User's Guide
GLS™ Symbolic Debugger (mdb™)

216—856007—-001

AEG

Revision 001, May 1990

Manual History

Manual Order Number: 216-856007-001

Title: User's Guide, GLS Symbolic Debugger (mdb)

Revision Level Date Issued Description
000 11/89 Initial Issue.
001 05/90 Change. Corrected pathnames of installed directories

to reflect INSTALL script.

Contents subject to change without notice.

MODCOMP, CLASSIC, Trl-Dimenslonal, and Tri-D are registered trademarks of Modular Computer
Systems, Inc.

GLS, MAX, REAL/IX, and mdb are trademarks of Modular Computer Systems, Inc.

UNIX is a registered trademark of AT&T in the U.S. and other countries.

Copyright © 1989, 1990 by Modular Computer Systems, Inc.

All Rights Reserved.
Printed in the United States of America.

GLS Symbolic Debugger User's Guide m

PROPRIETARY NOTICE

THE INFORMATION AND DESIGNS DISCLOSED HEREIN WERE ORIGINATED BY AND ARE THE PROPERTY OF
MODULAR COMPUTER SYSTEMS, INC. (MODCOMP). MODCOMP RESERVES ALL PATENT, PROPRIETARY DESIGN,
MANUFACTURING, REPRODUCTION, USE, AND SALES RIGHTS THERETO, AND RIGHTS TO ANY ARTICLE
DISCLOSED THEREIN, EXCEPT TO THE EXTENT RIGHTS ARE EXPRESSLY GRANTED TO OTHERS. THE FOREGOING
DOES NOT APPLY TO VENDOR PROPRIETARY PARTS.

SPECIFICATIONS REMAIN SUBJECT TO CHANGE IN ORDER TO ALLOW THE INTRODUCTION OF DESIGN
IMPROVEMENTS.

FOR GOVERNMENT USE THE FOLLOWING SHALL APPLY:
RESTRICTED RIGHTS LEGEND

USE, DUPLICATION, OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
RIGHTS IN DATA CLAUSES DOE 952.227-75, DOD 52.227-7013, AND NASA 18-52.227-74 (AS THEY APPLY TO
APPROPRIATE AGENCIES).

MODULAR COMPUTER SYSTEMS, INC.
1650 WEST McNAB ROAD

P.O. BOX 6099

FORT LAUDERDALE, FL 33340-6099

THIS MANUAL 1S SUPPLIED WITHOUT REPRESENTATION OR WARRANTY OF ANY KIND. MODULAR COMPUTER
SYSTEMS, INC. THEREFORE ASSUMES NO RESPONSIBILITY AND SHALL HAVE NO LIABILITY OF ANY KIND
ARISING FROM THE SUPPLY OR USE OF THIS PUBLICATION OR ANY MATERIAL CONTAINED HEREIN.

GLS Symbalic Debugger User's Guide

Preface

Audience

This manual is written for experienced system programmers who are using the General Language
System (GLS™) compilers. Users should be familiar with AT&T UNIX® System V or REAL/IX™
Operating System terminology.

Subject

This manual tells how to install and use the GLS Symbolic Debugger (mdb™). The mdb debug windows
incorporate the full functionality of AT&T’'s UNIX sdb(1) command options. A section describing mdb
rules and syntax is also included.

Product Requirements

Use the GLS Symbolic Debugger with programs processed by one of the GLS compilers. mdb runs
under the REAL/IX Operating System on the CLASSIC® Tri-Dimensional™ Model 97xx computer
system.

Related Publications
Refer to the following manuals for additional information. When you order additional manuals, use the
manual order number listed below. The most current revision level (REV) will be shipped.

Manual Order Number Manual Title
215-856001-REV GLS FORTRAN Interface to System Services
Library Reference Manual
210-856001-REV GLS FORTRAN Language Reference Manual
216~856005-REV GLS Programming Guide for 97xx Systems
216-856007-REV GLS Symbolic Debugger User’s Guide
205-855001-REV REAL/IX Operating System, 97xx Systems

Concepts and Characteristics

211-855001-REV REAL/IX Operating System, 97xx Systems
Commands and Utilities Reference Manual

211-854002-REV REAL/IX Operating System, 97xx Systems
System Calls, Library Routines, and Files Reference Manual

GLS Symbolic Debugger User's Guide v

vi

MODCOMP Service and Assistance

MODCOMP® offers a variety of programs and services that demonstrate our commitment to
customer satisfaction. Our Technical Education department provides comprehensive hands-on
instruction either at our facilities or at customer—designated sites. Qur worldwide field service
organization is ready to provide installation assistance, free service during the warranty period, and
flexible service programs tailored to your requirements.

Questions, Problems, and Suggestions

Your MODCOMP sales and service representatives can help you with any questions, problems, or
suggestions you may have regarding our products and services. In addition, for your convenience
MODCOMP maintains toll-free telephone numbers at which we can be reached for questions,
problems, and suggestions. Please feel free to use the following numbers:

Q For questions, sales information, or suggestions: in the U.S. and Canada, 1-800-255-2066
(In countries outside the U.S. and Canada, please call your regional sales support office or
1-305-974-1380 extension 1800 worldwide.)

U For service: in Florida, 1-800-432-1405; in the U.S., 1-800-327-8928; in Canada,
1-416-890-0666 (In countries outside the U.S. and Canada, please call your regional

service/support office.)

Q For Technical Education information: in the U.S., 1-305-977-1708 (In countries outside the
U.S., please call your regional support office.)

For comments about documentation, please use the response form at the back of this manual.

