS
incude <sysf/typesd>
include <sysf/ustat.i>

integer®4 ustat
integer®2 dev
record fustat/ buf
iretval = ustat (dev, buf)
DESCRIPTION
ustat returns information about a mounted file system. dev is a device number identifying a device
containing a mounted file system. buf is a pointer to a ustat structure that includes the following ele-
ments:
integer*4 f tfrec ITotal free blocks
integer*2 f tinode !Number of free inodes
character*6 f fname IFilsys name
character*6 f fpack 1Filsys pack name
ustat will fail if one or more of the following are true:
[EINVAL] dev is not the device number of a device containing a mounted file system.
[EFAULT] buf points outside the process’s allocated address space.
[EINTR] A signal was caught during a ustat system call.
[ENOLINK] dev is on a remote machine and the link to that machine is no longer active.

[ECOMM] dev is on a remate machine and the link to that machine is no longer active.

USTAT(2F) USTAT (2F)

EXAMPLE

program ustat

include <sysf/types.i>

include <sysf/ustat.i>

include <sysf/stat.i>
integer*4 ustat, stat
integer*2 dev
record /ustat/ buf
record /stat/ buf2
integer*4 iretval, i

¢ Get device number for a file

iretval = stat (../example /ustat.F", buf2)
if (iretval .It. 0) write (*,*) ’stat error?, iretval
dev = buf2.st_dev

¢ Get file system statistics

iretval = ustat (dev, buf)
if (iretval .It. 0) write (*,*) "ustat error?’, iretval, i
write (*,9000) buff_tfree, buf.f_tinode,
& buff fname, buff fpack
9000 format (’ Total free blocks: ’, i8,/
& > Total free inodes: ’, i6,/
& ’ File system name: ’, a6,/
& * File pack name: ’, a6)
end

SEE ALSO
stat(2F), fs(4).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

UTIME(2F) UTIME(2F)

utime - set file access and modification times

SYNOPSIS

include <sysf/types.d>
integer®4 utime
character*SIZE path
structure futimbuf/

integer*4 actime

integer*4 modtime
end structure
record /utimbuf/ times
iretval = utime (path, times)

DESCRIPTION

SIZE can be any number between and including 1 through 128. path points to a path same naming a
file. utime sets the access and modification times of the named file.

If fimes is NULL (i.e. %val(0)), the access and modification times of the file are set to the current time.
A process must be the owner of the file or have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and the access and
modification times are set to the values contained in the designated structure. Only the owner of the
file or the super-user may use ufime this way.

The times in the following structure are measured in seconds since 00:00:00 GMT, Jan. 1, 1970.

structure /utimbuf/
integer*4 actime laccess time
integer*4 modtime !modification time

end structure

utime will fail if one or more of the foowing are true:

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EACCES]) Search permission is denied by a component of the path prefix.

[EPERM] The effective user ID is not super-user and not the owner of the file and times is not
NULL.

[EACCES] The effective user ID is not super-user and not the owner of the file and times is
NULL and write access is denied.

[EROFS] The file system containing the file is mounted read-only.

[EFAULT] times is not NULL and points outside the process’s allocated address space.

[EFAULT] path points outside the process’s allocated address space.

[EINTR] A signal was caught during the utime system call.

[ENOLINK] path points to a remote machine and the link to that machine is no longer active.
[EMULTIHOP] Components of path require hopping to multiple remote machines.

UTIME(2F)

EXAMPLE

c
[

c

SEE ALSO

program utime
integer*4 utime, iretval
character*40 path
structure /utimbuf/
integer*4 actime
integer*4 modtime
end structure
record /utimbuf/ times
integer*4 hours, mins, secs, moath, day, year
integer*4 gmt, getgmt, iretval

Modify a file with new times.
Pick November 3, 1989 at 13:45:27 as the new time

hours = 13
mins = 45
secs = 27
month = 11
day =3
year = 1989

Your mission: write function getgmt (returns -1 if error)

gmt = getgmt (hours, mins, secs, month, day, year)
if (gmt .lt. 0) write (*,*) ’time computation error’

Modify access and modification time of a file

times.actime = gmt

times.modtime = gmt

iretval = utime (’../example /utime.F, times)

if (iretval t. 0) write (*,*) *utime error?’, iretval
end

stat(2F).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a negative value indicating the error
is returned.

UTIME(2F)

WAIT (2F) WAIT(2F)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
integer®4 wait, stat_loc
iretval = wait (stat loc)
DESCRIPTION
wait suspends the calling process until one of the immediate children terminates or until a child that is
being traced stops, because it has hit a break point, The wait system call will return prematurely if a
signal is received and if a child process stopped or terminated prior to the call on wait, return is
immediate.
If stat_loc is non-zero, 16 bits of information called status are stored in the low order 16 bits of the
location pointed to by stat Joc. The status can be used to differentiate between stopped and ter-
minated child processes and if the child process terminated, status identifies the cause of termination
and passes useful information to the parent. This is accomplished in the following manner:
If the child process stopped, the high order 8 bits of status will contain the number of the sig-
nal that caused the process to stop and the low order 8 bits will be set equal to *01770.
If the child process terminated due to an exit call, the low order 8 bits of status will be zero
and the high order 8 bits will contain the low order 8 bits of the argument that the child pro-
cess passed to exit [see exit (2F)].
If the child process terminated due to a signal, the high order 8 bits of status will be zero and
the low order 8 bits will contain the number of the signal that caused the termination. In addi-
tion, if the low order seventh bit (i.e., bit 200°0) is set, a “core image” will have been pro-
duced {see signal (2F)].
If a parent process terminates without waiting for its child processes to terminate, the parent process
ID of cach child process is set to 1. This means the initialization process inherits the child processes
[see intro (2F)}.
wait will fail and return immediately if the following is true:
[ECHILD] The calling process has no existing unwaited-for child processes.

[EINTR] The calling process returned due to the receipt of a signal.

WAIT(2F) WAIT(2F)

EXAMPLE
program wait

integer*4 wait, stat_loc
integer*4 pid, fork .
integer*4 i, j

¢ Make a child

pid = fork ()
if (pid .eq. 0) goto 2000

¢ Wait until child terminates
pid =0

pid = wait (stat_loc)
if (pid .It. 0) write (*,*) ’wait error?, pid

¢ Print information
write (*,9000) pid, stat_loc

9000 format (* Terminating child id”’, i7, * Status:’, 08)
if (true.) stop

¢ Here if child
¢ Delay a while

2000 continue .
do 21001 = 1, 2000

do 2100 = 1, 2000
pid =1

2100 continue
end

SEE ALSO

exec(2F), exit(2F), fork(2F), intro(2F), pause(2F), ptrace(2F), signal(2F).
WARNING

wait fails and its actions are undefined if stat_loc points to an invalid address.

DIAGNOSTICS
If wait returns due to a stopped or terminated child process, the process ID of the child is returned to
the calling process. Otherwise, a negative value indicating the error is returned.

WAFTPID(2F) WAITPID (2F)

NAME

waitpid - wait for child process to stop or terminate
SYNOPSIS

#include <sysf/wait.i>

integer*4 waitpid,pid,statloc,options
iretval = waitpid(pid,statloc,options)
PESCRIPTION
waitpid provides botl non-blocking status collection and collection of status of children that are
stopped.

If statloc (taken as an integer) is nonzero, 16 bits of information called status are stored in the low
order 16 bits of the location pointed to by statloc. status can be used to differentiate between stopped
and terminated child processes and if the child process terminated, status identifies the cause of termi-
nation and passes useful information to the parent. This is accomplished in the following manner:

If the child process stopped, the high order 8 bits of status will contain the number of the sig-
nal that caused the process to stop and the low order 8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8 bits of stamus will be zero
and the high order 8 bits will contain the low order 8 bits of the argument that the child pro-
cess passed to ext; see exit (2).
If the child process terminated due to a signal, the high order 8 bits of status will be zero and
the low order 8 bits will contain the number of the signal that caused the termination. In
addition, if the low order seventh bit(i.e,. bit 200) is set, a "core image" will have been pro-
duced; see signal (3).