GLS Symbolic Debugger User's Guide

Revision 001, May 1990

TABLE OF CONTENTS

Page
Chapter 1 Introduction
The Window—Oriented Screen Interface« ¢ o« o« o 0 o o 1-2
Window Interface Commands+ + « « ¢ o 4 b e e e e e e e e e e e e 1-3
Comtrol KEYS . . v v v v v v v e 1-3
Function Keys 0 v v 0 v v it e e e e e e e e e e e e e e 1-3
The Window Cycle o v o v v o v v v i e e e e e e e 1-3
The Hour Glass Symbol o o o v oo e 1-10
The Error Window v v & & v v 6 v e v o v o v e e e e e e e e e 1-11
Chapter 2 mdb Features
Breakpoints« v v h e 2-1
Single=Steppilig e 2-2
Command Files/BatchMode ¢ vt v o v o o v v e o s s o o s o s 2-3
Chapter 3 Installing mdb
Physical Requirements« . o 4 ot et e e e e e e e e e e 3-1
Installation Tape Contents o« o v o o b et b e e e e e e s e 3-1
Preinstallation & ¢ 4 e it b e e e e e e e e e e e e e e e e e e e s 3-2
Installation Procedure o 4t .t e e e e e e e e e e e e e e e e 3-3
Removing mdb From Your System« ¢« v o o o 0ot e e .. 3-3
Chapter 4 Using mdb
Callingmdb v o i i e e e e e e e e e e e e e e e e 4~-1
Rumningmdb 0 v v o e e e e e e e e e e e e e e 4-2
Current Line and File, Last Line, and Breakpoints 4-2
Addressing . . .« v v v v h e h e 4-4
Accessing Variables L0 Lo e o s e e e e e e e e 4-6
Chapter 5 mdb Commands
Examining Dataina Program ¢ ¢ ¢ 0o e e e e e s e e e 5-1
Examining Source Files o . . . 0.0 e e e e e e e 5-5
Controlling the Execution of a Source Program« « o« v 5-7
Miscellaneous Commands « + ¢ 4 4 0 s e e e e e e e e e e e e e e s 5-10
Appendix A Error MeSSages« o o 4 e e v e e e e e e e e e A-1
17 1= < Index-1

GLS Symbolic Debugger User's Guide vil

LIST OF FIGURES

Page
1-1 Standard Screen e e e e e e 1-2
1-2 Active Command Input Window with History Help Window 1-4
1-3 Active Command Output Window with Scrolling Function 1-6
1-4 Active System Window with Help Window 1-7
1-5 Standard Screen withOpenLogFile 1-8
1-6 Active Terminal I/O Window with Help Window 1-9
1-7 An Example of Screen with Hour Glass Symbol 1-10
1-8 Active Error Window 0L 0o e e e e e 1-11
2-1 Command Output Screen after Breakpoint Executes 2-2
4-1 Current Line, Last Line, and Breakpoint Symbols 4-3
4-2 An Example of File Mapping foraout 4-5

vill GLS Symbolic Debugger User's Guide

Revision 001, May 1990

LiIST OF TABLES
Page
1-1 SupportedviCommands ¢ . o vt e 0w e e e e e e 1-5
3-1 IGF Files/Image Contents « « « v« v« v v o v o o o o o - 3-2

GLS Symbolic Debugger User's Guide Ix/(x Blank)

Chapter 1
Introduction

The GLS™ Symbolic Debugger, mdb™, uses a special set of symbols! to establish a connection be-
tween source code and executable instructions. The compile and link process typically destroys the
ability to trace back to the source level. mdb restores this connection by providing a high level
debugging environment with a window interface that allows you to pause execution at breakpoints,
single—step through the program, and examine register or memory contents.

mdb is powerful, but easy to access. As few as five commands provide the user with debugging
capabilities. Once you are familiar with the basic debugger functions, the mdb user interface and
command set make it possible to solve program logic problems with minimum effort. Refer to the
section "Using mdb” for the mdb command descriptions.
The GLS Symbolic Debugger includes the following features:

QO A user—friendly window interface

O On-line help facility

Q Log file capability

O Command files for commonly used mdb command sequences.

1 Symbols are saved during each stage of the compile, assemble, and link translation process.

GLS Symbolic Debugger User's Guide

Introduction

The Window-0Oriented Screen Interface

independent. This means you can use any intelligent terminal if you have an entry in the terminfo(4)

directory for that terminal.

When you execute mdb, you are presented with the initial Standard Screen. This screen includes the
Source, Command Output, and Command Input subwindows.

I
I
I
I
|
Based on the standard UNIX® library curses(3X) package, the window interface is terminal . I

-

~

main() in "ask.c”

1: #include <stdio.h> 7

2:

3: main() =
C 4: { £

5: char s1{801; 8

6: ?' :

7: display(sl); §

8: display(sl); z

9:)} -

10:

No process and no core file. | _J

Command Cutput
?No core image

v

Command Input

*
4

i

\Term I1/0 Step Stp Ovr

fox mopum Indur mopuim jndino

-
L

06779

Figure 1~1. Standard Screen

The Source Window displays the current source procedure and file name, active breakpoints in the
current procedure, the current line, last line executed, and the top of the stack trace.

The Command Output window displays debug process output. The output window implements a
subset of the REAL/IX™ pg(1) command options in the scrolling function. Note that the message
>No core image in the Command Output Window means the user did not request a core image
file when executing mdb. Refer to the section "Calling mdb” in Chapter 4 . .

The Command Input window accepts all mdb command line input and supports a history function

that allows you to edit and reissue commands.

GLS Symbolic Debugger User's Guide

Introduction

Window Interface Commands

The GLS Symbolic Debugger package provides full symbolic debugging capabilities, as well as
menu-—driven screens and window—oriented commands that make mdb easy to use.

Control Keys
In this document, a bold character preceded by an uparrow symbol (") means press the control key
while striking the specified character key. The following control keys have been added to provide
enhanced functionality:

Q -p dumps the current screen to the file ./sdump.dmb.

Q -gr clears and redraws the screen.

Q & calls up the on-line help window. Refer to the section "The Window Cycle” for a

discussiomn of the on-line help windows.

Function Keys

Function keys are provided to eliminate keystrokes for the following commands (refer to
Figure 1-1). You must match the terminfo TERM environment variable with your terminal type.

O The Term I/0 function corresponds to the <F1> key - this opens the Terminal I/O Window.
QO The Step function corresponds to the <F2> key — this executes the s (step) command.

O The Stp Ovr function corresponds to the <F3> key — this executes the S (stepover) command.

The Window Cycle

mdb supports the ability to cycle from one window to the next; each window includes a pop-up
window that provides on-line help.

To access each screen press the escape key (<gsc>). Press 'E to activate the help window for the
currently active window. Press the carriage return key (<cr»>)!to exit a window; this returns you to
command input mode. Each time you press <esc>, you cycle to the next screen.

Cycle Position Active Window
1 Command Input
2 Command Output
3 System
4 Terminal {/0

L The carriage return key is also known as the <ENTER> or <NEWLINE> key.