If options is zero, the behavior of waitpid is identical to wait (2). Otherwise, options consists of the

logical OR of one or both of the following flags:

WNOHANG.
Return immediately, evem if there are no chifdren to wait for. o this case, a return value of
zero indicates that no children have terminated (or stopped, if WUNTRACED is also set).

WUNTRACED
Return the status of stoppped children. If the child process has stopped due to the delivery of
a SIGTTIN, SIGTTOU, SIGSTP, or SIGSTOP signal, its status may be collected by setting
this flag.
If WUNTRACED is set and the status of a stopped child process is reported, the high order 8 bits of
status shall contain the number of the signal that caused the process to stop and the low order eight
bits shall be set to the octal value 0177.

RETURN VALUE
waitpid retorns -1 if there are no children not previously waited for; zero is returned if WNOHANG is
specified and there are no stopped or terminated children.

ERRORS
If any of the following conditions occur, waitpid will return -1 and set ermo to the corresponding value:

{ECHILD] The calling process has no existing unwaited-for child processes.
[EINVAL] waitpid was called with an invalid options value.

SEE ALSO
exit(2), wait(2), wait3(2N)

NOTES
Currently on 88k machine only.

WRITE(2F) WRITE (2F)

NAME

write - write on a file

SYNOPSIS

integer*4 write, fildes, nbyte
integer*1 buf (SIZE)
iretval = write (fildes, buf, nbyte)

integer®4 write, fildes, nbyte
character*SIZE bufc
iretval = write (fildes, bufc, nbyte)

DESCRIPTION

SIZE can be any number between and including 1 through 128. fildes is a file descriptor obtained from
a creat (2F), open (2F), dup (2F), fent! (2F), or pipe (2F) system call.

write attempts to write nbyte bytes from the buffer pointed to by buf to the file associated with the
fildes.

On devices capable of seeking, the actual writing of data proceeds from the position in the file indi-
cated by the file pointer. Upon return from write, the file pointer is incremented by the number of
bytes actually written.

On devices incapable of secking, writing always takes place starting at the current position. The value
of a file pointer associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be set to the end of the file prior
to each write.

For regular files, if the O_SYNC flag of the file status flags is set, the write will not return until both the
file data and file status have been physically updated. This function is for special applications that
require extra reliability at the cost of performance. For block special files, if O_SYNC is set, the write
will not return until the data has been physically updated.

A write to a regular file will be blocked if mandatory file/record locking is set [see chmod(2F)], and
there is a record lock owned by another process on the segment of the file to be written. If O NDELAY
is not set, the write will sleep until the blocking record lock is removed.

For STREAMS [see intro(2F)] files, the operation of write is determined by the values of the minimum
and maximuim nbyte range ("packet size") accepted by the stream. These values are contained in the
topmost strearn module. Unless the user pushes [see I PUSH in streamio(7)] the topmost module,
these values can not be set or tested from user level. If nbyte falls within the packet size range, nbyte
bytes will be written. If nbyte does not fall within the range and the minimum packet size value is zero,
wrife will break the buffer into maximum packet size segments prior to sending the data downstream
(the last segment may contain less than the maximum packet size). If nbyfe does not fall within the
range and the minimum value is non-zero, write will fail with iretval set to ERANGE. Writing a zero-
length buffer (nbyte is zero) sends zero bytes with zero returned.

For STREAMS files, if O_NDELAY is not set and the stream can not accept data (the stream write
queue is full due to internal flow control conditions), write will block until data can be accepted.
O_NDELAY will prevent a process from blocking due to flow control conditions. If O NDELAY is set
and the strearn can not accept data, write will fail. If O_NDELAY is set and part of the buffer has been
written when a condition in which the stream can not accept additional data occurs, write will terminate
and return the number of bytes written.

WRITE(2F) WRITE (2F)

write will fail and the file pointer will remain unchanged if one or more of the following are true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY was sct, and there was a blocking
record lock.

[EAGAIN] Total amount of system memory available when reading via raw 1/0 is temporarily
insufficient.

[EAGAIN] Attempt to write to a stream that can not accept data with the O NDELAY flag set.

[EBADF] fildes is not a valid file descriptor open for writing.

{EDEADIK] The write was going to go to sleep and cause a deadlock situation to occur.

{EFAULT] buf points outside the process’s allocated address space.

[EFBIG] An attempt was made to write a file that exceeds the process’s file size limit or the
maximum file size [see ulimit(2F)).

[EINTR] A signal was caught during the write system call.

[EINVAL) Attempt to write to a streamn linked below a multiplexor.

[ENOLCK] The system record lock table was full, so the write could not go to sleep until the
blocking record lock was removed.

[ENOLINK] fildes is on a remote machine and the link to that machine is no longer active.

[ENOSPC] During a wrife to an ordinary file, there is no free space left on the device.

[ENXIO] A hangup occurred on the stream being written to.

[EPIPE and SIGPIPE signal|
An attempt is made to write to a pipe that is not open for reading by any process.

[ERANGE] Attempt to write to a stream with nbyte outside specified minimum and maximum

wrile range, snd the minimum valug is nes-zezo.

If a write requests that more bytes be written than there is room for (e.g., the uliniét {see ulimit(2F)] or
the physical end of a medium), only as many bytes as there is room for will be written. For example,
suppose there is space for 20 bytes more in a file before reaching a limit. A write of 512-bytes will
return 20. The next write of a non-zero number of bytes will give a failure return (except as noted
below).

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file flag word is set, then
write to a full pipe (or FIFO) will return a count of 0. Otherwise (O_NDELAY clear), writes to a full
pipe (or FIFO) will block until space becomes available.

A write to a STREAMS file can fail if an error message has been received at the stream head. In this
case, iretval is set to the value included in the error message.

WRITE(2F) WRITE(2F)

EXAMPLE
program write
integer®4 write, fildes, nbyte
integer*1 buf (80)

integer*4 open, bytwrit .
character*80 bufc
equivalence (buf, bufc)

bufc = "Buffer test Data’
nbyte = 80

¢ Open file for read /write, create it if necessary

fildes = open (tst.x’, ’0402’0, "0666’0)
if (fildes .It. 0) write (*,*) ’create err:’, fildes
bytwrit = write (fildes, buf, nbyte)
if (bytwrit .lt. 0) write (*,*) write err: ’, bytwrit
end
NOTES
The streams features described in this manual page are not supported in this release.
SEE ALSO
creat(2F), dup(2F), fentl(2F), intro(2F), Iseek(2F), open(2F), pipe(2F), ulimit(2F).

DIAGNOSTICS
Upon successful completion the number of bytes actually written is returned. Otherwise, a negative .
value indicating the error is returned.

WRITEV(2F) WRITEV (2F)

NAME
writev - do multiple writes from a file

SYNOPSIS
include <sysf/uiod>
integer*4 writev, fildes, iovent
record /iovec/ iov(16)
iretval = writev (fildes, iov, iovent)

DESCRIPTION
writev attempts to write data from the object referenced by fildes. The input data is scattered into the
iovent buffers specified by the members of the iov array: iov(1), iov(2), ..., iov(iovent). This allows you
to do up to 16 write operations with one system call.

The iovec structure is defined as:

structure /iovec/
integer*4 iov_base
integer*4 iov_len
end structure

Each iovec entry specifies the base address and length of an area in memory where data exists. writev
writes to one arca completely before proceeding to the next. :

Upon successful completion, writev returns the number of bytes actually written and placed in the
buffer. The system will write the number of bytes requested if the descriptor references a normal file
that has that many bytes left before the end-of-file; this is not guaranteed for other cases.