GLS Symbolic Debugger User's Guide

Introduction

On-line help is available through the help windows. The help windows provide the user with

information and/or instructions that pertain to the currently active window. To access on-line help

for each window press ‘€. The following screens illustrate the four mdb windows and their .
associated help windows.

O The history function allows the user to reissue and edit previous commands to the Command
Input Window. Commands are edited using a subset of the vi(1) editor.

HELP WINDOW

@.n() in "ask.c” / \

1: #include <stdio.h>
2:
3: main()
C 4:
5: char s1[80];
6: Command Input 1
7: display(sl). iA subset of vi(l) commands is provided. <Newline)
8: display(sl); {to accept . <Esc) to cycle.
9: } !
10: :
No process and no core fiie.

Command Output
>No Core Image .

Command Input History

*

Term I/O Step Stp Ovr

06788

Figure 1-2. Active Command Input Window with History Help Window

Refer to Table 1-1 for the vi(1) editor commands that are supported in the Command Input
Window.

1-4 GLS Symbolic Debugger User's Guide

Introduction

Tabte 1—1. Supported vi Commands

vi commands supported by command input

h,j, k| move left, down, up, right,
X delete a character
ESC end insert mode
+ move cursor to next line

= move cursor to previous line

0 move cursor to beginning of line
$ move cursor to end of line
H backspace

spacebar | advance one space

a add after cursor

A append to end of line

i Insert before cursor

rx replace character with x

GLS Symbolic Debugger User's Guide

Introduction

Q The scrolling function allows the user to review debugger output information by moving
forward and back in the Command Output window.

HELP WINDOW
//’F 2 ‘~\\
main() in "ask.c” /
1: #include <stdio.h>
2:
3: main()
C 4:
5: char sl[80];
6: Command Output -
7: display(sl); {Press ‘=’ or 'k’ to move up; '+ or 'j‘ to move
8: display(sl); {down. <Newline> to exit. <Ese¢> to cycle.
9:) !
10:
No process and no core file.

Command Output
>No Core Image

Command Input

*

1
T

Term I/0 Step Stp Ovr

06799

Figure 1-3. Actlve Command Output Window with Scrolling Function

1-6 GLS Symbolic Debugger User's Guide

Introduction

O The system default function accesses the System Window. The System Window allows the
user to modify mdb system parameters.

. HELP WINDOW
{

main() in "ask.c”

1: #include <stdio.h>

2:

3: main()
C 4: {

5: char s1[80];

6: Command Output -/

7: display(sl); iPress a digit to make selection. <Newline’> to

8: display(sl); Iexit. (Esc> to cycle.

9: 1} ;

10:

No process and no core file.

System

1) Tabstop is every 8 columns.

2) Window Dump file is wdump.mdb.

3) Command Input History remembers 12 lines.

4) Command Output window logical size is 24 lines.
5) Command Output window log file is not open.

6) Terminal I/O window is enabled.

\Eerm 1/0 Step Stp Ovr _/

06808

Figure 1-4. Active System Window with Help Window

When you make a selection from the System Window menu, mdb provides further instruc-
tions and/or waits for the related input. Refer to following sections for additional information
about menu items § and 6.

Menu Item S: Log Files

The contents of the Command Output Window are recorded in the log file. The log file is
opened and closed in the System Parameters Window (refer to Figure 1-4). If a log file exists,
the name of the log file appears in the lower right-hand corner of the Command Output
Window (refer to Figure 1-5).

If you select item number 5 from the System Window menu, you are prompted to enter the

pathname. file.log is like any other REAL/IX™ file. After you create the file, it resides either
. in the current working directory or in the directory specified by the pathname.

GLS Symbolic Debugger User’s Guide 1-7

Introduction

main() in "ask.c”

1: #include <stdio.h>

2:

3: main()
C 4: |

5: char s1([80];

6:

7: display(sl);

8: display(sl);

9: }

10:

No process and no core file!
Command Output LoG
> FILE
NAME
mdb. log |

Command Input
*
L

\Tam I/0 Step Stp Ovr)

07258

Figure 1—-5. Standard Screen with Open Log File

Menu Item 6: Terminal 1/0 Window

The Terminal I/O Window is toggled to enable or disable in the System Parameters Window
(refer to Figure 1-4). When you enable the Terminal I/O Window stdin, stdout, and stderr are
piped through the debugger program. When you disable the Terminal 1/0 Window, your user
process has direct access to the terminal driver.

enabled disabled

user process 1/0 saved: yes no
control characters converted to readable format: yes no
stty(1) terminal setting for <EOF> processed: no yes

1-8 GLS Symbolic Debugger User’'s Guide

Introduction

O The Terminal I/O Window is activated when the user process writes and flushes stdour or

stderr or executes for approximately one second.
. HELP WINDOW
\
| (Terminal 1/0 A e
| enter sl

Terminal I/O Help

’The Terminal I/O0 window is waltlng on an event.
,Any input from the terminal that the user process
iis expecting may be entered.

g Press any key to continue

\Term I/0 Step Stp Ovr

07288

Figure 1~6. Active Terminal I/0 Window with Help Window

GLS Symbolic Debugger User's Guide

Introduction

The Hour Glass Symbol

The hour glass symbol indicates that mdb is either in process or waiting for an event. When active,

the symbol appears in the center of the screen (refer to Figure 1-7) and the frames move clockwise
once a second, until the process is completed.

Germinal 1/0 \

enter sl

07179

Figure 1=7. An Example of Screen with Hour Glass Symbol

GLS Symbolic Debugger User's Guide

Introductiorn

The Error Window

The Error Window automatically displays all system and active window errors. Active window
errors indicate an invalid action in the currently active window. Refer to Figure 1-8.

ERROR WINDOW

main() in "ask.c” !/ w

1: $include <(stdio.h> System Error 7 t

2: EFilename is too long. Maximum filename length is |

3: maing() 114 [
C 4: [!

5: char s1[80]; press any key to continue.’

6:

7: display(sl);

8: display(sl);

9: }

10:

No process and no core file.

System

Command Output window log file is not open.
Maximum length is 15.
This file records all contents of the Command Output window.

*This_is_a_long_file_ name

\\Eerm I/0 Step Stp Ovr _,/

oTz68

Figure 1—-8. Active Error Window

GLS Symbolic Debugger User's Guide 1-11/(1-12 blank)

Chapter 2
mdb Features

mdb permits full execution flow control. Breakpoints and single-stepping allow you to observe
activity while the program executes. You can create more informative breakpoints and run—time
patching by attaching commands to breakpoints.] Refer to Chapter 4, "Using mdb”, for more
information.

Breakpoints

Breakpoints let you examine program status by stopping program execution at specific locations and
returning control to the user. When you set breakpoints and execute your program, execution
continues until a break is encountered; at that point the word >Breakpoint is written to the
Command Qutput Window and program execution is stopped. At this point you can interactively
debug the program.

You can associate a command with a breakpoint by entering the command and breakpoint in the
Command Input Window as follows:

*17b sl;k

This breakpoint command is defined as follows:

17 go to line 17 in the current source file
b insert a breakpoint command
s1 print the contents of the variable s1

separate the first command from the second command on the command line
k stop execution

When you execute this command the contents of variable s1 appear in the Command Output
Window, followed by the word >Breakpoint. Refer to Figure 2-1.

1To fully utilize mdb execution flow control, the source program must be compiled using the —g option. The
—~g option causes the compiler to generate additional information about variables and statements in the
compiled program. You can use mdb without compiling the source code with the =g option, but this limits the
symbolic debugging capabilities.

GLS Symbolic Debugger User's Guide

mdb Features

display() in “ask.c”

12: char *sl:
13: {
14: puts(“enter £1%);
53 fflush(stdout);
16: gets(sl);
BCE17: puts(sl);
18:)
display(sl=hello, world!) [ask.e:17

Command Output
No core image.
display:17 b
display:17 <sl;k>.
a.out

81/ hello, world!
>Breakpoint

Command Input
*

\Tem I/0 Step Stp Ovr /

07419

Figure 2-=1. Command Output Screen after Breakpoint Executes

Single—-Stepping

Single-stepping allows you to examine program status as you execute one line at a time or after you
execute a specific number of lines.

The s command allows you to stop after each source line. The S command can 'step over’ an entire
procedure. In contrast to s, the S command executes a function without displaying the associated
source code.

2-2 GLS Symbolic Debugger User’s Guide

mdb Features

Command Files/Batch Mode

A command file allows you to execute one or more debugger commands without user interaction.
This capability is sometimes referred to as batch mode operation. You can use command files to
recreate a debugging session, implement automated test sequences, or redefine the screen environ-
ment without manually entering the command set.

The following example shows how the command file setup.mdb is used to redefine the logical size of
the Command Output Window and open a log file.

“[70 7[448\n
5mdb. log\n
\n

w\n

The command file is defined as follows:

ol S U | press the escape key three times to cycle to the System Window
4 select option number 4 from the menu

48 enter 48 as new value

\n return to menu

5 select option number 5 from the menu

mdblog.\n enter mdb.log as new file name and return to menu
\n return to command input mode

w\n redraw Source and Command Output Windows

GLS Symbolic Debugger User's Guide 2-3/(2-4 blank)

Revision 001, May 1990

Chapter 3

. Installing mdb

The following sections tell how to install the GLS Symbolic Debugger (mdb) on the CLASSIC®
Tri-Dimensional™ 97xx system. Before installing the debugger package you should be familiar with
the sysadm installation tool. Refer to the sysadm(1M) manual page in your REAL/IX Commands
and Utilities Reference Manual for a description of this tool.

Physical Requirements

The following list includes the minimum physical requirements for installing and using mdb:
0 A CLASSIC Tri-Dimensional 97xx computer
Q One 150 Mbyte cartridge tape drive

Q One auxiliary input device for batch processing (any MODCOMP supported terminal)

I
. O Approximately 300 Kbytes of disc space for mdb product files

Installation Tape Contents

The GLS Symbolic Debugger installation tape contains four IGF images (refer to igf(1M) in the
REAL/IX Commands and Utilities Reference Manual). IGF image 3 contains the scripts required to
install mdb. These files are removed when installation is complete. IGF image 4 contains all the
product files required to install and support this product. See Table 3-1 for a breakdown of the
IGF images.

GLS Symbolic Debugger User's Guide

Installing mdb

Table 3-—1. IGF Files/Image Contents .
IGF FILES/IMAGE TEMPORARY
CONTENTS DIRECTORY* INSTALLED DIRECTORY DESCRIPTION
IGF IMAGE 1:
Volume ID Header
IGF IMAGE 2:
Tape Directory lists all directories
IGF IMAGE 3:
README_mdb lusritmpligfdir Jusr/mdb/README_mdb README file
INSTALL lusr/tmpligfdir install script
UNINSTALL lusritmpligfdir uninstall seript
Rlist lusr/tmpligfdir list of files
removed during
uninstall
I
" IGFIMAGE 4: .
Jbin/mdb tusr/bin/mdb mdb debug package
Jecatman/p_man/manl/mdb.1.z {usr/catman/p_man/manl/mdb.1.z mdb man page

* Jusr/tmp/igfdir is removed after installation is complete

Preinstallation

We advise that you remove any prior versions of this product before installing the new release.
Follow the instructions in the section called “Removing mdb From Your System®, at the end of this
chapter.

3-2 GLS Symbolic Debugger User's Guide

Revision 001, May 1990
Installing mdb

Installation Procedure
. Steps 1 through 6 tell you how to install mdb:

1. Log on to the operating system as superuser, also known as roof.

2. Invoke the sysadm(1M) tool. You will be presented with the sysadm menu.

3. Select item 2 from the menu to display the Software Management Menu.

4. Choose item 1 from the menu to select installpkg.

5. Insert the installation tape into the cartridge tape drive and press carriage return (<cR>).

6. Choose item 2 to install a MODCOMP tape. The INSTALL script will complete the
installation procedure. If any errors occur during the installation, a message describing the

corrective action will be printed to the terminal.

After the iixsta.llation, the README file resides in /usr/mdb/README_mdb. You can remove this |
file from the system if desired.

. Removing mdb From Your System

If you are updating your version of mdb, remove the older version before installing the new release.
Use the cartridges tape that contains the prior release and follow these instructions before installing
the new version. Follow the steps listed below to remove mdb from your system.