ERRORS
writev will fail if one or more of the following are true:

[EBADF} fildes is not a valid file descriptor open for writing.

EFAULT] buf or past of the igv points ontside the allocated address space.

[EINTR] A write from a slow device was interrupted by a signal before any data arrived.
[EINVAL] The pointer associated with 4 was negative or greater than 16.

[EINVAL] iovent was negative or greater than 16.

[EINVAL) One of the iov_len values in the iov array was negative.

[EINVAL] Part of the iov points outside the process’s allocated address space.

[EIO] An I/O error occurred while writing from the file system.

WRITEV/(2F) WRITEV (2F)

EXAMPLE

program writev

include <sysf/uio.i>

include <sysf/fentli>
integer*4 writev, fildes, iovent
integer*4 1, j, iretval, offset, open
integer*1 buf(80,4)
character*20 buf1, buf2, buf3, buf4
equivalence (buf (1,1), buf1)
equivalence (buf (1,2), buf2)
equivalence (buf (1,3), buf3)
equivalence (buf (1,4), buf4)
record /iovec/ iov (16)

¢ Open afile

fildes = open (’../example /writev.tst’, O WRONLY + O_CREAT, *777°0)
if (fildes .It. 0) write (*,*) *open errory’, fildes

¢ Fill the iov structure for four buffers

offset = 0

do100i = 1,4

iov (i).iov_base = %loc (buf(1,i))
iov (i).iov_len = 20

offset = offset + 20
100 continue .

¢ Fill the output buffers

bufl = ’Line 1’
buf2 = ’Line two’
buf3 = "This is line three’
buf4 = "This should be 4’
do110i=1,4
buf (20, i) = 10

110 continue

¢ Do the four write operations
iovent = 4
iretval = writev (fildes, iov, iovent)

if (iretval It. 0) write (*,*) *writev error?, iretval

write (*,*) *check writev.tst for the data’

end
NOTES
The buffer address can be placed in the structure as follows:
iov (index).iov_base = %loc (buffer)
SEE ALSO

creat(2F), dup(2F), fentl(2F), getmsg(2F), ioctl(2F), intro(2F), open(2F), pipe(2F), read(2F).

GLS FORTRAN Interface to System Services

Appendix A

Installing the FORTRAN Library

The following sections tell how to install the General Language System (GLS™) FORTRAN System
Calls Library (libfs) on open architecture systems. Before installing the library package you should
be familiar with the sysadm installation tool. Refer to the sysadm(1M) manual page in the
REAL/IX Reference Manual far a description of this tool.

Product Requirements

The following list includes the minimum requirements for installing and using libfs:
Q An open architecture system
Q One 150 Mbyte cartridge tape drive
Q One auxiliary input device for batch processing (any MODCOMP-supported terminal)

O Approximately 480 Kbytes of disc space for libfs files

Installation Tape Contents. - .

The GLS FORTRAN System Calls Library installation tape contains four IGF images (refer to
igf(IM) in the REAL/IX Reference Manual Sections. IGF image 3 contains the scripts required to
install libfs. These files are removed when installation is complete. IGF image 4 contains all the
product files required to install and support this product. Table A-1 provides a breakdown of the
IGF images.

Installing the FORTRAN Library

IGF FILES/IMAGE CONTENTS JEMES B!

DIRECTORY? INSTALLED DIRECTORY DESCRIPTION

IGF IMAGE 1:
Volume ID Header

IGF IMAGE 2:
Tape Directory

IGF IMAGE 3:

lists all directories

README_libfs lusr/tmpl/igfdir /libfs/README_libfs README file

INSTALL Jusr/tmpligfdir installation script

UNINSTALL lusritmpligfdir remove script

Rlist lusritmp/igfdir list of files removed
when uninstalling

postinstall Jusr/tmp/igfdir links similar calls to

IGF IMAGE 4:,

the same man page

Mlibfslusr/lib/gls/libfs.a Jusr/lib/gls/libfs.a FORTRAN system call
interface library .
Mibfs/usrlinclude/gls/sysf/*i lusr/include/gls/sysf/*i FORTRAN system call
include files
ibfs/usr/catman/p_man/manf/*z /usr/catman/p_man/manf/*z FORTRAN (2F) man .
pages :

¥ lusr/tmp/igfdir is removed after installation is complete

Preinstallation

You must remove any prior versions of this product before installing the new release. Follow the
instructions in the section "Removing libfs From Your System” at the end of this chapter.

GLS FORTRAN Interface to System Services

Installing the FORTRAN Library

Installation Procedure

If you are updating your version of libfs, remove the older version before installing the new release.
To install libfs:

. 1. Log on to the operating system as superuser, also known as roof.
2. Invoke the sysadm(1M) tool. You will be presented with the sysadm menu.
3. Select item 2 from the menu to display the Software Management Menu.
4. Choose item 1 from the menu to select insrallpkg.
5. Insert the installation tape into the cartridge tape drive and press carriage return (<Cr>).
6. Choose item 2 to install a MODCOMP® tape. The INSTALL script completes the installa-
tion procedure. If any errors occur during the installation, a message describing the correc-

tive action is displayed at the terminal.

After installation, the README file resides in /libfs/README_libfs. You can remove this file from
the system if desired.

Removing libfs From Your System

‘ If you are updating your version of libfs, remove the older version before installing the new release.
Use the cartridge tape that contains the prior release and follow these instructions before installing
the new version. To remove libfs from your system:

1. Log on to the operating system as superuser, also known as root.

2. Invoke the sysadm(1M) tool. You will be presented with the sysadm menu.

3. Select item 2 from the menu to display the Sofrware Management Menu.

4. Choose item 3 from the menu to select removepkg.

5. Insert the original installation tape into the cartridge tape drive and press carriage return
(<cr>). The Rlist file, which was originally removed after the installation procedure, is
reinstalled and referenced by sysadm. The UNINSTALL script removes all libfs product

files from your system. If an error occurs during this process, a message describing the
corrective action is displayed at the terminal. |

GLS FORTRAN Interface to System Services A-3/(A-4 Blank)

PERMUTED INDEX

set the expiration time of a/
cancel one or more asynchronous/
accepts a connection on a socket

determine accessibility of a/
" set file

set group

determine

enable or disable process
enable or disable process/
examine or change signal

set a process alarm clock

set a process

change data segment space

read from file in an/

initialize structures before/

free internal resources for/

free internal resources for

read from file in an

write to file in an

initialize structures before requesting an
initialize structures before requesting an
cancel one or more

control write /execute

initialize structures before/

write to file in an/

free a

geta

binds a name to a socket

update super

examine and change

change data segment space/
free a binary semaphore

get a binary semaphore
suspend the

introduction to system
requests

examine and

examine or

create an interprocess
change working directory
get process and

wait for

wait for

absintervali0iiiiiiiiiieiiin. absinterval(2F)
acancel ...l acancel(2F)
E T 1 accept(2F)
accepts a connection on asocket accept(2F)
ACCESS evvvvrvovroneevennennecenneennesnns access(2F)
access and modification times utime(2F)
accesslistl setgroups(2F)
accessibilityofafile access(2F)
accountingiihiiiniiiieiiiiiiiieaas acct(2F)