1. Log on to the operating system as superuser, also known as root.

2. Invoke the sysadm(1M) tool. You will be presented with the sysadm menu.

3. Select item 2 from the menu to display the Software Management Menu.

4. Choose item 3 from the menu to select removepkg.

5. Insert the original installation tape into the cartridge tape drive and press carriage return

(<cr>). The Rlist file, which was originally removed after the installation procedure, is

reinstalled and referenced by sysadm. The UNINSTALL script removes all mdb product
files from your system. If an error occurs during this process, a message describing the

. corrective action is printed to the terminal screen.

GLS Symbolic Debugger User's Guide 3-3/(3-4 Blank)

Chapter 4
Using mdb

This chapter provides information about calling mdb and running mdb commands. The following
conventions are use to help describe the mdb commands:

xxx Italic letters represent a user—defined variable or variable file name, such as core or
a.out.

XXX Bold keywords are entered as shown.

[1] Brackets indicate an optional parameter.

An ellipsis indicates a continuing sequence.

ol An ellipsis followed by the letter n indicates an indefinite sequence.

Calling mdb

Use the following syntax to call mdh:
mdb [~w] [=W] [objfil [corfil [directory list]]] [<filename]
-w allows you to overwrite objfil locations

-W suppresses mdb warnings produced when the source files that generate objfil cannot
be found or are more recent than objfil

objfil is an executable program file compiled with the —g compile option. The —g option
causes the compiler to generate additional information about variables and state-
ments in the compiled program. You can use mdb without compiling the source
code with the —g option, but this limits the symbolic debugging capabilities. For
more information about the =g compile option, refer to the GLS Programming
Guide. The default object file is named a.out.

corfil is a core image file produced after executing objfil. If you specify a dash (-) in
place of corfil, mdb ignores any core image file. The default file name is core.

directory list lists directories, separated by colons, used to locate the source files that build
objfil.

<filename is a command file. When filename is specified, commands are read from this file

first. After EOF, command input is taken from the terminal.

GLS Symbolic Debugger User's Guide

Using mdb

Running mdb

This section provides the following information about running mdb: .
QO current line and file
O addressing
O accessing variables

When you execute mdb, you are presented with the initial Standard Screen, which includes the
Source, Command Output, and Command Input windows (see chapter 1).

Current Line and File, Last Line, and Breakpoints

At any given time there is a current line and current file in the Source Window. The source program
you are examining is the current file; the current line, labeled with a C, tells you where the mdb
cursor is located. The last line, labeled with an E, indicates the last line executed. A B labels a
breakpoint line. Refer to Figure 4-1.

main() in "ask.c” .
1: #include <stdio.h>

2:
3: main()
CE4: |
5 char s1[801;
6:
¥ display(sl);
B 8: display(sl);
9: }
10:
No process and no core file,

Command Qutput
No core image

Command Input
*

Term 1/0 Step Stp Ovr
N) L

07209

Figure 4-1. Current Line, Last Line, and Breakpoint Symbols

4-2 GLS Symbalic Debugger User’s Guide

Using mdb

Normally the current line and file are set to the first line in main(). If you want to examine the
current line and source statement at the point where the object program terminated, you can
specify corfil when you call mdb. For more information about corfil, refer to the "Calling mdb”
section in this chapter.

GLS Symbolic Debugger User's Guide 4-3

Using mdb

Addressing

File mapping determines how the address in a file is associated with a written address. Each
mapping is represented by two triples (b1, el, fI) and (b2, €2, f2). All addresses are kept as signed
32-bit integers. Mapping variables are defined as follows:

b1
el

1

b2
e2
f1

beginning of instruction space
end of instruction space

offset into a.out

beginning of data space
end of data space

offset into core

Calculate the file address that corresponds to a written address as follows:

bl <= address < el

file address = address + f1 — bl

or

b2 <= address < €2

file address = address + f2 - b2

In programs with separate instruction and data space, the two segments for a file can overlap.
Initially, both algorithms are suitable for typical a.out and core files. If either file is not in the
standard format, then bl is 0, el is the maximum file size, and f1 is 0 for that file. This allows you
to examine the complete file with no address translation.

GLS Symbolic Debugger User's Guide

Using mdb

4 ™

main() in “ask.c”
1: #include <stdio.h>

2:
3: main()
BCE4: {
5: char s1[80]:
6
T display(sl);
B: display(sl);
9:)
10

Command Output - —t-
? map “a.out’

bl = 0x30d40 el = 0x2e9%8 f1 = 0xdo
b2 = 0x400e98 e2 = 0x402140 f2 = 0xe98
/ map "'
bt =0 el =0 f1 =0
b2 = 0 e2 = 0 £f2 = 0
1]
Command Input
:
\Term I/0 Step Stp Ovr _/,J

07429

Figure 4-2. An Example of File Mapping for a.out

Unless objfil or corfil are used to refer to a specific process, all process addresses refer to the
currently executing program. Refer to Figure 4-2.

GLS Symbolic Debugger User's Guide

Using mdb

Accessing Variables

This section tells how to use mdb to access variables in your source program. mdb commands are
described in the "mdb Commands” section in Chapter 5. The following list defines supported
variable types and includes the appropriate syntax. These variable forms may be combined.

O local variables
[procedure:Jvariable accesses a variable by its procedure name. When you omit
procedure, mdb defaults to the current procedure. To refer-
ence GLS FORTRAN common variables specify the com-
mon block name for procedure. You can specify the structure
address in decimal, octal, or hexadecimal.

QO structure members
variable.member specifies an individual structure element. The structure is
interpreted as a set of variables and mdb displays the
value of the specified element.

Q pointers to structure members
variable —> member displays a member of the structure pointer. You can
dereference pointers using pointer{0].

O common varjables
common.variable allows you to access common variables by using the

common block instead of the structure name. If you
use a structure address rather than the structure vari-
able name, it becomes the structure address and the
last structure referenced by mdb becomes the struc-
ture template. Blank common is referenced by

.variable.
O array elements
variable{number] provides specific index into the array.

4-6 GLS Symbolic Debugger User's Guide

Using mdb

O muitidimensional array elements!
. variable [number]... | variable [number,number...}
provides an actual index into the array.

variable [*] indicates all legitimate values of that subscript.
You can omit the last subscript. If all subscripts
are omitted, mdb displays the entire array.

variable [numbersnumber] specifies a range of values.

O a particular variable on the stack
procedure:variable,number

specifies where the procedure resides on the
stack, counting from the top. When you omit
procedure, mdb uses the currently executing
procedure.

O a line number in a source program
filename:number | procedure:number

specifies a line number by file name or proce-
dure name. In either case, number is relative
to the beginning of the file. If you omit
procedure or filename, mdb uses the current
file. If you omit number, mdb uses the first
executable line of procedure or filename.

1You cannot display the contents of a multidimensional parameter as an array in a GLS FORTRAN program.
The parameter points to the location of the array.

GLS Symbolic Debugger User's Guide 4-7/(4-8 blank)

Chapter 5

mdb Commands

This chapter lists the mdb commands by the following functional groupings:

0O examining data in a program

O examining source files

Q controlling the execution of a source program

Q miscellaneous commands

Examining Data in a Program

Use the following commands to examine data in your program:

T

variable [/{cim]]

Print a stack trace of the terminated or halted program.

If verbose mode is >=1, print the top line of the stack trace. This information is
available in the bottom, right—hand corner of the source window.

Print the value of variable according to count ¢, length /, and format m. If you
omit ¢, I, and m, mdb chooses a length and a format suitable for the variable
type, as declared in the program. Although /, ¢, I, and m are optional parame-
ters, the backslash (/) is required when you specify ¢, I, or m to identify them
as variables, not commands. The last variable may be redisplayed with the
command ./.

¢ specifies the number of memory units to display, starting with the address
implied by variable. ¢ defaults to a special case when format commands s or a
are used (refer to the m commands on the following page).

I represents the output length of the value specified by variable (sometimes
resulting in truncation). If / is not specified, the size comes from variable. The
number of bytes in one unit of memory is determined by /. I can be b for one
byte, h for two bytes (half word), or I for four bytes (long word). [is valid only
when m is ¢, d, u, o0, Or x.

GLS Symbolic Debugger User's Guide 5-1

mdb Commands

m represents one of the following commands used to format variable:

a print characters starting at variable’s address. You cannot use this for-
mat with register variables. If ¢ is not specified, successive characters
print until either 128 characters or a null byte is detected.

c character

d decimal

f 32-bit single precision floating—point

g 64-bit double precision floating-point

i disassemble machine—language instruction with addresses printed nu-
merically and symbolically

1 disassemble machine~language instruction with addresses printed
numerically

o octal

p pointer to procedure

s assume varigble is a string pointer and print characters at the address
pointed to by variable. If ¢ is not specified, successive characters print
until either 128 characters or a null byte is detected.

u unsigned decimal

x hexadecimal

The sh(1) metacharacters * and ? can be used within procedure and variable
names as a device for pattern matching. If no procedure name is given, variables
local to the current procedure and global variables are matched; if a procedure
name is specified, then only variables local to that procedure are matched. To
match only global variables, the form :pattemn is used.

Example: When you issue the command,

argc/

the value of the variable argc appears in the Command Output Window.

linenumber | variable:[?im]

Print the value at the address from a.out specified by linenumber or variable
according to length / and format m. variable is the procedure name.

I can be one of the following: b for one byte, h for two bytes (half word), or 1
for four bytes (long word). ! is valid only when m is <, d, u, o, or x.

m represents one of the following commands used to format variable (defaults to
f):
a print characters starting at variable’s address. You cannot use this for-

mat with register variables.
¢ character

GLS Symbolic Debugger User's Guide

-t A

u
X

mdb Commands

decimal

32-bit single precision floating—point

64-bit double precision floating—point

disassemble machine-language instruction with addresses printed nu-
mericaily and symbolically

disassemble machine-language instruction with addresses printed
numerically

octal

pointer to procedure

assume variable is a string pointer and print characters at the address
pointed to by variable

unsigned decimal

hexadecimal

Example: When you issue the command,

mains:?

the value at the address specified by main appears in the Command Output
Window.

variable[:linenumberljnumber =[im]

Print the address of variable or the value of number in the format specified by
Im. Specify this command with number to convert between decimal, octal, and
hexadecimal. The address of the linenumber in variable is specified by
variable:linenumber.

1 represents the output length of the value specified by variable (sometimes
resulting in truncation). / can be one of the following: b for one byte, h for two
bytes (half word), or 1 for four bytes (long word). The default for I is L. / is valid
only when m is ¢, d, u, o, or x.

m represents the format used for displaying variable and can be one of the
following (defaults to x):

et oA n

print characters starting at variable’s address. You cannot use this for-
mat with register variables.

character

decimat

32-bit single precision floating—point

64-bit double precision floating—point

disassemble machine—language instruction with addresses printed nu-
merically and symbolically

disassemble machine-language instruction with addresses printed
numerically

octal

GLS Symbolic Debugger User's Guide 5-3

mdb Commands

variable'value

X|x

P pointer to procedure

s assume variable is a string pointer and print characters at the address
pointed to by variable

u unsigned decimal

x hexadecimal

Refer to the following example.
Example: When you issue the command,
argv[o]=

the address of the array element argv[0] appears in the Command Qutput
Window.

Assign value to variable. variable is a variable or an expression. When variable is
an expression, it indicates that there may be more than one variable. For
example, an array or structure is an example of a variable expression. If the
address of variable is provided, mdb assumes it is integer.

value is a number, character constant, or a variable. value must be defined;
expressions that produce more than one value, such as structures, are not
allowed. mdb assumes registers and numbers are integers, unless the number
contains a decimial point or exponent. Character constants are denoted as
'character.

Use C programming language conventions for type conversions to perform the
assignment. For more information about the C conventions, refer to the GLS
Programming Guide.

Example: When you issue the command,

argel2

2 is assigned to variable, argc, and the mew value appears in the Command
Output Window.

Print the current machine-language instruction. If you specify x, mdb also prints
the machine registers.

GLS Symbolic Debugger User’'s Guide

mdb Commands

Examining Source Files

. Use the following commands to examine your source files:

e [procedure | filename | directory/ | directory filename)

Set the current file to the filename or the file containing procedure or change the
value of directory.

mdb sets the current line to the first line in procedure or filename. mdb assumes
that the source files are in directory. The default for directory is the current
working directory.

directoryl and directory filename change the directory pathname.

If verbose mode is >=1 and no parameters are specified, this command prints
current procedure and file name. The current procedure and file name become the
new source window header.

Example: When you issue the command,

e /usr/include/values.h

the directory path, /fusr/include/values.h, becomes the current file and appears
in the Command Output Window.

1| ?regular expression|/ | ?)