ACCL oottt acct(2F)
T sigaction(2F)
administrative controlc.00anen uadmin(2F)
alarm ... alarm(2F)
alamclockl alarm(2F)
allocationcooiiiiiiiiiiiiiiin brk(2F)
aread ...l aread(2F)
g arinit(2F)
arwfree ...l arwfree(2F)
asynchronous I/O from the process arwfree(2F)
asynchronous manner aread(2F)
asynchronous mannercciioeinnn awrite(2F)
asynchronousread arinit(2F)
asynchronouswriteol awinit(2F)
asynchronous I/Orequestscocvue acancel(2F)
attributes of memory. memctl(2F)
awinit ...l iieiiiieiiiieii e awinit(2F)
1 1 awrite(2F)
binary semaphorel bsfree(2F)
binary semaphorel bsget(2F)
T bind(2F)
binds a nametoasocket bind(2F)
blockcocviiiiiiii sync(2F)
blocked signalso.oiiiiiial sigprocmask(2F)
brk .o brk(2F)
bsfreeo.iviiiiiiiiiiiie e bsfree(2F)
2 bsget(2F)
calling processcciiiiiiiiiiiinnn, suspend(2F)
calls and error numbers intro(2F)
cancel one or more asynchronousI/O acancel(2F)
change blocked signals sigprocmask(2F)
change data segment space allocation brk(2F)
change mode of file chmod(2F)
change owner and groupofafile chown(2F)
change priority of a process nice(2F)
change root directoryciiiieiiaa.t chroot(2F)
change signal action. sigaction(2F)
change the name of afile. rename(2F)
change working directory chdir(2F)
channelol pipe(2F)
chdir ... chdir(2F)
child processtimesol times(2F)
child process to stop or terminate wait(2F)
child process to stop or terminate waitpid(2F)

-1-

Permuted Index

change mode of file

change owner and group of a file
change root directory

wait for a connected interrupt
set a process alarm

close a file descriptor

create an endpoint for
get

initiates a connection on a/
wait for a

get name of

accepts a

initiates a

listens for

preallocate
administrative

file

event

message
semaphore
shared memory

Set process group ID for job
create a new file or rewrite an/

set and get file

get name of

get the

get the

set the

lock process, text, or

expand the stack region of the
change

close a file

duplicate an open file

control

change root

change working

make a

remove a

independent format read
remove

make a

enable or

duplicate an open file/

get real user, effective user, real group, and
IDs get real user,
get extended file status

create an

chmod ...l chmod(2F)
chowncoiiiiiii e, chown(2F)
chrootcoiiiiiiiiii e chroot(2F)
CISEMA . .vvvvvien it iiiiineraanns cisema(2F)
cock ... alarm(2F)
cose ..ol close(2F)
close a file descriptoroo.l, close(2F)
COMMUNICAtION . ..vvnvvnniniinnianneennn, socket(2F)
configurable pathname variables pathconf(2F)
COMMECE & .uvnveninninnnneneeininennenanes connect(2F)
connected interruptl cisema(2F)
connected peeriiiiiiiiiiiiiinan.. getpeername(2F)
connectiononasocket accept(2F)
connectiononasocketl connect(2F)
connections onasocket listen(2F)
contiguous filespace, prealloc(2F)
control ...l vadmin(2F)
comtrol ... fentl(2F)
control deviceiiiiiilL, ioctl(2F)
control operationscciiieiinan.. evctl(2F)
control operationsienon... msgctl(2F)
control Operationsoiiiieinen, semctl(2F)
control operationsoieiene. shmetl(2F)
control write /execute attributes of memory. memctl(2F)
COMIIOL .. .vntiniii ittt iieaanas setpgid(2F)
CIEAL . eeviniiii it creat(2F)
create a new file or rewrite an existing one creat(2F)
Create A MEW PIOCESS «vvvvvvvuvrenneeraneans fork(2F)
create an endpoint for communication socket(2F)
create an interprocess channel pipe(2F)
creationmaskl umask(2F)
CUrrent SYStemM . ..ovuuviitiiii i, uname(2F)
current value for a process interval timer getinterval(2F)
current value for a system-wide realtime timer .. gettimer(2F)

current value for a system-wide realtime timer .. settimer(2F)

datainmemoryc..ceiiii.... plock(2F)

datasegmentciiiiiiiiina, stkexp(2F)

data segment space allocation brk(2F)

descriptorl close(2F)

descriptor ... dup(2F)

determine accessibilityof afile access(2F)

device ...l ioctl(2F)

dITECtOry . ovvvvni it s chroot(2F)

directoryoiiiiiiiii i chdir(2F)

directory ..ot mkdir(2F)

directory ..ottt rmdir(2F)

directory entries and put in a file system getdents(2F)

directory entrycoiiiiiiiiiieienenn. unlink(2F)

directory, or a special or ordinary file mknod(2F)

disable process accounting acct(2F)

dup L dup(2F) ;
duplicate an open file descriptor dup(2F) . |
effective groupIDsciviiniiiiian... getuid(2F) |
effective user, real group, and effective group ... getuid(2F)

efstat ... estat(2F)

enable or disable process accounting acct(2F)

endpoint for communication socket(2F) |

=2=

format read directory

remove directory

introduction to system calls and
get extended file status

event control operations
receive any queued

receive any queued

get an

release an

post an

get an-event identifier

post an event to a process

receive any queued event

receive any queucd event from a/
release an event identifier

execute a file
execute a file
execute a file
exccute a file

suspend

execute a file

execute a file

execute a file

create a new file or rewrite an
terminate process

set the:

get

file control

change mode of

change owner and group of a
determine accessibility of a

do multiple reads from a

do muitiple writes from a

execute a

link to a

make a directory, or a special or ordinary
makes symbolic link to a

read from

write on a

read directory entries and put in a
set

set and get

close a

duplicate an open
read from

write to

create a new

move read /write
preallocate contiguous
truncate

Permuted Index

entries and put in'a file system independent getdents(2F)
@OLIY ..\ttt it unlink(2F)
errornumbersi.iiiiiiiieiaiiieen intro(2F)
1 N estat(2F)

L 1 R evctl(2F)
L N evrev(2F)
event control operations00...-. evctl(2F)
event from a specified list evrevl(2F)
eventidentifierciiiiiiiaiaen evget(2F)
event identifierol evrel(2F)
EVENL O APIOCESS «vvvnvvnreannnncronssanon evpost(2F)
BVEEL tvviriiiiiiiii e aei e evget(2F)
EVPOSE . ovvvinreeneneanenrsstonrosnoaracon evpost(2F)
=37 (o Z0 evrev(2F)
evrevl L e evrevl(2F)
evrel L. e evrel(2F)
examine and change blocked signals sigprocmask(2F)
examine or change signal action. sigaction(2F)
examine pending signals sigpending(2F)
EXECH Blevuoiomionssesonnns s RIRE.. BT .5 exec(2F)
execl ... e exec(2F)
€xeCle ...iiiiiiieiii i excc(2F)
EXeClP L. exec(2F)
executeafilel exec(2F)
execution forinterval sleep(2F)

em:md thexstack rsmamoﬁtﬁ&dmmsmnm . stkexp(2F)
expiration thne: off axprosasg intervall timesr absinterval(2F)
extended filestatusoooiinl estat(2F).
femtl ..o e fentl(2F)
file i i e chmod(2F)
1 chown(2F)
file cooiii e e access(2F)
file oo readv(2F)
file ..ooviiiii i e writev(2F)
file .ovveiii i exec(2F)
file ..o e link(2F)
71 mknod(2F)
1 symlink(2F)
file .ovvviiii it e read(2F)
1 P write(2F)
file system independent format getdents(2F)
file access and modification times utime(2F)
filecontrolcooiiiiiiiiiiiii fentl(2F)
file creationmask0l umask(2F)
file descriptorc.iviiviiiainiiaa.. close(2F)
file descriptorccoiiiiiiiiiiiiain, dup(2F)

file in an asynchronous manner aread(2F)
file in an asynchronous manner awrite(2F)
file or rewrite an existingone creat(2F)
filepointercciiiiiiiiiiiiiianan., Iseek(2F)
filespaceccvviiiiiiiiiiiiiiiiiiiee. prealloc(2F)
filespaceciveiianiiiiiiiiiiiiaaes trunc(2F)

-3

Permuted Index

get extended

get

uamount a

get

get

get

change the name of a

create a new process

entries and put in a file system independent
get configurable pathname/

1/0 from the process

get file status

get file system information

get time

machine specific

read directory entries and put/
get real user, effective user,/

get real user, effective user,/

get real user, effective user,/

get the current value for a/

get next message off a stream
get name of connected peer

get process, process group, and/
get process, process group, and/
get process, process group, and/
get scheduling priority

set/get Processor Status/

gets socket name

get and set options on sockets
get the current value for a/

get a unique identifier for a/
get real user, effective user,/
voluntarily

set

Set process

change owner and

send a signal to a process or a
set process

set user and

user, effective user, real group, and effective
get real user, effective user, real
get process, process
synchronous

Set process group

get an event

get shared memory segment
release a process interval timer
release an event

get a unique

set the expiration time of a/
directory entries and put in a file system
get file system type

get file system

asynchronous read
asynchronous write

filestatusooviiiiiiiiiiiiieiiea, estat(2F)
filestatusccooiiiiiiiiiiiiieen... stat(2F)
filesystemcciiiiiiiiiiiiieia., umount(2F)
file system information statfs(2F)

file system statisticsoii.ill ustat(2F)

file system type information sysfs(2F)

file. ..o rename(2F)
fork fork(2F)
format read directory getdents(2F)
fpathconf, pathconf(2F)
free a binary semaphore bsfree(2F)
free internal resources for asynchronous arwfree(2F)
fStat ..o e stat(2F)

fstatfso, statfs(2F)
ftimeo ftime(2F)
functionsoviiiiiiiiiiiiiii., sysm68Kk(2F)
getdents il getdents(2F)
getegid ... e getuid(2F)
getewid ...l getuid(2F)
getgid ... getuid(2F)
getintervalo, getinterval(2F)
1 11 O getmsg(2F)
GEPEETNAME . ..ivvvtiiit i eannennas getpeername(2F)
Lo 1 o + getpid(2F)
getpid ... e e getpid(2F)
getppid ... getpid(2F)
BEPIL .t e getpri(2F)
BEIPST o e e setpsr(2F)
getssocketmameiiiihiiiia.n. getsockname(2F)
getsocknameiiiiiiiiia..., getsockname(2F)
getsockoptiiiiiii getsockopt(2F)
GEtimET ...ttt gettimer(2F)
gettimerid i, gettimerid(2F)
getuid getuid(2F)
giveupCPU ...ttt relinquish(2F)
groupaccesslistl setgroups(2F)
group ID for job control. setpgid(2F)
groupofafilecoooiiiaL chown(2F)
Eroup Of ProOCESSES «..vvevenenneneeaannnn. kill(2F)
groupID ... e setpgrp(2F)
groupIDs ... setuid(2F)
groupIDs getrealoial.., getuid(2F)
group, and effective groupIDs getuid(2F)
group, and parent processIDs getpid(2F)
I/O multiplexingoo..., select(2F)
IDforjobcontrol. setpgid(2F)
identifier il evget(2F)
identifierl shmget(2F)
identifier il reltimerid(2F)
identifier i, evrel(2F)
identifier for a process interval timer gettimerid(2F)
incintervaliiiiiiiiiiiiin... absinterval(2F)
independent format read getdents(2F)
information, sysfs(2F)
informationc il statfs(2F)
initialize structures before requestingan arinit(2F)
initialize structures before requestingan awinit(2F)

-4-

1/0 from the process free
create an

wait for a connected i
suspend execution for i

get a unique identifier for a process
get the current value for a process

resolution and maximum time value of process

set the expiration time of a process
release a process
introduction to system calls/

control device

Set process group ID for

send a signal to a process or a/
get and set user

link to a file

read value of a symbolic

makes symbolic

receive any queued event from a specified

set group access
set realtime privileged users
listens for connections on a/

make
move read/write file pointer

signal

read from file in an asynchronous
write to file in an asynchronous
set and get file creation

get resolution and

timer get the resolution and
control write /execute/

lock process, text, or data in
make locked segments resident in
shared

shared

get shared

control write /execute attributes of

receive a
sends a
get next
send a

get

make a directory

make a directory, or a special/
change

set file access and

message control operations

Permuted Index

initiates a connection on a socket connect(2F)
internal resources for asynchronous arwfree(2F)
interprocess channel pipe(2F)
11110530 g1 cisema(2F)
interval ...l sleep(2F)
interval imerc.ceevnrerneennncannsn gettimerid(2F)
intervaltimer ool getinterval(2F)
interval timer getcciiiiennn. resabs(2F)
interval imercciciiiiin. absinterval(2F)
interval timer identifier SR reltimerid(2F)
1T intro(2F)
introduction to system calls and error numbers .. intro(2F)
joctl ... ioctl(2F)
jobcontrol.l setpgid(2F)
kill ..o kill(2F)

Bmitsoovvvvininininininiieiiiiin, ulimit(2F)
Gk ..o link(2F)

link e readlink(2F)
linktoafileoilll link(2F)
linktoafileoovivveeviiiiniaa.. symlink(2F)
- evrcvl(2F)

Bt o e setgroups(2F)
Bst oo setrtusers(2F)
listen ...l listen(2F)
listens for connections on asocket listen(2F)
lock process, text, or data in memory plock(2F)
locked segments resident in memory resident(2F)
Iseek ..ot Iseek(2F)
machine specific functions sysm68k(2F)
makes symbolic link to afile R symlink(2F)
mapagement P +.... sigset(2F)
manipulate signal setsoviiiiiiiai.. sigsetops(2F)
MAMNET . .ttternternreriernaneaneeronnens aread(2F)
MANET ot oveininineneieeatanearnensanes awrite(2F)
mask ...l umask(2F)
maximum time value of process interval timer .. resabs(2F)
maximum time values for a system-wide realtime restimer(2F)
memctl ... memctl(2F)
MEMOTY «ouevnnnennsennnsnveernnrnaneens plock(2F)
MEMOTY . ttveeerrensreurannoennerannonns resident(2F)
memory control operations shmctl(2F)
MEmMOry OpPerationsceeeeeeeneennnn shmop(2F)
memory segment identifier shmget(2F)
MEMOTY. .« etvnnnneeninnnieeninnneeernanis memctl(2F)
message control operations msgctl(2F)
message from asocket recv(2F)
message fromasocketl send(2F)
message offastreamo0ll getmsg(2F)
MESSaGe ON ASIEAM ..o vvvvvnurvnreaneeren putmsg(2F)
message Operationsc.oeiiinn msgop(2F)
MESSAZE QUEUE .. vvvvenrnnrennnnnrnnaennnns msgget(2F)
mkdir soiflerencineianiaens! mkdir(2F)
mknod ..ol mknod(2F)
modeoffileoiiiiiiiiiat, chmod(2F)
modification timesciiiiiia. utime(2F)
move read /write file pointer Iseek(2F)
msgetl ... msgctl(2F)