. [numberlp

The term regular expression refers to a character or character string that has special
meaning when used to represent another character, string, line, or file name.
regular expressions are used in context searching; they allow you to search for and
operate on specified file characters, character strings, or lines using a single
command. When you specify /, mdb searches forward. when you specify ?, mdb
searches backward. The trailing 7 or ? is optional.

Example: When you issue the command,

/fflush

the regular expression / causes mdb to search forward for the specified character
string, £flush. The line containing the matching string becomes the current line in

the Source Window.

If number is specified, set the current line to number. If verbose mode is >=1,
print the current line. This line is labeled by C in the Source Window.

GLS Symbolic Debugger User's Guide 5-5

mdb Commands

[numberlz

[numberlw

number

If number is specified, set the current line number. If verbose mode is >=1, print
the current line followed by the next 9 lines. Set the current line to the last line
printed. This updates the Source Window.

If number is specified, set the current line number. If verbose mode is >=1, print
the 10 lines around the current line. This line is labeled by C in the Source
Window. The w command forces the Source Window and the Command Qutput
Window to be redisplayed.

Set the current line to number and if verbose mode is >=1, print the new current
line.

[count }+ | = [plz|w]

Change the current line by count and print the new current line. + increments the
current line and — decrements the current line. If p, z, or w is specified, perform
the associated command.

GLS Symbolic Debugger User's Guide

mdb Commands

Controlling the Execution of a Source Program

Use the following commands to control the execution of your source program:
[count] r [args] | R

Run the program. args is one or more arguments. If you specify r and omit args,
mdb uses the previous arguments. R runs the program with no arguments. An
argument that begins with < or > redirects the standard input or output, respec-
tively. count specifies the number of breakpoints to ignore.

[linenumber] ¢ | C [count]

Continue after a breakpoint or interrupt. count specifies the number of breakpoints
the program must encounter before it stops. linenumber causes mdb to place a
temporary breakpoint at a specified line and continue executing. mdb deletes the
breakpoint when the command completes. C reactivates the signal that caused the
program to stop. c¢ ignores the signal.

linenumber g {count]

Continue after the breakpoint line specified by linenumber. count specifies the
number of breakpoints to ignore.

s | S [count] Single-step the number of lines specified by count. If count is omitted, mdb steps
the program for one line. Use S to step over procedure calls.

i1 Single-step by one machine-language instruction. I reactivates the signal that
caused the program to stop; i ignores the signal.

variable$ | address: m [count]

Single—step the specified number of lines until the location specified by variable$ or
address: is modified with a new value. If count is omitted, the default is infinite.
variable$ must be accessible from the current procedure.

{level} v Toggle verbose mode. This affects T, e, P, z, w, number, +, =, s, §, b, |,
<NEWLINE>, and EOF character (-0). If level is omitted, mdb prints only the current
source file and/or subroutine name when either changes. If level is >= 1, mdb
prints source code lines before they are executed. If level is >= 2, mdb also prints
the assembler statements. The v command turns verbose mode off if it is on. The a
command turns verbose mode on.

k Kill the program being debugged when issued from the command line. Stop pro-
gram execution when part of breakpoint command.

GLS Symbolic Debugger User's Guide ' 5-7

mdb Commands

procedure([arg [, arg...]]) [/m]

Execute procedure with the given arguments. Your program must have been com-
piled with the —g compile option specified to use this command. The backslash (/)
causes the return value, if there is one, to print. arg can be an integer, character,
or string constant or the name of a variable accessible from the current procedure.
m causes the value returned by procedure to be printed according to one of the
following formats:

a print characters starting at the variable's return value. You cannot use this

format with register variables.

character

decimal (default)

32-bit single precision floating-point

64-bit double precision floating—point

disassemble machine-language instruction with addresses printed numeri-

cally and symbolically

I disassemble machine-language instruction with addresses printed
numerically

o octal

p pointer to procedure

s assume the variable is a string pointer and print characters at the address
pointed to by the variable

u unsigned decimal

x hexadecimal

=g ™o e

Example: When you issue the command,
strlen(0x3f£ffdsc)/

the value returned by the procedure, strlen, appears in the Command Output
Window.

[variable:|linenumber] b [command [;command]...]

5-8

Set a breakpoint at the line specified by linenumber. If you specify a procedure
name without a line number, mdb places a breakpoint at the first line in the
procedure. If linenumber is omitted, mdb places the breakpoint at the current line.

command is any valid mdb command. mdb executes command when it encounters
the breakpoint, then the source program resumes execution. If command is omit-
ted, execution stops just before the breakpoint and control returns to mdb. If you
specify k for command, control returns to mdb and executior of the source
program stops.

GLS Symbolic Debugger User's Guide

mdb Commands

Example: When you issue the command,
main:7 b
a breakpoint is inserted at line 7 in the procedure main.

B Print a list of the currently active breakpoints. Active breakpoints are labeled with
a B in the Source Window (refer to Figure 4-1).

[linenumber] d Delete the breakpoint at the line specified by linenumber. If linenumber is omitted,
you can delete the breakpoints interactively. mdb prints the location of each
breakpoint and reads a line from the command input. If the line begins with a y or
d, mdb deletes the breakpoint.

D Delete all breakpoints.

1 If verbose mode is >=1, print the last executed line. This line becomes the current
line.

linenumber a Set a breakpoint at the line specified by linenumber and print the last executed line.

If linenumber references a stack and not a specific procedure in the stack, mdb
prints the top line of the stack trace. Each time this command is issued verbose
mode is turned off.

GLS Symbolic Debugger User's Guide 5-9

mdb Commands

Miscellaneous Commands

Following is a list of miscellaneous commands:

tcommand

<NEWLINE>

Interpret command with sh(1).

Advance the current line by one and if verbose mode is >=1, print the new current
line if the previous command printed a source line. If the previous command
displayed a memory location, display the next memory location.

end-of-file character

<filename

M

M2][*lbef

" string

If verbose mode is >=1, print the next 10 lines. The end-of-file character is
usually -p. This updates the Source Window.

Read commands from filename until end-of-file, and then accept commands from
standard input. When you nest this command or specify < as a command in a file,
input terminates at the first end—of-file encountered.

Print the address maps.