Permuted Index

gt Mmessage qUeUE MSZEEE .« onvvvvennnunernaisnserasaneanans msgget(2F)
message Operations MSZOP:vvverrernrennernnerenaennesans nmsgop(2F)
MESSage OPETations MSBICV . .vvvvevvnvonineinernssoacnnaneans msgop(2F)
message operations msSgsnd i iiiiaaa., msgop(2F)
do multiple readsfrom afile readv(2F)
do multiple writes fromafile writev(2F)
synchronous I/O multiplexingcooiiiiiii., select(2F)
gets SOCKEt MAIME ...ovnrtnniiiin it getsockname(2F)
change the nameofafile.cooiun. rename(2F) .
get name of connectedpeerl getpeername(2F)
get name of current systemoiiinann uname(2F)
bindsa nametoasocketiiiiiiiiaan bind(2F)
get next message offastream getmsg(2F)
change priority of aprocess miceo il nice(2F)
introduction to system calls and error numbers0l intro(2F)
open for reading or Writing open i open(2F)
duplicate an open file descriptorol dup(2F)
open for reading or writing open(2F)
event control OpPerationsiiiiiiieiiiiiin, evctl(2F)
message control operations i, msgctl(2F)
MESSage OPErationsoevvuviniunnanervnneaness msgop(2F)
semaphore control operationsioiiieia semctl(2F)
semaphore operationsc.oiiiiiiiiiaiiinan. semop(2F)
shared memory control operationscoiiiii, shmctl(2F)
shared memory operationsc.coiiiiiiiiiin. shmop(2F)
get and set optionson socketsolill, getsockopt(2F)
make a directory, or a special or ordinaryfile oLl mknod(2F)
change owner and groupofafile chown(2F)
get process, process group, and parent processIDsol getpid(2F)
get configurable pathname/ pathconf ool pathconf(2F)
get configurable pathname variables pathconf(2F)
suspend process until signal pauseoiiiiiiiiiiii i pause(2F)
get name of connected PEETonntiiiii it getpeername(2F)
examine pendingsignalsol sigpending(2F)
create an interprocess channel pipe ...l pipe(2F)
lock process, text, ordatain/ plock ...t plock(2F)
move read/write file pointeroiiiiiiia Iseck(2F)
post an event t0 A ProcesSvvvvrennnnnnnn evpost(2F)
preallocate contiguous file/ prealloccooiiiiiiiiiiiioas, prealloc(2F)
preallocate contiguous file space prealloc(2F)
get scheduling priorityoiiiiiiiiiiiiiiieia getpri(2F)
set scheduling priority il setpri(2F)
change priorityof aprocessoiiiiiiian. nice(2F)
set realtime privileged userslist setrtusers(2F)
set realtime privilegesoooiiiiiiiiiinan setrt(2F)
change priorityof a processoiiiiiiiiiiiiiia., nice(2F)
CIEAtE ATEW PIOCESS « . vvvnrenarsonnnsonsconanneeannnns fork(2F)
for asynchronous 1/O from the process free internal resources arwfree(2F)
POSt AN €VENE t0 @ PIOCESS .+ vvvvvnvvernnnnenrnnnnenaennnnnnnn evpost(2F)
resume a suspended Processiiiiiiiiiiieiiiiiiiin., resume(2F)
suspend the calling processcoeiiiiiiiiiiiiiiia, suspend(2F)
switchintoa processo.oveiiiiiiiiiiniininn. swtch(2F) .
tErmINAte PrOCESSvevnvevvoneneonnrnernsnnenns exit(2F)
enable or disable process accounting, acct(2F)
seta processalarmelockl alarm(2F)
get process and child process times times(2F)
Set process group ID for job control. setpgid(2F)

-6-

set

get process,

get a unique identifier for a

get resolution and maximum time value of
get the current value for a

set the expiration time of a

release a

send a signal to a

get process and child

wait for child

wait for child

suspend

get process, process group, and parent
IDs get

lock

send a signal to a process or a group of
set/get:

read directory entries and

send a message on a stream

get message

receive any

receive any

read from file

structures before requesting an asynchronous
system independent format

move

open for

read value of a symbolic link

do multiple

do multiple reads from a file

get real user, effective user,

effective group IDs get

set

set

and maximum time values for a system-wide
get the current value for a system-wide
set the current value for a system-wide
specify what to do upon

receive a message from a socket
receive a message from a socket
expand the stack

set/get Processor Status

voluntarily give up CPU
release a process interval/

change the name of a file.
initialize structures before
initialize structures before

Permuted Index

process groupIDiiiiiiiiiiiiiiaea, setpgrp(2F)
process group, and parent processIDs getpid(2F)
process interval timer 0.000ea., gettimerid(2F)
process interval timeriiiiiaelnn resabs(2F)
process interval timer getinterval(2F)
process interval timerol absinterval(2F)
process interval timer identifier reltimerid(2F)
Pprocess or a group of processes kill(2F)
Processtimescevviiiiniiiiecinanns times(2F)
process to stop or terminate000e.. wait(2F)
process to stop or terminate waitpid(2F)
process until signal oLl pause(2F)
ProcessIDS . ..vviiiiiiiiiiiiiiiiiiaiaaa getpid(2F)
process, process group, and parent process getpid(2F)
process, text, or datainmemory plock(2F)
PTOCESSES vvvrvrnnneeronnronvennnnnnsnsnn kill(2F)
Processor Status Register setpsr(2F)
putin a file system independent format getdents(2F)
PULSE o .oveiininnenianinnennannnnnnannns putmsg(2F)
QUEUE t.ereereenceenneninreaneenaeraanens msgget(2F)
queuedeventiiiiiiiiiiiiaieaan, evrev(2F)
queuned event from a specified list evrcvl(2F)
read ... read(2F)

read initializel arinit(2F)
read directory entries and putinafile getdents(2F)
readfromfile il read(2F)

read from file in an asynchronous manner arcad(2F)
read value of a symbolic link readlink(2F)
read/write file pointer Iseck(2F)
readingorwritingol open(2F)
readlink ciiililll readlink(2F)
readsfromafifeccociiiiniiiiaen, readv(2F)
readv ... e readv(2F)
real group, and effective groupIDs getuid(2F)
real user, effective user, real group, and getuid(2F)
realtime privileged userslist setrtusers(2F)
realtime privilegesoollL setrt(2F)
realtime timer get the resolution restimer(2F)
realtime timeroiiiiiienn.. gettimer(2F)
realtime imercovviviiiiiniienns settimer(2F)
receiptofasignall signal(2F)
receive a message from asocket recv(2F)
receive any queuedevent evrev(2F)
reccive any queued event from a specified list ... evrcvl(2F)
FEOV o tittit e it teneerinreneeenenranronns recv(2F)
recvitomo.iiiiiiii e recv(2F)
region of the datasegment stkexp(2F)
Registercoooiiviiiiiriinnnninnnnnnns setpsr(2F)
release a process interval timer identifier reltimerid(2F)
release an event identifier evrel(2F)
relinquishoooiiiiiii relinquish(2F)
reltimeridcoiiiiiiiiiiiian, reltimerid(2F)
remove adirectoryovvieiinnnnaeninn. rmdir(2F)
remove directoryentryco0ciinaen unlink(2F)
TEMAME ..vievrnvcennrseerennernnsrnnnnns rename(2F)
requesting an asynchronousread arinit(2F)
requesting an asynchronous write awinit(2F)

=7

Permuted Index

cancel one or more asynchronous I/0
get resolution and maximum time/
make locked segments resident/
make locked segments

get resolution and maximum time,/
interval timer get

system-wide realtime timer get the
the process free internal

get the resolution and maximum/
resume a suspended process

create a new file or

remove a directory

change

change data segment space/
get

set

expand the stack region of the data
get shared memory

change data

make locked

synchronous I/0 multiplexing
free a binary

get a binary

get set of

semaphore control operations
get set of semaphores
semaphore operations

sends a message from a socket

processes

sends a message from a socket

get
get and

realtime timer
timer

get and

set user and group IDs

set group access list

Set process group ID for job/
set process group ID

T 1 1 acancel(2F)
1eSabs ... e resabs(2F)
resident oo, resident(2F)
residentinmemory resident(2F)
TESIIC . vvniiiiiiniiiii e, resabs(2F)
resolution and maximum time value of process .. resabs(2F)
resolution and maximum time values fora restimer(2F)
resources for asynchronous I/O from arwfree(2F)
e T restimer(2F)
TESUME .. evueeinniannvnueraneeannnnnnnans resume(2F)
resume a suspended process resume(2F)
rewrite an existingone creat(2F)
mdir .o rmdir(2F)
100t directoryoiiiiiiiiiiiiiaa,., chroot(2F)
Sbrk ..o brk(2F)
scheduling priority getpri(2F)
scheduling priority setpri(2F)
SEGMENt ...l stkexp(2F)
segment identifier, shmget(2F)
segment space allocation brk(2F)
segments resident in memory resident(2F)
select ... select(2F)
semaphoreol bsfree(2F)
semaphorel bsget(2F)
semaphore control operations semctl(2F)
semaphore operations - semop(2F)
semaphorescoiiiiiiiiiia.., semget(2F)
semctl ... semctl(2F)
SEMEEL .. e semget(2F)
SCIMOP .t veteitevieieit ettt raeeanas semop(2F)
send ... send(2F)
send a message on astream putmsg(2F)
send a signal to a process or a groupof kill(2F)
sends a message from a socket send(2F)
Sendio L ...iiiii e send(2F)

set aprocess alarm clock alarm(2F)
set and get file creation mask umask(2F)
set file access and modification times utime(2F)
setgroupaccesslist setgroups(2F)
set of semaphores0....ls semget(2F)
set options onsocketsie..t. getsockopt(2F)
Set process group ID for job control. setpgid(2F)
setprocessgroupIDeeiii..., setpgrp(2F)
set realtime privileged users list setrtusers(2F)
set realtime privileges setrt(2F)

set scheduling priority setpri(2F)
set the current value for a system-wide settimer(2F)
set the expiration time of a process interval absinterval(2F)
settimeooiiiiiiiiiiiiiiiiiiiia, stime(2F)
setuserand groupIDsooiiuiniia.n, setuid(2F)
setuserlimitso.illll ulimit(2F)
set CPU time slicesize setslice(2F)
set/get Processor Status Register setpsr(2F)
setgid ... setuid(2F)
SELEIOUPS .vvvvvriininrieiiinnenneenrnnans setgroups(2F)
£ 7 setpgid(2F)
£ 1 P setpgrp(2F)

set scheduling priority

set/get Processor Status/

set realtime privileges

set realtime privileged users/
manipulate signal

set CPU time slice size

get and set options on sockets
set the current value for a/
set user and group IDs

get

shared memory operations

shared memory control operations
shared memory operations

get shared memory segment/
shared memory operations
examine or change signal action.
manipulate signal sets

manipulate signal sets

manipulate signal sets

signal management

signal management

manipulate signal sets

specify what to do upon receipt of a
specify what to do upon receipt/
suspend process until

examine or change

manipulate

send:a

examine and change blocked
examine pending

signal management

examine pending signals

L examine and change blocked/
. signal management
signal management

set CPU time slice

suspend execution for interval
set CPU time

accepts a connection on a

binds a name to a

create an endpoint for/

initiates a connection on a
listens for connections on a
receive a message from a

sends a message from a

gets

get and set options on
preallocate contiguous file
truncate file

change data segment

make a directory, or a

machine

receive any queued event from a

Permuted Index

1 setpri(2F)
SEIPST o evvvnerineanerinrinnnooinionnnonns setpsr(2F)
L3 £ setrt(2F)
SELTLUSEIS ...vvevrinevnaernnennnernnnnnnes setrtusers(2F)
SEES ittt e iee e sigsetops(2F)
setsliceoiiiiiiiiiii setslice(2F)
SEtSOCKOPt .« vttt getsockopt(2F)
T T settimer(2F)
L setuid(2F)
shared memory control operations shmcti(2F)
shared memory operations shmop(2F)
shared memory segment identifier shmget(2F)
shmat ..., shmop(2F)
shmetlonieiiiii shmctl(2F)
shmdtnn, shmop(2F)
shmget ...l shmget(2F)
shmop:ooiiiiiiiii shmop(2F)
SIGACHO ...t sigaction(2F)
sigaddset ...l sigsetops(2F)
sigdelset ..ol sigsetops(2F)
sigfillsetoiiiiiiiii sigsetops(2F)
sighold ...l sigset(2F)
SIZIBNOIE ..ttt sigset(2F)
sigismembercoioiiiiiiiiiiils sigsetops(2F)
signal ... signal(2F)
signal ... signal(2F)
signal ... pause(2F)
signal action.cioiiiiiiiiin... sigaction(2F)
signal managementc000nann.n sigset(2F)
signalsets ...l sigsetops(2F)
signal to a process or a-group-of processes kill(2F)

GIENAIST. . . . |\ siorvrere i s B aeRidls « sl sigprocmask(2F)
signals ...l sigpending(2F)
SIGPAUSEiiiiiiiiiiiiiii e, sigset(2F)
sigpending ..o sigpending(2F)
sigprocmaskcociiiiiiiini, sigprocmask(2F)
sigrelse ...l sigset(2F)
SIZSEE .. iii e sigset(2F)

SIZE .t et setslice(2F)
sleep .o sleep(2F)
slicesizeoiiiiiiii, setslice(2F)
SOCKEt ...iiiiiii i i accept(2F)
SOCKEE . .iiiiii e bind(2F)
socketiiiiiiiiii socket(2F)
socketiiiiiiiiii e connect(2F)
SOCKEE it listen(2F)
SOCKEE ..vvivniiiiiiiiiiii i recv(2F)
SOCKEt ...t send(2F)
socketname0iiiiiiiiien, getsockname(2F)
socketsiiiiiiiiiiiiiie getsockopt(2F)
SPACE +vvtiiiii i prealloc(2F)
SPACE v euvvint it it eeas trunc(2F)
space allocationoiiiiiiiiiniinnn brk(2F)
special or ordinaryfile mknod(2F)
specific functionsiiiiiiiian sysm68k(2F)
specified listooiiiiiiiiiiin, evrevi(2F)
specify what to do upon receipt of a signal signal(2F)

-9

Permuted Index

expand the

get file status

get file system information
get file system

get extended file

get file

set/get Processor

set time

expand the stack region of the/
wait for child process to
wait for child process to
get next message off a
send a message on a

read initialize

write initialize

update

suspend the calling process

resume a

switch into a process

read value of a

makes

makes symbolic link to a file
update super block

get file system type information
machine specific functions

get name of current

unmount a file

introduction to

read directory entries and put in a file
get file

get file

get file

get the current value for a

set the current value for a

the resolution and maximum time values for a
wait for child process to stop or

wait for child process to stop or

lock process,

and maximum time value of process interval
get a unique identifier for a process interval
get the current value for a process interval
maximum time values for a system-wide realtime
set the expiration time of a process interval
the current value for a system-wide realtime
the current value for a system-wide realtime
release a process interval