Record new value for the address map. The arguments ? and / specify the text and
data maps, respectively. mdb changes the first segment of mapping (bZ, el, f1)
unless your specify *. If * is specified, mdb changes the second segment of mapping
(b2, €2, f2). If you omit b, e, or f, mdb does not change the other map parameters.
For more information about the address map and map parameters, refer to the

"Addressing” section in Chapter 4.

Print sming. mdb recognizes the C <ese> sequences specified in the format
\character. character is a non-numeric character.

Exit the debugger.
Print the version number.

Print a list of procedures and files being debugged.

GLS Symbolic Debugger User’'s Guide

Appendix A
Error Messages

The mdb error messages in this list are self-explanatory:

Not enough memory. Memory may be freed by decreasing Command Input History or
Command Output scrolling size.

Command line too long. Maximum filename length is n.
Filename is too long. Maximum filename length is n.
Printf(3S) failure. Unable to write 'filename’ .

vValue out of range. Valid range is n through n.
Invalid key pressed

Key pressed not a digit

Not a valid filename

'filename® exists and is being appended.

Value not a positive integer

Internal mesages indicate there is a problem with the debugger software. If you receive any of the
following error messages, record the commands you were using and contact MODCOMP customer
service. The appropriate telephone number for your location is listed in the preface of this manual.

Internal mdb error

Curses(3X) library failure

Puts(3S) failure

Signal(2) failure

System(3S) failure

GLS Symbolic Debugger User's Guide A-1/(A-2 blank)

INDEX

. accessing variables help window

a line number in the source program, 4-7 ‘E, 1-3
a particular variable on the stack, 4-7 history function, 1-4
array elements, 4-6 hour glass symbol, 1-10
common variables, 4—6
local variables, 4-6 Installing mdb
multidimensional array elements, 4-7 installation procedure, 3-3
pointers to structure members, 4-6 installing mdb
structure members, 4-6 installation tape contents, 3—-1
addressing, 4—4 physical requirements, 3-1
breakpoints, 2-1 last line, 4-2
log file, 1-7
command files, 2-3
command line options mdb command line options
corfil, 4-1 <filename, 4-2
directory list, 4-1 mdb commands
objfile, 4-1 controlling execution, 5-7 0 5-9
. -W, 4-1 examining data, 5-1 to 5-4
-w, 4-1 examining source files, 5-5, 5-6
commands te éxamine data, 5-1 10 5-4 miscellaneous commands, 5-10
control keys: o
“E, 1-3 >No core image, 1-2
‘P, 1-3
‘R, 1-3 on-line help window
current file, 4-2 history, 1-4
current line, 4-2 scrolling, 1-6
curses(3X), 1-2 vi editor, 1-3 to 1-9
error messages, A—1 pg(1), 1-2
Error Window, 1-11
examining source files, 5-5, 5-6 removing mdb from the system, 3-3
execution control, 5-7 fo 5-9 running mdb, 4-2
file mapping, 4—4 s (step) command, 1-3
function keys S (stepover) command, 1-3
<F1>, 1-3 scrolling function, 1-6
<F2>, 1-3 ./sdump.dmb, 1-3
<F3>, 1-3 sh(1), 5-2
Single—stepping
—g option, 2-1 S command, 2-2

single-stepping, 2-2

Index-1

INDEX [continued]

single-stepping [continued]
s command, 2-2
Standard Screen, 1-2
stdin, stdout, and stderr, 1-8
Step function, 1-3
Stp Ovr function, 1-3
syntax conventions, 4-1
system default function, 1-7
system parameters
log files, 1-7
system default function, 1-7
Terminal I/0 Window, 1-8

TERM environment variable, 1-3
Term I/0 function, 1-3
Terminal I/0 Window, 1-8
terminfo, 1-3

terminfo(4), 1-2

UNINSTALL, 3-3

window cycle, 1-3

window interface
Command Input Window, 1-2
Command Output Window, 1-2
Source Window, 1-2

Index—-2

Please comment on the publication’s completeness, accuracy, and readability. We also
appreciate any general suggestions you may have to improve this publication.

If you found any errors in this publication, please specify the page number or include a

copy of the page with your remarks.

Your comments will be promptly investigated and appropriate action will be taken.

O 1f you require a written answer please check this box and include your address below.

Comments:

Manual Title

Manual Order Number

Name

Issue Date

Position

Company

Address

Telephone ()

088 ‘S'W ‘NOLLYLINIWNOOQ TvOINHOIL :uojuspy

6609—0VEEE 14 ‘TTvayaanv “id

6609 X014 "O'd
avod gvYNOW "M 0591 |
*ON{ ‘SWALSAS HILNAWOD BYINAOW

338534AAVY AgQ divd 39 71IM 3DVLSOd

60€€E 14 ‘ITVQHIANVYT "Ld ¥29¢ "ON 1IWHId SSV10 1SHId

TIVIN A'1ddY SSANISNE

S3LvLs d3iiNn
3HL NI
[CERIMAE]

AHVSS3OIN
35VviS0d ON ‘

___________ -ade} pue pjoj ases|d i ey — e — _._.

an AEG company

MODCOMP, founded in 1970, is a
worldwide supplier of high-
performance, real-time computer
systems, products, and services to
the industrial automation, energy,
transportation, scientific, and
communications markets.
MODCOMP is an AEG company.

Corporate Headquarters:
Modular Computer Systems, Inc
1650 West McNab Road

P.O. Box 6099

Ft. Lauderdale, FL 33340-6099
Tel: (305) 974-1380

Twx: 510-956-9414

International Headquarters:
Modular Computer Services, Inc.
The Business Centre

Molly Millars Lane

Wokingham, Berkshire

RG11 2JQ, UK

Tel: 0734-786808, TLX: 851849149

Latin American-Caribbean
Headquarters:

Modular Computer Systems, Inc.,
1650 West McNab Road

P.O. Box 6099

Ft. Lauderdale, FL 33340-6099
Tel: (305) 977-1795, TLX: 3727852

Canadian Headquarters:
MODCOMP Canada, Ltd.,

400 Matheson Blvd, East, Unit 24
Mississauga, Ontario

Canada L4Z IN8

Tel: (416) 890-0666

Fax: (416) 890-0266

Sales & Service Locations
Throughout the World

Copyright © 1989, Modular Computer Systems, Inc
MODCOMP is a registered trademark of Modular Computer Systems, inc

are subject 1o change without notice

®

ical contents of ths document while accurate as of the date of public,

O

Printed in USA e The te