get process and child process

get process and child process/

set file access and modification

truncate file space

stack region of the datasegment stkexp(2F)
T stat(2F)
statfs ..o statfs(2F)
SEAISHCS .« vvvvvhiii e e ustat(2F)
SEALUS +ovvntviti i estat(2F)
SEALUS o uvevetiit it i stat(2F)
Status Registerccoiiiieinnnnn, setpsr(2F)
SHIME +.vvtvniinnenrnneeenainnnerannnnean stime(2F)
SEKEXD . .vtiiiii i e, stkexp(2F)
stoporterminate il wait(2F)
stoporterminateoiiiiann waitpid(2F)
SLTEAM . vvvvvv vt nitennenanneaiaonnns getmsg(2F)
SLTEAM .vvvvev v it ii i putmsg(2F)
structures before requesting an asynchronous ... arinit(2F)
structures before requesting an asynchronous ... awinit(2F)
superblock ..., sync(2F)
suspend ... suspend(2F)
suspend execution for interval sleep(2F)
suspend process until signal pause(2F)
suspend the calling process suspend(2F)
suspended Processcciiiiiiiians resume(2F)
switch into @ Processcevveiineennn swtch(2F)
swteh ..o swtch(2F)
symboliclinkooiiiiiiiiia, readlink(2F)
symboliclinktoafile symlink(2F)
symhink ...l symlink(2F)
37 1 sync(2F)
synchronous I/O multiplexing select(2F)
SYSES i sysfs(2F)
SYSMO8K ... e sysm68k(2F)
SYSEEIM ottt e uname(2F)
1= 1+ umount(2F)
system calls and error numbers intro(2F)
system independent format getdents(2F)
system informationl statfs(2F)
system statisticsciiiiiiiiiiinn, ustat(2F)
system type information sysfs(2F)
system-wide realtime timer gettimer(2F)
system-wide realtime timer settimer(2F)
system-wide realtime timer get restimer(2F)
terminateovvvieriniieniiniiiereiannaas wait(2F)
terminateciiiiiiiiaiiiiiaaa waitpid(2F)
terminate ProCessvvevvvernerninerieennns exit(2F)
text, or datainmemoryoo..n plock(2F)
timer getresolution resabs(2F)
[T gettimerid(2F)
1571173 getinterval(2F)
timer get the resolutionand restimer(2F)
L3 1= absinterval(2F)
GMET BBt . ivvvieiein i ininannerinennns gettimer(2F)
GMEr SEL . ivvvirtiieennieiii e vnnernns settimer(2F)
timer identifier o il reltimerid(2F)
HMES .ovvvriin i times(2F)
BMES «ovvt i inineinninneecnnneens times(2F)
HIES o vvvie it inennneerieeraneennnronns utime(2F)
41 T trunc(2F)
truncate filespaceol trunc(2F)

-10 -

Permuted Index

get file system type informationc0iiiienn.., sysfs(2F)
administrative control uadminc.ieiiiiiiiniieanan. uvadmin(2F)
get and set user limits wlimit00 ciiiii i, ulimit(2F)
set and get file creationmask umaskoiiieieia., umask(2F)
unmount a file system umountcioiiiiaa.. umount(2F)
get name of current SyStem UDAMEcovveennennennernnnnenns uname(2F)
> get a unique identifier for a process interval timer gettimerid(2F)
remove directoryentry unlink R unlink(2F)
. unmount a filesystem umount(2F)
suspend process umtil signall pause(2F)
update superblockcciiae, sync(2F)
specify what to do upon receipt of a signal T v TN S S T signal(2F)
set userandgroupIDsviiiiiaen setuid(2F)
getandset userlimitsc.ooiiiiiiiiiiinaann, ulimit(2F)
group IDs getreal user, effective user, real group, and effective getuid(2F)
IDs get real user, effective user, real group, and effective group getuid(2F)
set realtime privileged userslistcocoiiiiiiiiiiaan «.. setrtusers(2F)
get file system statistics: USEAtiiiiiiiieiiei i, ustat(2F)
set file accessand/ utimeoiiiiiiiiiiiieina... utime(2F)
get the current value for a process interval timer getinterval(2F) .
get the current value for a system-wide realtime timer gettimer(2F) .
set the current value for a system-wide realtime timer settimer(2F)
read value of a symboliclink readlink(2F)
get resolution and maximum time value of process interval timer, resabs(2F)
get the resolution and maximum time values for a system-wide realtime timer restimer(2F)
get configurable pathname variablesc.oiiiiiiiiaae, pathconf(2F)
voluntarily give uapCPU relinquish(2F)
wait for child process 10 Stop/” Wailvevriiieriiieiseiiiinieaeaannn. wait(2F)
wait for a connected interrupfy cisema(2F)
wait for child process to stoppemterminate wait(2F)
waif for chilldippacoss tacstogponitemmitate waitpid(2F)
wait for chifd process trstop/ WP ...cooeiicniiiiiiecneisnseena. .. Waitpid(2F)
change workingdirectory chdir(2F)
structures before requesting an asynchronous write initialize awinit(2F)
writeonafile writeol write(2F)
writconafilel write(2F)
write to file in an asynchronous mapner awrite(2F)
control write/execute attributes of memory. memctl(2F)
do multiple writes fromafile writev(2F)
do multiple writes from afile writevcoo0iiiiiiiiiiiiiin... writev(2F)
open for readingor writing i, open(2F)
voluntarilygiveup CPUc.iviiiiiiiniennnnennennnns relinquish(2F)
set CPUtimeslicesizeocvnvnnn. setslice(2F)
free internal resources for asynchronous 1/0O from the process arwfree(2F)
cancel one or more asynchronous I/Orequestscveeeneeenenennan.. acancel(2F)
setprocessgroup IDiiiiniiiiiiiiiiiiiai i setpgrp(2F)
effective user, real group, and effective group IDs getrealuser,vovvvrnneeernnnnnn.. getuid(2F)
get process, process group, and parent process IDSvvuriueierneerianrannanerneraans getpid(2F)
setuserandgroup IDscviiiiieiiiiieaineinnranna.n setuid(2F)
terminate Process _EXiteniieiainiiiiieianioeans exit(2F)
|
|
-11-

Please comment on the publication’s completeness, accuracy, and readability. We also
appreciate any general suggestions you may have to improve this publication.

If you found any errors in this publication, please specify the page number or include a
copy of the page with your remarks.

Your comments will be promptly investigated and appropriate action will be taken.

O If you require a written answer please check this box and include your address below.

Comments:

Manual Title

Manual Order Number Issue Date

Name Position

Company

Address

Telephone ()

088 'S'W ‘NOILY.LNIWNOO0A TYOINHOIL ‘uonuspy

6609—0reee 14 ‘ITvayaanv ‘14
6609 X08 "O'd .

avod gvYNOW "M 099

*ONI ‘SW3LSAS HILNdWOD UYINAOW

335534AAV A4 dIvd 39 T1IM 3DV1SOd

60€€E 14 ‘IIVAHAANVT "14 +29¢€ "ON LIWHId SSVIO LsHid

TIVIN A'IddY SSANISNH

S3LVLS Q3LINN
3HL NI
[CERIAIE]

AHVSS303N
35V150d ON | " ” I

an AEG company

MODCOMP, founded in 1970, is a
worldwide supplier of high-
performance, real-time computer
systems, products, and services to
the industrial automation, energy,
transportation, scientific, and
communications markets,
MODCOMP is an AEG company.

Corporate Headqguarters:
Modular Computer Systems, Inc.
1650 West McNab Road

P.O. Box 6099

Ft. Lauderdale, FL 33340-6099
Tel: (305) 974-1380

Twx: 510-956-9414

International Headqguarters:
Modular Computer Services, Inc
The Business Centre

Molly Millars Lane

Wokingham, Berkshire

RG11 2JQ, UK

Tel: 0734-786808, TLX: 851849149

Latin American-Caribbean
Headquarters:

Modular Computer Systems, Inc.,
1650 West McNab Road

P.O. Box 6099

Ft. Lauderdale, FL 33340-6099
Tel: (305) 977-1795, TLX: 3727852

Canadian Headquarters:
MODCOMP Canada, Ltd,,

400 Matheson Blvd. East, Unit 24
Mississauga, Ontario

Canada L4Z 1IN8

Tel: (416) 890-0666

Fax: (416) 890-0266

Sales & Service Locations
Throughout the World

Copyright © 1989, Modular Computer Syslems, Inc
MODCOMP is a registered trademark of Modular Computer Systems, Inc

~curate as of the date of auz:-:-canln are subject to change without notice '

Prmed in US A e The technical contents of this document, while ac

